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Abstract: We consider a scenario of large-scale modification of gravity that does not invoke extra
degrees of freedom, but includes coupling between baryonic matter and dark matter in the Einstein
frame. The total matter energy density follows the standard conservation, and evolution has the
character of deceleration in this frame. The model exhibits interesting features in the Jordan frame
realised by virtue of a disformal transformation where individual matter components adhere to
standard conservation but gravity is modified. A generic parametrization of disformal transformation
leaves thermal history intact and gives rise to late time acceleration in the Jordan frame, which
necessarily includes phantom crossing, which, in the standard framework, can be realised using at
least two scalar fields. This scenario is embodied by two distinguished features, namely, acceleration
in the Jordan frame and deceleration in the Einstein frame, and the possibility of resolution of the
Hubble tension thanks to the emergence of the phantom phase at late times.

Keywords: modified gravity; hubble tension; dark Energy; phantom crossing

1. Introduction

The hot Big Bang model has several remarkable successes to its credit, including
prediction of the expanding universe, microwave background radiation, synthesis of light
elements in the early universe, and growth of structure via gravitational instability. The
model, however, suffers from inbuilt inconsistencies related to early times—for instance,
the flatness problem, horizon problem, and late stages of evolution—an age puzzle. Be-
cause the matter-dominated era contributes the most to the age of the Universe, the late
time slow-down of Hubble expansion must be invoked, allowing the Universe to spend
more time before reaching H0 and thus improving the age of the Universe. The only way
to accomplish the Hubble slowdown at late stages of evolution is to introduce a late time
acceleration [1–22].

The inconsistencies of the hot Big Bang are successfully resolved by complementing
the model with early and late time-phases of accelerated expansion. Inflation not only
addresses the early time inconsistencies of the model, but also provides a mechanism for
the generation of primordial density perturbations responsible for structure in the uni-
verse [23–29]. Inflation can be achieved using scalar field(s) or gravity modification at small
scales, as in the Starobinsky model [30]. As for late-time cosmic acceleration, it may either
be caused by an exotic fluid of large negative pressure dubbed “dark energy” (quintessence)
or by a large-scale modification of gravity [10–16,31–37]. As mentioned before, late time
acceleration is the only known remedy for the age puzzle in the hot Big Bang scenario. Age
considerations, however, do not accurately constrain the equation-of-state of dark energy
and its contribution to the total energy budget of the Universe; the necessary steps are
performed by Ia supernovae [38–41] and other indirect observations [42–56].

Universe 2023, 9, 83. https://doi.org/10.3390/universe9020083 https://www.mdpi.com/journal/universe

https://doi.org/10.3390/universe9020083
https://doi.org/10.3390/universe9020083
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://doi.org/10.3390/universe9020083
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe9020083?type=check_update&version=1


Universe 2023, 9, 83 2 of 20

Different schemes of large-scale modifications of gravity have been investigated in the
literature [57–78]. Most of these schemes reduce to Einstein’s gravity plus extra degrees
of freedom, which are non-minimally coupled. One extra scalar degree of freedom exists
in f (R) gravity; massive gravity has three extra degrees of freedom (two vector and one
scalar) [58,59]. The scalar degree of freedom, to comply with the requirement of late time
acceleration, should be light, with a mass of the order of 10−33 eV. These extra degrees
of freedom are directly coupled to matter through universal coupling similar to graviton,
resulting in an effective doubling of the Newton constant G in the case of f (R) gravity,
wreaking havoc locally where Einstein gravity complies with the observation to one part
in 105 [2]. In massive gravity, only mass-less scalar degrees of freedom survive in the
decoupling limit relevant to local physics, and is beautifully screened due to an inbuilt
arrangement known as the Vainstein mechanism [68,69]. Unfortunately, massive gravity
fails for other reasons [60,61]. The chameleon mechanism is used in the f (R) theory, where
the extra degree of freedom becomes heavy locally and escapes dynamics, but remains
light over large distances and causes late time acceleration [67,70,71]. Surprisingly, at the
onset, it turns out that accurate local screening leaves no scope for late time acceleration in
chameleon theories [66,67,70–74]. In fact, in this case, acceleration cannot be distinguished
from the one caused by a cosmological constant or quintessence. It sounds quite strange that
screening at the level of a solar system with a size of the order of 1014 cm influences physics
at the horizon scale (1028 cm). However, it might not be that strange if we think in terms
of relative matter densities, namely, 10−24 gm/cc in the solar system versus the critical
density, 10−29 gm/cc, with a difference of five orders of magnitude; ironically, Einstein
gravity is accurate to one part in 105 in the solar system. Thus, the purpose of large-scale
modification due to extra degrees of freedom invoked to mimic late time acceleration is
grossly defeated. A generic large-scale modification of gravity should have the following
distinguished property: Acceleration in the Jordan frame and no acceleration in the Einstein
frame. In that case, acceleration can be attributed to the modification of gravity.

In f (R) theories, for instance, matter follows standard conservation in the Jordan
frame, and gravity is modified—its action differs from Einstein–Hilbert; in the Einstein
frame, the Lagrangian is diagonalized, and gravity is standard, but there is a scalar field
with direct coupling to matter. Acceleration in the Einstein frame is not removed by proper
screening of the scalar degree of freedom, and the f (R) theory fails to meet the criterion
of generic modification (see the Ref. [57], and references therein). A novel scheme of
large-scale modification of gravity was proposed in the Ref. [62] (see also the Refs. [63,64])
where one assumes coupling between baryonic and dark matter in the Einstein frame,
such that baryonic and dark matter follows the standard conservation in the Einstein
frame and there is no acceleration there. On the other hand, one can remove the said
coupling by going to the Jordan frame via disformal transformation, where baryonic and
dark matter individually follow standard conservation, but gravity action is different from
Einstein–Hilbert. In this case, disformal coupling can be parameterised to yield late time
acceleration in the Jordan frame which should naturally be attributed to modification
of gravity. Obviously, the criterion of generic modification is satisfied and necessarily
manifests in this case in a generic way. It was demonstrated in the Ref. [79] that the Hubble
tension gets resolved in this case. It should be noted that the phantom phase naturally
appears here and does not require the presence of a phantom field. In the model under
consideration, deviations from ΛCDM take place only at late stages of evolution around
the present epoch where the phantom phase appears automatically. It should be noted
that one needs at least two scalar fields to realise phantom crossing, which is naturally
mimicked here by assuming coupling between baryonic and dark matter components in
the Einstein frame.

In this article, we briefly describe the aforementioned modification of gravity and
Hubble tension between the Planck and local measurements of the Hubble parameter. We
present details as to how the tension gets naturally resolved in the framework under con-
sideration.
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2. Hubble Tension Overview

The fact that the present-day cosmic expansion rate H0 = 67.36± 0.54 km/s/Mpc [80]
predicted by the ΛCDM model from the cosmic microwave background (CMB) radiation
observations by the Planck satellite does not agree with the low-redshift observations on
the Hubble constant gives rise to the “Hubble Tension” problem [45,81–89]. Specifically,
the Supernovae H0 for the equation-of-state (SH0ES) collaboration estimates a substantially
higher value of the Hubble constant, that is, 73.5± 1.4 km/s/Mpc (which amounts to a
4.2 σ level discrepancy with Planck) using Cepheid calibrated supernovae Type Ia [45]. The
same level of discrepancies on H0 have also been observed in various other low-z measure-
ments, including H0LiCOW’s 73.3+1.7

−1.8 km/s/Mpc [50] and Megamaser Cosmology Project’s
73.9± 3.0 km/s/Mpc [90–93] results. We have shown the Figure 1.

Despite the observable disparity, several theoretical solutions have been proposed to
deal with this problem. These solutions may be divided into three main types:

• Early-Time Modifications: In cosmology, the positions of the acoustic peaks in the
CMB temperature and anisotropy spectra are among the most accurately measured
quantities [80]. These acoustic peaks help in determining the size of the sound horizon
at the recombination epoch. In order to attempt to modify the sound horizon, one
needs to introduce new physics during the pre-recombination epoch that deform
H(z) at z > 1100 [94–104]. One such modification was motivated by some string–
axiverse-inspired scenarios for dark energy, in which dark energy density at early
times behaves like the cosmological constant but then decays quickly. However,
in this approach, the Hubble constant can, at most, shift to 1.6 km/s/Mpc at redshift
z ' 1585 [94]. Other approaches, such as modifying the standard model neutrino sec-
tor [105,106], additional radiation [107], primordial magnetic fields [108], or adjusting
basic constants with the goal of lowering the sound horizon at recombination [109],
are insufficient to properly answer the Hubble Tension problem. Additionally, they
expect large growth of matter perturbations than reported by redshift space distortion
(RSD) and weak lensing (WL) data, worsening the Ω0m − σ8 tension [110].

• Late-Time Modifications: In this approach, one considers late-time alternative forms
of DE [1], unified dark fluid models [2,5] where the Dark Matter (DM) and DE behave
as a single fluid, alternative gravitational theories including either modified versions
of GR or new gravitational theories beyond GR [57], and interacting DE models [1,2]
in which DM and the DE interact with each other in a non-gravitational way [111,112],
(for more, please see the Refs. [113–118]). In the latter scenario, the DE–DM interaction
provides a possible solution to the cosmic coincidence problem, and can also explain
the phantom DE regime without any scalar fields having a negative kinetic term. It is
argued that some of these models are also not able to fully resolve the Hubble Tension
problem [119].

• Late-Time Transition of SnIa absolute magnitude M: The shifting of M to a lower
value by −0.2 at redshift zt ' 0.1 is also a possible approach to address the Hubble
Tension problem. Such a reduction in M at z > zt may be caused, for example, by a
comparable transition of the effective gravitational constant Ge f f , which would result
in a rise in the SnIa intrinsic brightness at z > zt. This class of models has the potential
to solve the Hubble Tension problem entirely while also addressing the growth tension
by slowing the growth rate of matter perturbations [89,120,121].

In this paper, we will show a proposition to solve the Hubble Tension issue which
relies entirely on dark matter and baryonic matter. The mechanism depends on the cou-
pling of dark matter and baryonic matter via an effective metric. We will demonstrate
that this model may well fit cosmological observables under the assumption of a set of
parametrizations of the effective metric.
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Figure 1. Whisker plot (following the Ref. [54]) with 68% confidence limit constraints of the Hubble
constant H0 through several direct and indirect measurements. The yellow horizontal band corre-
sponds to the H0 value from the SH0ES Team (H0 = 73.2± 1.3 km/s/Mpc at 68% confidence limit),
ref. [45] and the pink vertical band corresponds to the H0 value, as reported by Planck (2018) [80]
within a vanilla ΛCDM scenario.

3. Coupling between Baryonic and Dark Matter Components in the Einstein Frame

In what follows, we shall discuss a scenario which assumes coupling between Baryonic
and dark matter in the Einstein frame such that the total sum of matter components adheres
to standard conservations in this frame. One can then imagine going back to the physical
frame, namely, the Jordan frame via a disformal coupling where the matter components
individually satisfy the standard conservation but the Einstein–Hilbert action is modified.
A suitable parametrization that conforms to ΛCDM in the past might give rise to late time
acceleration which has the characteristic of supper-acceleration dubbed phantom behaviour.

3.1. Disformal Coupling between Matter Components

In this sub-section, we discuss a framework which operates through a mechanism
that assumes an interaction between BM and DM in the Einstein frame. The latter can be
realized by assuming the following action in the Einstein frame [62]:

S =
∫

d4x
(

1
16πG

√
−gR+ LDM{gµν}+ LBM{g̃µν}

)
, (1)

where g̃µν and gµν denote the Jordan and Einstein frame metric, respectively1 . The action (1)
gives rise to coupling between DM and BM in the Einstein frame where evolution would
have a decelerating character. We should then construct the Jordan frame metric, g̃µν

from gµν and parameters that define the dark matter. To this effect, we shall make use of
“disformal transformation” between the two frames. Disformal transformation, in general,
relates the space-time geometries between two frames. These transformations relate two
space-time geometries through a conformal factor (a scalar field) and also through the
first-order derivatives of the scalar field, with the coefficient of the latter known as the
disformal factor. In a perfect fluid representation, the dark matter can then be described by
a scalar field,

LDM =
√
−gP(X); X ≡ −gµν∂µΦ∂νΦ , (2)
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and by varying Equation (2) with the Einstein frame metric (gµν) we get the energy mo-
mentum tensor Tµν of dark matter, as

Tµν ≡
2√−g

δSDM
δgµν = 2P,X ∂µΦ∂νΦ + Pgµν . (3)

where SDM denotes the action for dark matter. The energy momentum tensor can be cast
in the perfect fluid form,

Tµν = (ρDM + PDM )uµuν + PDM gµν , (4)

which when compared with the above expression (3), we get

P(X) = ρDM , (5)

2P,XΦ,µΦ,ν − P(X)uµuν = ρDM uµuν . (6)

Moreover, by using the constraint: gµνuµuν = −1, in Equation (2), we get the following
relation:

uµ = −
Φ,µ√

X
, (7)

which determines that the DM fluid velocity components are sourced by the rate of change
of the DM field with the corresponding spacetime coordinates. By using Equation (7) back
in (6), we get

ρDM = 2P,X − P(X) . (8)

The energy momentum tensor for Baryonic matter is given by:

T̃µν
BM ≡

2√
−g̃

δSBM
δg̃µν

, (9)

where SBM denotes the action for the Baryonic matter.

3.2. Equations of Motion for DM Field

Since the Baryonic matter and DM follow geodesics corresponding to g̃µν and gµν,
respectively, a disformal relation between these metrics will eventually be translated to
the coupling between these two forms of matter. Hence, their equations of motion in the
Einstein frame will now be dependent on each other. It is also worth noting that in the
Jordan frame, the matter components are not connected to one other; while the dynamics
may appear cumbersome, the energy momentum tensors of each components are preserved
individually, that is,

∇̃µT̃µν
BM = 0 , ∇̃µT̃µν

DM = 0 . (10)

Though it is a common perception that Einstein and Jordan frame metrics are related to
each other by conformal transformations, that has its own limitations when taking into
account the interaction(s) between the two. In particular, BM being pressureless results in
vanishing sound speed; similarly, DM in the absence of any interaction with BM also gives
rise to a vanishing sound speed. However, in the presence of a BM–DM interaction, the DM
sound speed can give rise to relativistic sound speed. As a consequence, DM will behave
as a relativistic fluid, which is undesirable as it can give rise to oscillatory perturbations.
This problem is inevitable when the Jordan and Einstein frame metrics are conformally
related to each other. Interestingly, this problem can be avoidable in presence of disformal
coupling (see [62]).

A general form of disformal coupling can be written as:

g̃µν = Y2(X)gµν + S(X)Φ,µΦ,ν; S(X) ≡ Y2(X)−Q2(X)

X
, (11)
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with Q and Y being arbitrary functions of X. Thus, it is evident that
√
−g̃ = QY3√−g . (12)

Now, by varying the action (1) with respect to Φ, we get

−
√
−gP,X

δX
δΦ

+ P(X)

(
δ
√−g
δΦ

)
+

δSBM (g̃µν)

δg̃µν

δg̃µν

δΦ
= 0 , (13)

where by using Equation (11), one can write

δSBM (g̃µν)

δg̃µν

δg̃µν

δΦ
=

QY3√−gT̃BM

2

[
2S(δΦ),µΦ,ν

δΦ
+ Φ,µΦ,ν

(
δS
δΦ

)
+

δ(Y2gµν)

δΦ

]
. (14)

Since

S,Φ = S,XX,Φ where X,Φ = −2gµν(δΦ,µ)Φ,ν , (15)

one can re-express Equation (14) as follows:

δSBM (g̃µν)

δg̃µν

δg̃µν

δΦ
=

QY3√−gT̃BM

2

[
2S(δΦ),µΦ,ν

δΦ
−

2S,X gαβ(δΦ),αΦ,βΦ,µΦ,ν

δΦ
+

2YgµνδY
δΦ

+
Y2δgµν

δΦ

]
. (16)

The first term on the r.h.s. of the above expression can be further expressed as

QY3√−gT̃BM

2
[
2S(δΦ),µΦ,ν

]
=
(√
−gQY3ST̃µν

BM
Φ,νδΦ

)
,µ
−
(√
−gQY3ST̃µν

BM
Φ,ν

)
,µ

δΦ , (17)

similarly, the second term can be expressed as

2S,X gαβ(δΦ),αΦ,βΦ,µΦ,ν = −
(

QY3√−gT̃µν
BM

S,X gαβΦ,µΦ,νδΦ
)

,α
(18)

+
(

QY3√−gT̃µν
BM

S,X gαβΦ,βΦ,µΦ,ν

)
,α

δΦ , (19)

and the third term as

QY3√−gT̃µν
BM

2
(
2YgµνR,X XΦ

)
= QY3√−gT̃µν

BM
Y2

,X
gµν(gµνΦ,ν),µ . (20)

Putting Equations (17)–(20) back in (13), we finally get the equations of motion of the DM
field in the Einstein frame, that is,

[(
2P,X + QY3T̃µν

BM

(
Y2

,X
gαβ + S,X Φ,αΦ,β

)
gµν −QY3ST̃µν

BM

)√
−gΦ,µ

]
,ν
= 0 . (21)

Additionally, note that the variations of two metrices are related with each other as follows:

δg̃µν = Y2δgµν +
[
Y2δgµν + (2YY,X gµνS,X Φ,µΦ,ν)

]
gακ gβλΦ,αΦ,βδgκλ , (22)

by use of which one can write the Einstein equation as:

Gµν = 8πGN

[
Tµν + QY3T̃κλ

BM

(
Y2gκµgλν +

(
Y2

,X
gκλ + S,X Φ,κΦ,λ

)
Φ,µΦ,ν

)]
, (23)

where Gµν is the Einstein tensor. This indicates that the energy momentum tensor reduces
to the sum of the energy momentum tensors of the individual components in the absence
of coupling, that is, Q = Y = 1.
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3.3. Dynamics in FRW Universe

For our analysis, we resort to the Einstein frame metric that satisfies the spatially
homogeneous and isotropic background, given by

ds2 = −dt2 + a2(t)
(

dx2 + dy2 + dz2
)

, (24)

due to which coupling functions Q and R depend only upon the scale factor. Consequently,
the Jordan frame metric is given by

g̃µν = diag
(
−Q2(a), Y2(a)a2, Y2(a)a2, Y2(a)a2

)
. (25)

By using Equation (23), Friedmann and Raychaudhuri equations are respectively given as

3H2 = 8πGρT ≡ 8πGN


ρ(eq)

DM

√
X

X(eq)

(
a(eq)

a

)3

− P + QY3ρ̃b(a)


 , (26)

2
ä
a
+ H2 = −8πGN(P + Pb) , (27)

where the superscript ”eq” denotes the reference point at the matter–radiation equality
epoch. Additionally, P(Pb) designates the pressure of DM(BM) in the Einstein frame, such
that Pb ≡ QY3P̃b. Assuming both DM and BM to be pressureless, it implies that P̃b ' 0 and
P� 2XP,X).

Due to the fact that BM is pressureless in the Jordan frame, one finds

ρ̃b(a) '
ρ
(eq)
b
R3

(
a(eq)

a

)3

. (28)

Since the dynamics of the Universe governed by a(t) only depend on the pressureless BM in
the Einstein frame (see Equation (27)), it is easy to find that a(t) ∼ t2/3. From Equation (26),
the total matter density in the Einstein frame can be expressed as

ρT (a) =

(
ρ(eq)

DM

√
X

X(eq)
+ Q(X)ρ

(eq)
b

)( a(eq)

a

)3
, (29)

which implies that the quantity in the parentheses is constant for an arbitrary function
Q(X). It was demonstrated in the Ref. [62] that the system is plagued with instability in
the case where Q = Y (conformal coupling), and one should therefore focus on disformal
transformation. For the sake of simplicity, we shall assume that Q(a) ≡ 1 (maximally
disformal case). In that case, we are left with one function, Y, to deal with. In what follows,
without the loss of generality, we shall adhere to the maximally disformal case, namely,
Q(a) ≡ 1, leaving us with a single function Y to deal with. Let us recall that we wish
to have acceleration in the Jordan frame, (¨̃a > 0) and deceleration in the Einstein frame
(ä < 0). The function, Y(a), needs to be parametrized in such a way that the thermal history
is respected, followed by accelerated expansion at late times—that is, with regard to the
physical scale factor, ã = Y(a)a for the entire history and only at late stages of evolution,
it should grow sufficiently fast such that ã experiences acceleration at late times. Indeed,
assuming Y to concave upward, its growth at late times might compensate for the effect of
deceleration in a(t), making ¨̃a positive,

¨̃a = Ÿa + 2Ẏȧ + Yä (30)

where Ÿ > 0 by assumption. If Ẏ is large or Y increases fast at late times, it might
compensate for the last term in (30) which has a decelerating character. In the sub-section
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to follow, we shall use convenient representations for the scale factor that would conform
to the mentioned phenomenological consideration.

3.4. Polynomial Parametrization

We now choose function Y(a) in accordance to the aforementioned requirement. We
shall use the following polynomial parametrization,

a(ã) = ã + αã2 + βã3, (31)

where α and β are constants. In respective frames, the scale factor and redshift have the
following relationships:

ã =
ã0

1 + z̃
, a =

a0

1 + z
. (32)

Since we are working in a spatially flat space-time, the physical scale factor can be normal-
ized to one, that is, ã0 = 1; and as a result, the Einstein frame scale factor gets re-scaled by
some factors. For instance, a0 = 1 + α + β 6= 1 (for α, β 6= 0).

By using (31) and (32), one may express the Hubble parameter in terms of z̃ in the
Jordan frame as

H̃(z̃) = H̃0FPl(α, β, z̃) ≡ H̃0
(1 + α + β)

1
2 (1 + 2α + 3β)(1 + z̃)

9
2

(
(1 + z̃)2 + α(1 + z̃) + β

) 1
2
(
(1 + z̃)2 + 2α(1 + z̃) + 3β

) , (33)

which can be used to obtain the effective equation-of-state parameter,

w̃e f f (z̃) = −
2 ˙̃H
3H̃2

=
α(5 + 6α + 5z̃)(1 + z̃)2 + β(14 + 23α + 14z̃)(1 + z̃) + 18β2

3{(1 + z̃)2 + α(1 + z̃) + β}{(1 + z̃)2 + 2α(1 + z̃) + 3β} . (34)

In order to extract the dark energy (DE) equation-of-state w̃de, from (34), we need to define
the dimensionless fractional density parameters for cold matter and dark energy, Ω(0)

Me f f

and Ω(0)
DE. This can be accomplished by expressing (33) in the standard form by isolating

the term proportional to (1 + z̃)3, that is,

H̃2

H̃2
0

= A(α, β)(1 + z̃)3 + A(α, β) f (z̃), (35)

where

A(α, β) = (1 + α + β)(1 + 2α + 3β)2, (36)

f (z̃) = −5(1 + z̃2)α− α
(

49α2 − 48β
)
+ (1 + z̃)

(
17α2 − 7β

)

+
(1 + z̃)α6 − 5(1 + z̃)α4β + α5β + 6(1 + z̃)α2β2 − 4α3β2 − (1 + z̃)β3 + 36αβ3

(α2 − 4β)((1 + z̃)2 + (1 + z̃)α + β)

+

128(1 + z̃)α6 − 64α7 − 720(1 + z̃)α4β + 576α5β + 864(1 + z̃)α2β2

−1512α3β2 − 135(1 + z̃)β3 + 918αβ3

(α2 − 4β)((1 + z̃)2 + 2α(1 + z̃) + 3β)

+

128(1 + z̃)α8 − 960(1 + z̃)α6β + 192α7β + 2160(1 + z̃)α4β2 − 1296α5β2

−1512(1 + z̃)α2β3 + 2376α3β3 + 162(1 + z̃)β4 − 1053αβ4

(α2 − 4β)((1 + z̃)2 + 2α(1 + z̃) + 3β)
2 . (37)

Casting the Friedmann equation into the Jordan frame in terms of fractional energy density
parameters, we have

H̃2 = H̃2
0

[
Ω(0)

Me f f (1 + z̃)3 + Ω(0)
DEF(z̃)

]
, (38)
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where Ω(0)
Me f f ≡ A, Ω(0)

DE ≡ A f (0), and F(z̃) ≡ f (z̃)/ f (0). By using Equation (38),
the equation-of-state parameter for (effective) dark energy is then obtained in the Jor-
dan frame as

w̃e f f (z̃) = w̃MΩ(0)
Me f f + w̃de(z̃)Ω(0)

DE , (39)

=⇒ ω̃de(z) = ω̃e f f (z̃)/Ω(0)
DE where w̃M = 0 , (40)

where Ω(0)
Me f f and Ω(0)

DE are the effective matter (dust-like) and DE density parameters,
respectively. It is also important to mention that for α = −0.1523 and β = −0.0407,
the equation-of-state parameter for these parametrization approaches is the ΛCDM limit,
that is, wde → −1 at the present epoch.

Let us take notice of the fact that the dark-energy equation-of-state parameter might,
at some point, take on a super-negative value (<−1) with a general behaviour reflected by
phantom-crossing. It is important to note that phenomena such as this cannot be replicated
by a quintessence field; at least two scalar fields are required to simulate phantom-crossing.
It is intriguing that the aforementioned behaviour may result from the presence of disformal
coupling between DM and BM. It should also be emphasized that the Einstein–Hilbert
action gets modified at the expense of decoupling of DM and BM in the Jordan frame.
However, the modification of gravity under consideration does not result in any more
degrees of freedom—it can still enable the realisation of acceleration at later times. Last but
not least, acceleration in this framework is generically caused by modification of gravity in
the manner of acceleration in the Jordan frame and deceleration in the Einstein frame.

3.5. Exponential Parametrization

Let us now consider the exponential parametrization that is given below:

a(ã) = ãeαã , (41)

such that the Hubble parameter and effective equation-of-state parameter are given by

H̃(z̃) =
H̃0(1 + α)(1 + z̃)5/2

1 + z̃ + α
exp

(
3z̃α

2(1 + z̃)

)
≡ H0FEx(z̃, α) , (42)

w̃e f f (z̃) =
5α(1 + z̃) + 3α2

3(1 + z̃)[(1 + z̃) + α]
. (43)

Here, it should be noted that, in contrast to the situation in (31), the Friedman equation
derived for the exponential parametrization (41) is not given in a standard form that is
useful for carrying out the parametric estimation. In order to do this, we cast (42) in the
form corresponding to (35), for which we apply the following ansatz:

(
H̃(z̃)
H̃0

)2

= (1 + α)A(1 + z̃)3 + B eC z̃, (44)

H̃(z̃) = H̃0F(exp)(z̃, α), (45)

where A, B and C are constants. It is then natural to identify (1 + α)A with the effective
matter density, that is, Ω(0)

Me f f = (1 + α)A and B with the effective dark-energy density

B = Ω(0)
DE parameters at the present epoch. The condition Ω(0)

Me f f + Ω(0)
DE = 1 yields a

constraint on constants, namely, (1 + α)A + B = 1, leaving us with two unknowns, say, A
and C to fit Fexp(z̃, α) with (44).
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Let us now implement the fitting in such a way that H̃(z̃) = H̃0 at the present
epoch. Using non-linear model fitting, we find: A = 3.4185 and C = 0.2896. It is then
straightforward to express the equation-of-state parameter for dark energy (w̃de(z̃)) as

w̃de(z̃) = −
α e−0.2896z̃[α + 1.6667(z̃ + 1)]

[(α + 1)3.4185 − 1](z̃ + 1)(α + z̃ + 1)
, (46)

where the fitted values of B and C have been used for Ω(0)
DE. Let us note that the exponential

parametrization mimics ΛCDM for α = −0.3896.

4. Observational Datasets

In this section, we demonstrate the parametric estimations for both (31) and (41)
parametrizations from the late-time background level observational data. Three sets of
data were specifically used in the analysis: the distance modulus measurements of type
Ia supernovae (SNIa), observational Hubble data (OHD), and angular diameter distances
obtained with water megamasers. A brief description of these datasets is given below:

Pantheon + MCT SnIa data:

The Hubble rate data points, that is, E(zi) = H(zi)/H0, reported in the Ref. [122] for
six distinct redshifts in the range of z ∈ [0.07, 1.5], are used in this study which efficiently
compress the information of SnIa at z < 1.5 that are utilized in the Pantheon compilation,
and the 15 SnIa at z > 1 of the CLASH Multi-Cycle Treasury (MCT) and CANDELS
programs provided by the HST. The raw SnIa data were transformed into E(z) [122,123] by
parametrizing E−1(z) at those six redshifts. The dimensionless Hubble rate h̃ is defined as
H̃(z̃)
H̃0

, and hence, χ2 for the supernova data is calculated as

χ2
SN = ∑

i,j

(
Ei − h̃i

)
· c−1

ij ·
(
Ei − h̃i

)
, (47)

where cij is the correlation matrix between the data points.

Observational Hubble Data (OHD):

These correspond to the measurements of the expansion rate of the universe, H(z),
in the redshift range 0.07 ≤ z ≤ 2.34 [124–126]. These data points can be retrieved using
two strategies:

1 Differential age technique: In this technique, the data points are calculated using the
relation between the redshift z and the rate of change of the galaxy’s age.

dt
dz

= − 1
(1 + z)H(z)

. (48)

2 Galaxy clustering technique: The data points are obtained by utilising galaxy or
quasar clustering that provides direct measurements of H(z) from the radial peaks of
baryon acoustic oscillations (BAO) [76,127].
The χ2 for the Hubble parameter measurements is

χ2
H = ∑

i

[
Hth

i − Hobs
i

σH
i

]2

. (49)

Masers Data:

The Megamaser Cosmology Project measures the angular diameter distances. Its
χ2

masers is defined as

χ2
mas = ∑

i

[
Dth

Ai − Dobs
Ai (zi)

σD
i

]2

(50)
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such that

DA(z) =
1

1 + z

∫ z

0

dz′

H(z′)
(51)

where Dth
A is the angular diameter distance.

5. Parametric Estimations

The Bayesian inference approach, which is frequently employed for parameter estima-
tion in cosmological models, is used here to carry out the statistical analysis. These statistics
state that the posterior probability distribution function of model parameters is directly
proportional to the prior probability of the model parameters and their likelihood function.
The likelihoods used to estimate the parameters are multivariate Gaussian likelihoods, and
are given by

L(Θ) ∝ exp
[
−χ2(Θ)

2

]
, (52)

where Θ belongs to a set of parameters. The posterior probability is proportional to

exp[− χ2(Θ)
2 ]. Consequently, a minimum χ2(Θ) will guarantee a maximum likelihood.

In our analysis, the Gaussian likelihood is given by

L ∝ exp

[
−

χ2
T

2

]
, (53)

where χ2
T := χ2

SN + χ2
H + χ2

masers. This formulation will be the same for both parametriza-
tions. For the polynomial parametrization, the parameters that need to be constrained are:
α, β and h̃, whereas for the exponential parametrization, we have h̃ and α. In our analysis,
we employed uniform priors. For the estimations, the technique used was Markov Chain
Monte Carlo (MCMC). The obtained MCMC chains were then studied using the GetDist
program [128].

6. Constraints on Hubble Parameter and Dark-Energy Equation-of-State Parameter:
Phantom-Crossing and Hubble Tension

This was from the obtained chains of parameters α, β and h̃, from our MCMC simula-
tion, up to 2σ (shown in Figure 2). In Figure 2, we have plotted the obtained parametric
dependence between α, β and h̃ using OHD and its combination with Pantheon and Masers.
From this Figure, one can note that the combination of all data sets significantly reduces
the error bars on h̃ as compared to the only-OHD data set. The obtained results are given
in Table 1 where we show that the only-OHD data set gives h̃, which is significantly larger
than the combined data set. In particular, we did not find any significant Hubble tension
for OHD, even for the combined data set, where the tension reduced to a level of 1.3σ.
The reduction of this tension can be attributed to phantom-crossing taking place in the case
of the polynomial parametrization.

Table 1. Best fits with their 1σ levels for polynomial and exponential parametrizations, and for the
ΛCDM model from the OHD and OHD + Pantheon + Masers datasets [79].

Parametrizations

Observational Polynomial Exponential ΛCDM
Dataset Best-Fit (±1σ) Best-Fit (±1σ)

h̃ = 0.7279+0.05
−0.05 h̃ = 0.671+0.029

−0.029 h̃ = 0.6770+0.030
−0.030

OHD α = −0.101+0.07
−0.077 α = −0.299+0.043

−0.042 Ω̃M = 0.3249+0.064
−0.059

β = −0.078+0.051
−0.049 -

h̃ = 0.689+0.015
−0.015 h̃ = 0.677+0.007

−0.007 h̃ = 0.6683+0.026
−0.026

OHD + Pantheon + Masers α = −0.145+0.078
−0.051 α = −0.335+0.016

−0.017 Ω̃M = 0.3440+0.061
−0.054

β = −0.041+0.029
−0.047 -
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Figure 2. Polynomial: 2σ contour levels between α, β and h̃ for OHD and its combinations with
Pantheon + Masers [79].

The corresponding evolution of w̃de(z̃) and H̃(z̃) up to 1σ is shown in Figures 3 and 4,
respectively. In Figure 3, it can be seen that because of the large 1σ deviations, the OHD
data set alone does not show tension with Riess et al. [129] and BOSSLy-α [130]. However,
the combined data set exhibits a substantial tension with the findings of Riess et al. by
yielding a comparably smaller h̃ (Figure 3). Additionally, we demonstrate in Figure 4 that
both data sets result in phantom-crossing near the current epoch. It is noteworthy that this
property arises exclusively as a result of the coupling between two matter components (BM
+ DM), and with no additional degrees of freedom.

0 1 2 3 4
z̃

60

70

80

90

H̃
(
z̃
)
/
(
1

+
z̃
)

Riess et al.(2018)

BOSS DR12

DR 14 quasars

BOSSLy − α

(a)

0 1 2 3 4
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(
z̃
)
/
(
1

+
z̃
)

Riess et al.(2018)

BOSS DR12

DR 14 quasars

BOSSLy − α

(b)

Figure 3. Polynomial: Figures (a,b) depict the evolution of H̃(z̃)/(1 + z̃) with z̃ ∈ [0, 4] for the
datasets OHD and OHD + Pantheon + Masers, respectively [129,130]. The dark line represents the
best fit and the shaded region corresponds to the 1σ limit [79].
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Figure 4. Polynomial: Figures (a,b) depict the evolution of w̃de(z̃) with z̃ ∈ [0, 4] for the datasets OHD
and OHD + Pantheon + Masers, respectively. The dark line represents the best fit and the shaded
region corresponds to the 1σ limit [79].

A similar analysis was also carried out for the second parametrization, and in this
instance, we demonstrate the parametric dependency between α and h̃ for two sets of
data in Figure 5, and the resulting constraints are shown in Table 1. Here, the value of the
Hubble constant is consistent with the DES + BAO + Planck combined data up to the 1-σ
level (see Table 2 and Equation (45) of [80]). As a result, the tension does not significantly
decrease. This was expected because the exponential parametrization model mimics the
ΛCDM, since there is no phantom crossover (prior to the current epoch).

−0.4 −0.3 −0.2

α

0.60

0.65

0.70

0.75

h̃

0.60 0.65 0.70 0.75

h̃

OHD

OHD+Pantheon+Masers

Figure 5. Exponential: 2σ contour levels between α and h̃ for OHD and its combinations with
Pantheon + Masers [79].

In contrast to the polynomial scenario, the combined data set agrees with Riess et al.
and BOSSLy-α, which is not the case when simply utilising the OHD data set, as can be
shown in Figure 6. Additionally, it can be seen from Figure 7 that the phantom crossing of
w̃de(z̃) does not occur.

Moreover, from Figure 7, one can notice that the phantom crossing of w̃de(z̃) does
not happen. In Figure 8, we explicitly show the dependence of model parameters on the
w̃de. In Figure 8a, we demonstrate that both α and β must be negative in order to produce
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phantom crossing. Similarly, for the exponential case, Figure 7 illustrates the dependency
of w̃de on parameter α.
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Figure 6. Exponential: Figures (a,b) depict the evolution of w̃de(z̃) with z̃ ∈ [0, 4] for the datasets
OHD and OHD + Pantheon + Masers, respectively [129,130]. The dark line represents the best fit and
the shaded region corresponds to the 1σ limit [79].

0.0 0.1 0.2 0.3 0.4 0.5
z̃

−1.0

−0.8

−0.6

−0.4

w̃
d
e
(z̃

)

(a)

0.0 0.1 0.2 0.3 0.4 0.5
z̃

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5
w̃
d
e
(z̃

)

(b)

Figure 7. Exponential: Figures (a,b) depict the evolution of w̃de(z̃) with z̃ ∈ [0, 4] for the datasets
OHD and OHD + Pantheon + Masers, respectively. The dark line represents the best fit and the
shaded region corresponds to the 1σ limit [79].
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Figure 8. Exponential: Figures (a,b) show the variation of the two model parameters with the
equation-of-state of the dark energy (wDE) [79].
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7. Comparison with ΛCDM

Let us first note that while comparing the two parametrizations, polynomial (31) and
exponential (41), with the ΛCDM model, the inclusion of the additional parameters in
comparison to the standard model must be taken into consideration.

To compare the two parametrizations, polynomial (31) and exponential (41) with the
vanilla ΛCDM model, one needs to take care of the introduction of the extra parameters with
respect to the standard model. We have two extra parameters for the polynomial and one
extra parameter for the exponential. In order to handle it, a thorough Bayesian Information
Criterion (BIC) was calculated. In the BIC analysis, a model with more parameters gets
penalised more. Under the assumption that the model errors are independent and obey a
normal distribution, then the BIC can be rewritten in terms of ∆χ2 as

BIC ≈ ∆χ2 + d f · ln(n) (54)

where d f is the number of free parameters in the test and n is the number of points in
the observed data. In Table 2, we provide details about our findings. The polynomial
parametrization has good evidence, as can be shown from Table 2, when compared to the
typical ΛCDM case. Any indication that ∆BIC ≥ 10 indicates extremely strong support
for the novel model proposed in comparison to the conventional one. Even while the
exponential scenario has strong support when the data are combined, it has no such
support when the OHD data are the only ones taken into account. We find compelling
support for the polynomial parametrization for both OHD and combined data.

Table 2. The evidence in support of polynomial and exponential parametrizations for OHD and
OHD + Pantheon + Masers datasets with respect to the standard ΛCDM scenario [79].

Observational
Dataset

Polynomial
(∆BIC)

Polynomial
Evidence

Exponential
(∆BIC)

Exponential
Evidence

OHD 9.63 Strong 0.62 Not worth
OHD + Pantheon + Masers 8.88 Strong 4.01 Positive

8. Conclusions and Future Perspectives

In this paper, we have shown the observable validity and wider implications of the
dark matter and baryonic matter interaction in the Einstein frame, which is produced by a
general disformal transformation between the Jordan and the Einstein frames. The idea
behind the phenomena is that dark matter adheres to Einstein frame geodesics, whereas
baryonic matter follows Jordan frame trajectories. Since both matter components are
coupled together under the usual disformal transformation, their respective energy conser-
vation in the Einstein frame is lost.

We employed two distinct parametrizations to relate the scale factors of both frames
in the conventional FRW space-time since the geodesics of the two frames are not identical
(as a result of the disformal transformation between them). To obtain the constraints on
the model parameters in the Jordan frame, which we assumed to be the physical frame,
we specifically used the polynomial and exponential parametrizations (the Jordan frame
was used for all observations because the underlying mechanism predicts that baryonic
matter will follow its path in this frame). The best-fit Hubble parameter values for two
distinct data combinations are such that they significantly lessen the so-called “Hubble
tension” in the case of the polynomial parametrization Equation (31). In the case of polyno-
mial parametrization, the tension for OHD data is negligible, with a computed value of
h̃ = 0.7279+0.05

−0.05 1− σ consistent with Riess et al. However, with the combined OHD +
Pantheon + Masers data, the tension is lowered to a 1.3σ level. We would like to emphasize
that this is associated to the fact that, in this specific parametrization, the dark energy
equation-of-state passes from quintessence to the phantom regime. Thus, when doing the
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∆BIC analysis, which is shown in Table 2, we noticed substantial evidence in favour of
this parametrization.

As for the exponential parametrization in Equation (41), we did not notice any appre-
ciable Hubble-tension reduction (see, Figure 5) with both the data combinations, which
was understood by the model’s quintessence-like behaviour with w̃de(z̃) ≥ −1 around the
current epoch. In the exponential case, we only found a little amount of positive evidence
in the combined data scenario, which is not substantial enough when simply taking OHD
data into account (see Table 2).

Let us again emphasise that the scenario under consideration which is based on the
interaction between DM and BM enables late-time cosmic acceleration without including
any exotic fluid, and is also consistent with other observations. The occurrence of phantom
crossover, which is currently supported by the majority of observations, is one of the most
significant and general implications of the DM–BM interaction. Last but not least, given the
existence of disformal coupling between DM and BM, it would be intriguing to consider
a different kind of parametrization, such as ã = (ã/(1 + z̃))α or its variants, which can
also be helpful to alleviate the Hubble tension (see the Ref. [88] for more details) or take
perturbations into account and examine the matter power spectrum, which we will attempt
to report on soon.
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