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Abstract: A new final endpoint of complete gravitational collapse is proposed. By extending the
concept of Bose–Einstein condensation to gravitational systems, a static, spherically symmetric
solution to Einstein’s equations is obtained, characterized by an interior de Sitter region of p=−ρ

gravitational vacuum condensate and an exterior Schwarzschild geometry of arbitrary total mass
M. These are separated by a phase boundary with a small but finite thickness `, replacing both the
Schwarzschild and de Sitter classical horizons. The resulting collapsed cold, compact object has no
singularities, no event horizons, and a globally defined Killing time. Its entropy is maximized under
small fluctuations and is given by the standard hydrodynamic entropy of the thin shell, which is of
order kB`Mc/h̄, instead of the Bekenstein–Hawking entropy, SBH = 4πkBGM2/h̄c. Unlike BHs, a
collapsed star of this kind is consistent with quantum theory, thermodynamically stable, and suffers
from no information paradox.

Keywords: black holes; general relativity; gravitational collapse; information paradox; dark energy;
cosmological constant

1. Introduction 1

The vacuum Einstein equations of classical general relativity (GR) possess a well-
known solution for an isolated mass M, with the static, spherically symmetric line element

ds2 = − f (r) dt2 +
dr2

h(r)
+ r2(dθ2 + sin2 θ dφ2) (1)

where the functions f (r) and h(r) in this case are equal and given by

f (r) = h(r) = 1− 2GM
r

= 1− rM

r
(2)

in units where c = 1. The dynamical singularity of the Schwarzschild metric (1) at r = 0
with its infinite tidal forces clearly signals a breakdown of the vacuum Einstein equations.
The kinematical singularity at the Schwarzschild radius rM ≡ 2GM is of a different sort,
corresponding to an infinite blue shift of the frequency of an infalling light wave with
respect to its frequency far from the black hole (BH). Since the local curvature tensor is
finite at r = rM , the singularity of the metric (1)–(2) there can be removed by a suitable (and
singular) change of coordinates in the classical theory. A classical point test particle freely
falling through the event horizon is said to experience nothing special at r = rM . Whether
or not a true event horizon of this kind where light itself becomes trapped can be realized
in a physical collapse process remains open to question.

This question becomes much more acute in quantum theory. For when h̄ 6= 0, a pho-
ton of finite asymptotic frequency ω (even if arbitrarily small) acquires a local energy
E = h̄ω [ f (r)]−

1
2 , which diverges at r = rM . Since the effective coupling in gravity is

(G/h̄)
1
2 E, proportional to energy, the kinematical singularity at rM may be responsible for

strong gravitational interactions between elementary quanta as their energy approaches

Universe 2023, 9, 88. https://doi.org/10.3390/universe9020088 https://www.mdpi.com/journal/universe

https://doi.org/10.3390/universe9020088
https://doi.org/10.3390/universe9020088
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0002-1679-3637
https://orcid.org/ 0000-0003-1067-1388
https://doi.org/10.3390/universe9020088
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe9020088?type=check_update&version=3


Universe 2023, 9, 88 2 of 15

the Planck energy MPl =(h̄/G)
1
2 , by which point it can no longer be taken for granted that

quantum effects on the classical geometry can be safely neglected.
In the semi-classical approximation, when a massless field, such as that of the photon,

is quantized in the fixed Schwarzschild background, with certain boundary conditions
corresponding to a regular future horizon, one finds that the BH radiates these quanta with
a thermal spectrum at the asymptotic Hawking temperature, TH = h̄/8πkBGM [3]. It is
usually assumed that the backreaction effect of this radiation on the classical geometry must
be quite small. However, detailed calculations of the energy-momentum of the radiation
show that its 〈Tt

t〉 and 〈Tr
r〉 components have an f−2 infinite blue shift factor at the horizon

which divergences are arranged to exactly cancel in free-falling coordinates [4,5]. Anything
other than this exact cancellation of the separately diverging energy density and pressure
in the semi-classical Einstein equations would significantly change the geometry near
r = rM from the classical Schwarzschild solution (2). The wavelengths contributing to these
quantum stresses are of order rM and, hence, quite non-local on the scale of the BH. Unlike
the classical kinematic singularity in (2), such non-local semi-classical backreaction effects
near rM depending on the quantum state of the field theory, cannot be removed by a local
coordinate transformation.

Furthermore, energy conservation plus a thermal radiation spectrum imply that
a BH has an enormous entropy, SBH ' 1077kB(M/M�)2 [6], far in excess of a typical
stellar progenitor. The application of thermodynamic arguments to BHs is itself put
into doubt by the the inverse dependence of TH on M implying that a BH in thermal
equilibrium with its own Hawking radiation has negative specific heat and, therefore,
is unstable to thermodynamic fluctuations [7]. On the other hand, requiring that basic
thermodynamic principles apply to self-gravitating systems as well implies that their heat
capacity must be proportional to their energy fluctuations, ∝ 〈(∆E)2〉, and hence must be
positive. The assumption of a thermal mixed state of Hawking radiation emerging from a
BH also leads to an ‘information paradox’ so severe that resolving it has been conjectured
to require an alteration in the principles of relativity, or quantum mechanics, or both.

In light of the challenges BHs pose to quantum theory, and in lieu of revision to other-
wise well-established fundamental laws of physics, it is reasonable to examine alternatives
to the strictly classical view of the event horizon as a harmless kinematic singularity, when
h̄ 6= 0 and the quantum wavelike properties of matter are taken into account. In earlier
investigations which attempted to include the backreaction of the Hawking radiation in
a self-consistent way, the entropy arises entirely from the radiation fluid [8,9]. In fact,
S = 4 [(κ + 1)/(7κ + 1)] SBH , for a fluid with the equation of state, p = κρ, becoming
equal to the Bekenstein–Hawking entropy SBH for κ = 1. Despite this suggestive feature,
these fluid models have huge (Planckian) energy densities near rM and a negative mass
singularity at r = 0, so that the Einstein equations are not reliable in either region.

A quite different proposal for incorporating quantum effects has been made in [10],
viz. that the horizon becomes instead a critical surface of a phase transition in the quantum
theory, supported by an interior region with equation of state, p = −ρ < 0. Such a vacuum
equation of state, first proposed by Gliner [11] for the endpoint of gravitational collapse,
is equivalent to a positive cosmological term in Einstein’s equations, and does not satisfy
the energy condition ρ + 3p ≥ 0 needed to prove the most general form of the classical
singularity theorems [12].

In this paper [1], we show that an explicit static solution of Einstein’s equations taking
quantum considerations into account exists, with the critical surface of ref. [10] replaced by
a thin shell of ultra-relativistic fluid of soft quanta obeying ρ = p. Such a solution, lacking
a singularity and an horizon is significant because it provides a stable alternative to BHs as
the endpoint of gravitational collapse, with potentially different observational signatures.

The principal assumption required for this solution to exist is that gravity undergoes
a vacuum rearrangement phase transition in the vicinity of r = rM , in which the vacuum
energy density changes abruptly. Since a spatially homogeneous Bose-Einstein condensate
(BEC) couples to Einstein’s equations in exactly the same way as an effective cosmological
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term Λeff, with equation of state p = −ρ, the existence of the interior region requires
that general considerations of low temperature quantum BEC phase transitions can be
extended to gravitation. It has been suggested that a phase transition could be induced
by the equation of state of the compressed matter attaining the most extreme one allowed
by causality, namely p = +ρ. The effective theory incorporating the low energy effects of
quantum anomalies that could give rise to the interior p = −ρ Gravitational Bose–Einstein
condensate (GBEC) phase has been presented elsewhere [13–15]. In this paper, we forego
any discussion of the details of the quantum phase transition and present only the solution
of Einstein’s equations with the specified equations of state of the de Sitter (dS) interior
and phase boundary layer, which is the model proposed in the original arXiv paper [1].
Developments since that original article are discussed in the Appendix A.

2. Solution of Einstein Equations for Static, Spherical Symmetry

The general form of the stress-energy tensor in the static, spherically symmetric
geometry of (1) is

T ν
µ =


−ρ 0 0 0

0 p 0 0
0 0 p⊥ 0
0 0 0 p⊥

 (3)

so that the Einstein equations in the static spherical coordinates of (1) are

−Gt
t =

1
r2

d
dr

[
r(1− h)

]
= −8πGTt

t = 8πG ρ , (4a)

Gr
r =

h
r f

d f
dr

+
1
r2

(
h− 1

)
= 8πGTr

r = 8πG p (4b)

together with the conservation equation

∇λ Tλ
r =

dp
dr

+
ρ + p

2 f
d f
dr

+
2
r
(p− p⊥) = 0 (5)

which ensures that the other components of Einstein’s equations are satisfied. In (5) the
transverse pressure p⊥≡Tθ

θ =Tφ
φ is allowed to be different from the radial pressure p ≡ Tr

r.
For a perfect fluid p⊥= p and the last term of (5) vanishes. In that case, (4)–(5) are three
first order equations for the four functions, f , h, ρ, and p, which become closed when an
equation of state for the fluid relating p and ρ is specified.

Because of the considerations in the Introduction, as a first phenomenological model
we allow for three different regions with the three different equations of state

I. de Sitter Interior : 0 ≤ r < r1 , ρ = −p ,
II. Thin Shell : r1 < r < r2 , ρ = +p ,
III. Schwarzschild Exterior : r2 < r , ρ = p = 0 .

(6)

At the interfaces r = r1 and r = r2, the metric functions f and h are required to be
continuous, although the first derivatives of f , h and p must be discontinuous from the first
order Equations (4) and (5).

In the interior region ρ = −p is a constant from (5). Let us call this constant
ρV = 3H2/8πG. If we require that the origin is free of any mass singularity then the
interior is determined to be a region of dS spacetime in static coordinates, i.e.,

I. f (r) = C h(r) = C
(
1− H2 r2) , 0 ≤ r ≤ r1 (7)

where C and H are constants, which at this point are arbitrary.
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The unique solution in the exterior vacuum region which approaches flat space as
r → ∞ is a region of Schwarzschild spacetime (2), viz.

III. f (r) = h(r) = 1− 2GM
r

= 1− rM

r
, r2 ≤ r (8)

where the mass M can take on any (positive) value.
The only non-vacuum region is region II. Defining the dimensionless variable w by

w ≡ 8πGr2 p (9)

Equations (4) and (5) with ρ = p may be recast in the form

dr
r

=
dh

1− w− h
, (10a)

dh
h

= − 1− w− h
1 + w− 3h

dw
w

. (10b)

together with p f ∝ w f /r2 a constant. The first Equation (10a) is equivalent to the definition
of the (rescaled) Tolman–Misner–Sharp mass function µ(r) = 2Gm(r), with h = 1− µ/r
and dµ(r) = 8πG ρr2 dr = w dr within the shell. The second Equation (10b) can be solved
only numerically in general. However, it is possible to obtain an analytic solution in the
thin shell limit, 0 < h� 1, for in this limit we can set h to zero on the right side of (10b) to
leading order, and integrate it immediately to obtain

h ≡ 1− µ

r
' ε

(1 + w)2

w
� 1 (11)

in region II, where ε is an integration constant. Because of the condition h� 1 we require
ε� 1, if w is of order unity. Making use of Equations (10) and (11) we have

dr
r
' −ε dw

(1 + w)

w2 (12)

so that because ε� 1 the radius r hardly changes within region II, and dr is of order ε dw.
The final unknown function f is given by (5) to be f = (r/r1)

2(w1/w) f (r1) ' (w1/w) f (r1)
to leading order in ε for ε� 1.

Now requiring continuity of the metric coefficients f and h at both r1 and r2 gives
the conditions

f (r1) = Ch(r1) = C(1− H2r2
1) ' Cε

(1 + w1)
2

w1
(13a)

f (r2) = h(r2) = 1− 2GM
r2
' ε

(1 + w2)
2

w2
(13b)

which together with the solution for f evaluated at r = r2, w = w2 gives

C(1 + w1)
2 = (1 + w2)

2 (14)

and three independent relations among the eight integration constants (r1, r2, w1, w2, H, M, C, ε).
Assuming that (r1, r2, w1, w2, H, M, C) all remain finite as ε → 0, i.e., they are all of or-
der ε0, we obtain from (12) and (13) that

r1 =
1
H

[
1− ε

(1 + w1)
2

2w1

]
(15a)

r2 = rM

[
1 + ε

(1 + w2)
2

w2

]
(15b)
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for two of the three relations, so that r1→ rH = H−1 and r2→ rM with r2 − r1 = ∆r of order
ε, and rH ' rM to leading order in ε. Thus, the boundary layer II straddles the location of
the classical Schwarzschild and dS horizons, and r1 → r2 coincide at rH = rM , becoming no
longer independent in the limit ε→ 0. Since the mass M is a free parameter there remain
three undetermined integration constants C, w1, w2 which satisfy the one relation (14) if
ε 6= 0, and lastly 0 < ε� 1 itself.

The important feature of this solution is that for any ε > 0 both f and h are of order
ε but nowhere vanishing. Hence there is no event horizon, and t is a global Killing time.
A photon experiences a very large, O(ε− 1

2 ) but finite blue shift in falling into the shell
from infinity.

The proper thickness of the shell in the metric (1) is

` =
∫ r2

r1

dr√
h
= rM

√
ε
∫ w1

w2

dw w−
3
2 = 2rM

√
ε
(

w−
1
2

2 − w−
1
2

1

)
(16)

to leading order in ε, and, hence ` is O(ε 1
2 ) and small compared to rM .

The magnitude of ε and hence of ` can be fixed only by consideration of the quan-
tum effects that give rise to the phase transition boundary layer. A subsequent analysis
of the stress tensor of the conformal anomaly [14,15], shows that these quantum vac-
uum polarization effects become significant when r2 − rM is of order of the Planck length
LPl = (h̄G)

1
2 ' 1.6× 10−33 cm, so that ε ∼ LPl/rM , and ` ∼

√
LPlrM � LPl, making a a

semi-classical mean field treatment of the boundary layer feasible.
The entropy of the thin shell is obtained from the equation of state, p = ρ =

(a2/8πG)(kBT/h̄)2, where we have introduced G for dimensional reasons so that a2 is
a dimensionless constant. By the standard thermodynamic Gibbs relation, Ts = p + ρ
for a relativistic fluid with zero chemical potential, and, hence, the local specific entropy
density is

s(r) =
a2k2

BT(r)

4πh̄2G
=

akB
h̄

( p
2πG

) 1
2
=

akB
4πh̄Gr

w
1
2 (17)

for local temperature T(r). The entropy of the fluid within the shell is thus

S = 4π
∫ r2

r1

s r2 dr√
h

=
akB r2

M

h̄G
√

ε ln
(w1

w2

)
∼ a kB

M`

h̄
(18)

and of order kB M`/h̄ to leading order in ε, assuming a, w1, w2 are O(1). Since the interior
region I has ρV = −pV , (Ts)V = pV + ρV vanishes there. This is in accord with a GBEC
having equation of state ρV = −pV being a single coherent macroscopic quantum state
with zero entropy. Thus, the entropy of the entire compact quasi-black hole (QBH) is given
by the entropy of the shell alone. By (18) this is of order kB(rM /LPl)

3
2 for `∼

√
LPlrM , or

S∼
√

ε SBH � SBH , far smaller than the Bekenstein–Hawking entropy. Its M3/2 scaling,
furthermore, makes it comparable to the entropy of typical stellar progenitors of mass M,
in the range of 1057kB to 1059kB for a solar mass and M�/mN ∼ 1057 nucleons. Thus there
is no information paradox arising from an enormous entropy unaccountably associated
with a BH horizon, if the horizon is replaced by a thin boundary layer of this kind.

Since w is of order unity in the shell, the local temperature of the fluid within the shell
is of order TH ∼ h̄/kBrM , so that the typical quanta are soft with wavelengths of order rM ,
and there is no transplanckian problem. Because of the global timelike Killing field t and
absence of either an event horizon or an interior singularity, there is no loss of unitarity or
conflict with quantum theory. As a static solution, neither the interior nor the shell emit
Hawking radiation. A gravitational condensate star is both cold and dark, and, hence, in its
external geometry and its appearance to distant observers indistinguishable from a BH.

The cold radiation fluid in the shell is confined to region II by the surface ten-
sions at the timelike interfaces r1 and r2. These arise from the pressure discontinuities,
∆p1 ' H2 (3 + w1)/8πG and ∆p2 ' −w2/32πG3M2, and are calculable by the Lanczos–
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Israel junction conditions [16–18]. The non-zero angular components of the surface tension
are 2

S θ
θ

∣∣
r=r1

= S φ
φ

∣∣
r=r1
≡ −σ1 =

1
32πG2M

(3 + w1)

(1 + w1)

(w1

ε

) 1
2 (19a)

S θ
θ

∣∣
r=r2

= S φ
φ

∣∣
r=r2
≡ −σ2 = − 1

32πG2M
w2

(1 + w2)

(w2

ε

) 1
2 (19b)

to leading order in ε, at r1 and r2, respectively. The signs correspond to the inner surface
at r1 exerting an outward force and the outer surface at r2 exerting an inward force,
i.e., both surface tensions exert a confining pressure on the shell region II. Clearly these
large transverse surface tensions violate the perfect fluid ansatz at the interfacial boundaries.
Nevertheless, since ε−

1
2 ∼ (M/Mpl)

1
2 , the surface tensions (19) are of order M−

1
2 and

far from Planckian, so that the matching of the metric at the phase interfaces r1 and r2,
analogous to that across stationary shocks in hydrodynamics, should be reliable. The time
component of the surface stress tensor at r1 and r2 vanishes and makes no contribution to
the Tolman–Misner–Sharp mass function µ(r) = 2Gm(r) at either of the two interfaces.

The Misner–Sharp energy within the shell

EII = 4π
∫ r2

r1

ρ r2dr = εM
∫ w1

w2

dw
w

(1 + w) = εM
[
ln
(w1

w2

)
+ w1 − w2

]
(20)

to leading order in ε, is of order MPl and also extremely small. Hence essentially all the
Misner–Sharp mass of the object comes from the energy density of the vacuum condensate
in the interior, even though the shell is responsible for all of its entropy.

3. Stability

In order to be a physically realizable endpoint of gravitational collapse, any QBH
candidate must be stable [20]. Since only region II is non-vacuum, with a ‘normal’ fluid and
a positive heat capacity, it is clear that the solution is thermodynamically stable. The most
direct way to demonstrate this stability is to work in the microcanonical ensemble with
fixed total M, and show that the entropy functional

S =
akB

h̄G

∫ r2

r1

r dr
(

dµ

dr

)1
2
(

1− µ(r)
r

)− 1
2

(21)

for the p = ρ fluid in region II is maximized under all variations of µ(r) with the endpoints
(r1, r2), equivalently (w1, w2) fixed.

The first variation of this functional with the endpoints r1 and r2 fixed vanishes,
i.e., δS = 0 by the Einstein Equation (4) for a static, spherically symmetric star. Thus, any
solution of Equations (4) and (5) is guaranteed to be an extremum of S [21]. This is also
consistent with regarding Einstein’s equations as a form of hydrodynamics, strictly valid
only for the long wavelength, gapless excitations in gravity. The second variation of (21) is

δ2S =
akB
4h̄G

∫ r2

r1

r dr
(

dµ

dr

)− 3
2
h−

1
2

{
−
[

d(δµ)

dr

]2

+
(δµ)2

r2h2
dµ

dr

(
1 +

dµ

dr

)}
(22)

when evaluated on the solution. Associated with this quadratic form in δµ is a second order
linear differential operator L of the Sturm–Liouville type, viz.

L χ =
d
dr

{
r
(

dµ

dr

)− 3
2
h−

1
2

dχ

dr

}
+

h−
5
2

r

(
dµ

dr

) 1
2
(

1 +
dµ

dr

)
χ . (23)
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This operator possesses two solutions satisfying Lχ0 = 0, obtained by variation of the
classical solution, µ(r; r1, r2) with respect to the parameters (r1, r2). Indeed by changing
variables from r to w and using the explicit solution (11) and (12) it is readily verified that
one solution to Lχ0 = 0 is χ0 = 1−w, from which the second linearly independent solution
(1− w) ln w + 4 may be obtained. Since these correspond to varying the positions of the
r1, r2 interfaces, neither χ0 vanishes at (r1, r2) and neither is a true zero mode. However,
we may set δµ = χ0 ψ, where ψ does vanish at the endpoints and insert this into the second
variation (22). Integrating by parts, using the vanishing of δµ at the endpoints and Lχ0 = 0
one obtains

δ2S = − akB
4h̄G

∫ r2

r1

r dr
(

dµ

dr

)− 3
2
h−

1
2 χ2

0

(
dψ

dr

)2
< 0 (24)

which is negative definite.
Thus, the entropy of the solution is maximized with respect to radial variations that

vanish at the endpoints, i.e., those with fixed total energy. Since deformations with non-zero
angular momentum decrease the entropy even further, stability under radial variations is
sufficient to demonstrate that the solution is stable to all small perturbations. In the context
of a hydrodynamic treatment, thermodynamic stability is also a necessary and sufficient
condition for the dynamical stability of a static, spherically symmetric solution of Einstein’s
equations [21].

4. Conclusions

A compact, non-singular solution of Einstein’s equations has been presented here as a
possible stable alternative to BHs for the endpoint of gravitational collapse [1]. Realizing
this alternative requires that a quantum gravitational vacuum phase transition intervene
and allow the vacuum energy ρV = −pV to change before the classical event horizon or a
trapped surface can form. Although only the static spherically symmetric case has been
considered, it is clear on physical grounds that axisymmetric rotating solutions should
exist as well. Since the entropy of these objects is of the order of magnitude of a typical
stellar progenitor, or less, there is no huge BH entropy to be explained and instead a
process of entropy shedding, as in a supernova, is needed to produce a cold GBEC or
‘grava(c)star’ remnant.

In this paper we have assumed that the thin boundary layer where the quantum phase
transition occurs can be described as a relativistic fluid with maximally stiff equation of
state p = +ρ, where the speed of light is equal to the speed of sound. Although this is a
phenomenological model, the possibility that such a boundary layer could be expected
to produce excitations bearing the imprint of its fundamental normal mode vibration
frequencies when struck should be robust and serve to distinguish gravastars from black
holes observationally. These surface excitations may also provide a more efficient central
engine for astrophysical sources to impart energy to accreting matter, producing ultra-high
energy particles, gamma rays and gravitational radiation. Finally, the interior dS region
with pV = −ρV may be interpreted also as a cosmological spacetime, with the horizon of
the expanding universe replaced by a quantum phase interface.
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Notes
1. The main text of this paper is a minimally corrected version of the previously unpublished arXiv submission [1],

in which the original proposal that the final state of complete gravitational collapse is a non-singular gravitational
vacuum condensate star (‘gravastar’) was made. A somewhat expanded version of this paper appeared in [2]. The
authors take this opportunity to provide an extended Appendix A, updating the status of the gravastar proposal,



Universe 2023, 9, 88 8 of 15

collecting under seven subtitles the most significant developments over the past two decades relating to this
proposal, with additional explanation and annotations for each.

2. The sign conventions in [1,2] are such that σ1,2 there are the negative of the surface stress tensors S θ
θ = S φ

φ properly
defined here. Equations (C5) and (C7) of [19] also have an overall sign change from the Lanczos–Israel formula
(C5) for S b

a , such that η, σ of (C7) in [19] have the same values as η, σ in [1,2].

Appendix A. Gravitational Condensate Stars: Further Developments

Appendix A.1. Background: Preliminary Description the Boundary Layer

Discussions of matching the exterior Schwarzschild exterior solution to a non-singular
de Sitter (dS) interior had a long history. Continuous transitions between the two were
studied, e.g., in [22], while it was recognized that joining the exact Schwarzschild and dS
geometries directly at their mutual horizons H−1 and 2GM, requires some discontinuity or
interposition of ‘non-inflationary material’ [23]. In addition to uncertainties of the physics
involved, the earlier GR formalism [16,17,24,25] for dealing with singular hypersurfaces
when the normal to hypersurface becomes null, as it does at a BH horizon, were recognized
to be inadequate [26]. The necessity of some anisotropic matter at the joining of the interior
to exterior geometries was made explicit in [27].

Partly for the reason of avoiding the technical difficulties associated with singular
null hypersurfaces, the proposal in the original gravastar paper [1] here makes use of
two timelike hypersurfaces at r1 and r2 with an interposed fluid boundary layer of ‘non-
inflationary material’ obeying the equation of state p = ρ. The choice of this equation
of state at the causal limit where the speed of sound coincides with the speed of light,
was motivated by physical considerations of a quantum phase transition produced by the
infrared effects of dimensional reduction from D = 4 to D = 2 dimensions.

This choice was also motivated in part by the observation of ‘t Hooft that a self-
screening Hawking atmosphere of a fluid with p = κρ near to the horizon could produce
the 1/4 area law of the Bekenstein–Hawking entropy SBH when κ = 1 [9], however at the
price of an interior negative mass singularity, suggesting a repulsive core. Further physical
considerations of quantum phase transitions in condensed matter analogs in [10] also sug-
gested that an equation of state at the extreme causal limit should play a role. Nevertheless,
the choice of p = ρ in [1] is certainly a phenomenological ansatz, illustrating a proof of
principle, but without a rigorous basis in fundamental physics. It is therefore subject to
modification as that fundamental physics came more clearly into view by subsequent
developments [14,15,28].

Appendix A.2. The Macroscopic Effects of the Conformal Anomaly and Value of ε

A major step in providing a rigorous basis from quantum theory of large effects at
horizons came in 2006, with the observation that the energy–momentum tensor derived
from the effective action of the conformal trace anomaly of massless fields in curved
space becomes large (indeed formally infinite) for generic quantum states at both the
Schwarzschild BH and dS static horizons [14]. The conformal anomaly becomes relevant at
horizons because of the conformal behavior of the near horizon geometry, typified by the
extreme blueshifting of local frequencies and energies there, making all finite mass scales
negligible as r → rM from outside, or r → rH from inside [15,29]. The effective action of the
conformal anomaly and Tµ

ν derived from it provides a clear basis in quantum field theory
(QFT) for large semi-classical backreaction effects on BH and dS horizons [30,31], consistent
with general covariance and the weak equivalence principle.

These semi-classical vacuum polarization effects occur in zero temperature QFT and,
thus obviate any need to invoke an ultra-relativistic fluid ansatz with the p = ρ equation
of state, or any ‘fluid’ temperature at all as in (17) in the thin shell region. A gravastar
relying on quantum vacuum polarization can be at precisely zero temperature and a true
quantum endpoint for complete gravitational collapse. The implication that the GBEC
must be at a very low (if not identically zero temperature) was inherent in the original
arXiv article [1], and presented in seminars at the time, including at the Inst. for Theoretical
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Physics (Univ. Calif. Santa Barbara) on 9 May 2002 [32]. Although the gravastar surface
at r = rM is a ‘wall’ of large vacuum stresses, in some ways similar to the ‘firewall’ later
discussed in [33], the boundary layer of a GBEC is at low temperature, and hence not a
‘firewall.’ Nor does it imply or require a catastrophic breakdown of semi-classical gravity
or causality in order to eliminate the various BH information paradoxes [34].

The anomaly stress tensor Tµ
ν of the mean field description of semi-classical gravity

becomes large enough to affect the classical geometry when ∆r ∼ LPl. This determines
the small parameter ε of the main text and original [1] to be of order LPl/rM (or LPl/rH ),
where the quantum effects of the anomaly must be taken into account. The physical proper
thickness of the thin shell is,therefore [15]

` ∼
√

LPl rM = 2.2× 10−14
√

M/M� cm. (A1)

It is significant that LPl � `� rM so that the shell is very thin on macroscopic scales,
making it challenging to detect in astronomical observations, but nevertheless very much
larger than the microscopic Planck scale at which the semi-classical approximation breaks
down. For a solar mass QBH ε ∼ 10−38 [2], which well justifies the ε� 1 approximation (11)
of the text.

Appendix A.3. The Schwarzschild Interior Solution and Determination of C

An independent but equally significant development came in 2015 with the realization
that an infinitely thin shell gravastar solution to Einstein’s equations actually results from
the 1916 interior solution of a constant density star by Schwarzschild [35], provided the
limit is taken in which the surface of the star rstar is at the horizon rM itself [19]. Remarkably,
in that limit, the 1916 Schwarzschild constant density solution produces a p = −ρ interior,
which is just the gravitational condensate star of the main text and original [1]. This dS
interior ‘fluid’ has no ordinary sound modes, and, therefore, removes Einstein’s original
objection to the Schwarzschild constant density interior, in this limiting case.

This limiting case of the Schwarzschild interior solution also unambiguously deter-
mines the constant C which was undetermined in [1] to be [19]

C =
1
4

(A2)

by the matching of the interior dS time to the exterior Schwarzschild time. This turns out
to be exactly the value necessary to make the surface gravity

κ =
1
2

√
h
f

d f
dr

(A3)

of the two geometries, κ− and κ+, to be equal and opposite, a necessary condition for the
forces on each side of the membrane to balance (and the corresponding periodicities and
Hawking temperatures to be equal in the Euclidean continuation). The discontinuity in the
surface gravities

∆κ = κ+ − κ− = 2κ+ =
1

4GM
> 0 (A4)

also unambiguously determines the physical surface tension τS = ∆κ/8πG of the mem-
brane boundary. The presence of the δ-function in the transverse pressure p⊥ 6= p at the
membrane interface this implies provides the loophole in the Buchdahl bound, which had
assumed isotropic fluid pressure p⊥ = p throughout [36], and is consistent with the general
results of [23,27] requiring ‘non-inflationary’ anisotropic stresses at the joining.

The surface tension of the membrane also shows that the First Law of spherical gravastars

dM = dEV + τS dA (A5)
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expressing energy conservation, is a purely mechanical classical relation at zero temperature
and zero entropy, in which neither h̄ nor kB appear. This makes sense of the original BH
Smarr relation [37], by correcting it by the factor of 2 in (A4) to account for the difference
in surface gravities, rather than just κ+. The positivity of τS further shows that deforming
the surface by increasing the area requires energy, indicating its stability to perturbations,
without reliance on the thermodynamic stability argument of Section 3 [38,39]. Note that
both the value and the sign of τS obtained in the classical fully GR analysis of [19] differ
from what was conjectured in the flat space condensed matter analog model of [10].

An additional serendipitous consequence of this reanalysis of the 1916 interior solution
is that it provides an explicit example of ‘gluing’ of two different geometries at their mutual
null horizons, in which the surface stresses can be unambiguously determined, providing
a clear interpretation of the surface tension of the null surface at r = rM . This shows that
gluing the exterior Schwarschild to interior dS geometries directly is indeed possible in
classical GR, with (A2), and has served to provide the general matching conditions for null
surfaces with non-zero angular momentum as well [40]. This improved understanding and
generalization of the junction conditions to null hypersurfaces and, in particular, rotating
null horizons appropriate for the Kerr geometry opens the way to finding rotating gravastar
solutions, the study of which in the case of slow rotation following methods of [41,42]
has begun [43–45]. These results already indicate that the moment of inertia I of a slowly
rotating gravastar, defined as the ratio of its angular momentum J to angular velocity ωH

of its thin shell located at the Kerr horizon, is

I =
J

ωH

= Mr2
M
= 4G2M3 (A6)

consistent with the BH “no hair” theorems being extended to rotating gravastars as
well [43,46], at least in the strictly classical limit of ε → 0. Gravastar “hair” for a sur-
face layer of finite thickness ` (A1) would be limited to that quantum phase transition
boundary layer of a thin shell thickness (A1) only.

For the original spherically symmetric gravastar solution, the proper matching at the
null horizon and the condition (A2) completely eliminates the two independent spacelike
boundaries at r1 and r2 and intermediate region II p = ρ layer (13)–(15). This is the universal
thin shell limit of a non-rotating gravastar in the classical limit ε → 0, in the sense of
being independent of any assumptions of an equation of state of the surface layer or any
other matching conditions. The solution of [19] has a surface layer of infinitesimally small
thickness, with a stress tensor that is precisely a Dirac δ-function on the horizon in this limit.

Appendix A.4. Thin Shell vs. Thick Shell

The distinguishing feature of the original gravitational condensate star proposal of [1]
of the main text is the abrupt change in ground state vacuum energy at the horizon,
characteristic of a quantum phase transition there. This should be clear from the essential
role of the horizon as a infinite red shift surface in both [1,10], the assumption of ε � 1
and the estimate of ε and ` in Appendix A.2 from the conformal anomaly. The proper
length ` determined by the stress tensor of the conformal anomaly takes the place of the
‘healing length’ introduced, but left undetermined in the analogy of the horizon in GR to
the non-relativistic quantum critical surface of a sound horizon in [10]. Thus, the term
‘gravastar’ should apply only to the gravitational condensate star model of [1] in the text,
described also in [2], and further refined in [19], where the lightlike null horizon clearly
plays a privileged role as the locus of joining of interior and exterior classical geometries,
with equal and opposite surface gravities, and where the conformal anomaly stress tensor
also grows large, and a quantum phase transition can occur.

Despite this physically privileged role of the horizon in the original gravastar pro-
posal [1], a number of papers appeared subsequently that discussed what may be called
‘generalized gravastars’, or regular solutions with macroscopically large or ‘thick’ shells,
comparable to the gravitational radius rM itself, with compactness GM/r differing from
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the maximal value of 1/2, by order unity, some time varying, or with timelike surfaces
displaced from the Schwarzschild or dS horizons by finite amounts [47–63]. Several au-
thors proceeded to discuss both ergoregion instabilities and observational bounds on such
hypothetical objects, with various assumptions about boundary conditions and surface
matchings [64–66]. It should be clear that these instabilities or observational bounds do
not apply to gravastars, which by definition are static configurations with an infinitesimally
thin shell located at the horizon, for ε = 0, or straddling and replacing the would-be classical
Schwarzschild and dS horizons for very small finite ε, with metric functions f ∼ h = O(ε)
there. Any other regular QBH is not a gravastar.

Appendix A.5. The Status of Constraints from Astronomical Observations

Because the exterior geometry of a gravastar is identical to that of a classical BH
down to the scales of its very thin shell surface boundary layer at ` given by (A1) above
the would-be classical horizon, it should be clear that a gravastar will be cold, dark and
indistinguishable from a BH by almost all traditional astronomical observations. Any
radiation from such a deeply redshifted surface can escape to infinity only if emitted from a
tiny ’pinhole’ solid angle less than of order ε from the perpendicular, or it will fall back onto
the surface. Attempts to ‘prove’ the existence of a BH horizon or absence of a surface from
the absence of thermal radiation and/or absence of X-ray bursts which would be expected
if the surface is composed of conventional matter, and if any advected matter deposited
onto the surface is re-radiated rather than absorbed, are therefore bound to fail. This point
was succinctly made in [67], soon after the gravastar proposal of [1].

The authors of [67] also recognized that any surface of an ultracompact QBH was
bound not to be composed of conventional matter, such as a neutron star crust, needed
for the thermonuclear reactions that give rise to X-ray bursts. Moreover, in order for the
gravastar proposal to be a viable alternative for a BH of any mass, a gravastar must be able to
absorb accreting baryonic matter and convert it to the interior condensate, thereby growing
its mass to any larger value. Any substantial efficiency of absorption and conversion of
energy to interior condensate would reduce the energy re-radiated and make the object
dark in most if not all the observable electromagnetic spectrum.

The authors of [68] argued for quite stringent limits on what they called ‘gravastar’
models, assuming thermalization of accreting matter in a steady state emission. Aside
from: (i) an unjustified and rather ad hoc assumption of the form for internal energy and
heat capacity of the ‘matter’ supposed to be composing the QBH, (ii) not accounting for the
relativistic pinhole effect suppressing all emission from a deeply redshifted surface, and (iii)
ignoring the possibility of near total absorption of accreting matter without any heating of
the QBH, which would all but eliminate any thermal re-emission with sufficiently gentle
accretion, the arguments of [68] were attempts to constrain the condensed matter analog
model of [69,70]. This in any case, is not the gravastar described in [1,2], this article, or the
later [19].

Similar arguments based on thermalization and steady state re-emission of radiation,
again ignoring the possibility of absorption by the QBH surface, with claims of strong
observational bounds were made in [71,72]. These unjustifiably strong claims of ‘proof’ of
BH horizons and the assumptions upon which they are based have been critically examined
by several authors [73–76], and shown to be flawed. These authors showed first that the
assumption that thermodynamic equilibrium can be established between an accretion disk
and the QBH on a reasonably short timescale is incorrect for a deeply redshifted surface for
ε→ 0, due to the gravitational lensing pinhole effect, already pointed out in [67]. The best
limits one can obtain from the observations of M87 or Sag A* when this classical GR effect
is taken into account is in the range of ε < 10−15 to 10−17 [76], impressive, but still many
orders of magnitude short of 10−38 expected for a gravastar. Secondly, the energy emitted
was assumed to be electromagnetic in observable wavelengths, whereas a sizable fraction of
any re-emitted energy could be in the form of neutrinos or in unobserved radiation [73,75].
Thirdly, and most importantly, a sizable fraction even approaching unity of the accreting
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matter may be absorbed by the gravastar, with virtual no re-emission whatsoever. As a result,
there are no useful bounds from the non-observation of electromagnetic emission from
any astrophysical QBH, and the possibility that they may all be gravastars with ε� 10−17

remains open.
The converse claim of a lower bound of ε & 10−24 in [77] is based on a strong assump-

tion of the restrictive form of the Vaidya metric and stress tensor in the vicinity of the QBH
surface, setting to zero all of its components except Tvv in advanced null coordinates. This
bound also disappears if the assumption upon which it is based is relaxed, which it almost
certainly should be.

Appendix A.6. Gravitational Waves and Echoes

The observation of gravitational waves (GWs) by LIGO [78] has opened up a new
window on the universe that among many other interesting possibilities provides perhaps
the best opportunity for observational test of the gravastar proposal. The GW data are
not yet accurate enough to test the prediction of a discrete spectrum of ringdown modes
from a non-singular gravastar with a surface made in [19]. Indeed it was quickly realized
that sensitivity to the nature of a very compact QBH with ε � 1 is obtained only with
some delay time after the initial GW merger signal, in the ringdown phase [79], where the
signal/noise ratio is very much lower. Nevertheless a regular QBH such as a gravastar
could produce a GW ‘echo’ at multiples of the characteristic time

∆t ∼ 2GM ln(1/ε) (A7)

after the compact object merger event [80]. These may be observable with the improved
sensitivities of Advanced LIGO, Virgo, and future detectors.

The basis for such echoes is the expectation that GWs produced in the merger could
reflect from the internal centrifugal barrier of a gravastar and re-emerge with a logarithmi-
cally long time delay for ε� 1, thus, in principle, opening up the possibility of testing GR
and the nature of QBH’s on scales very close to the would-be horizon.

A somewhat different scenario was considered in [81], with a claim of tentative
evidence for an echo signal in the LIGO/LSC data [82]. However, an analysis of the same
data by members of the LIGO/LSC collaboration concluded that the echo signal was just
1.5σ above the noise level [83]. The subject of GW echoes from QBH’s such as gravastars
continues as an area of active research [61,84–86], requiring substantially more data from
Advanced LIGO, Virgo, and successor detectors to settle this question [75].

Appendix A.7. The EFT of Gravity and Dynamical Vacuum Energy

A complete dynamical model of gravitational condensate stars has been lacking for
the two decades since [1], and, in particular, the mechanism by which pV = −ρV vacuum
energy can change at a would-be BH horizon. In this past year, just such an effective field
theory (EFT) of gravity in which Λeff is described by a dynamical four-form gauge field
coupled to the Euler–Gauss–Bonnet term of the conformal anomaly in the presence of
torsion has been proposed [28]. This EFT promises to provide the theoretical Lagrangian
basis for development of the gravastar proposal first made in 2001, by explicit gravastar
solutions in which the classical, coherent four-form field strength is the explicit realization
of the gravitational condensate hypothesized in [1,2] and the text. In this fully dynamical
EFT of vacuum energy, Λeff couples to the conformalon field of the conformal anomaly,
and both change rapidly near the horizon worldtube of R× S2 topology.

The EFT of [28] provides the Euler–Lagrange equations which should exhibit a static,
gravastar solution. Linearization about this solution will then enable a definitive study of
the dynamical stability of the gravastar and determine its normal modes and frequencies of
vibration, relevant for GW observations. This EFT also paves the way for studying rapidly
rotating gravastars and their dynamical collapse formation process as well, and is expected
to provide the basis for quantitative predictions to be compared to the increasing amount
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of GW and other astrophysical data expected to be provide by aLIGO, VIRGO, and other
observations in the next two decades.
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