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Abstract: The secular dressed diffusion equation describes the long-term evolution of collisionless
systems of particles with long-range interactions, such as self-gravitating systems submitted to a
weak external stochastic perturbation. We successively consider nonrotating spatially homogeneous
systems, rotating spatially homogeneous systems, and spatially inhomogeneous systems. We contrast
the secular dressed diffusion equation applying to collisionless systems perturbed by an externally
imposed stochastic field from the Lenard–Balescu equation applying to isolated systems evolving
because of discreteness effects (“collisions”). We discuss the connection between these two equations
when the external noise is produced by a random distribution of field particles.
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1. Introduction

The dynamics and thermodynamics of systems with long-range interactions has been
a topic of active research in the last 20 years [1]. In a first regime, provided that the number
of particles N is sufficiently large, the evolution of the system is collisionless and a mean
field approximation can be implemented. In that case, the evolution of the distribution
function of the particles f (r, v, t) is governed by the collisionless Boltzmann equation [2],
also known as the Vlasov equation [3] (see Hénon [4] for a discussion about the name that
should be given to that equation). Following a process of (possibly incomplete) violent
relaxation [5,6], the system generically reaches a virialized state (quasistationary state) after
a few dynamical times. The slow evolution of the system on a longer (secular) timescale
may be due to the intrinsic internal noise arising from the graininess of the system (finite
N effects) if the system is isolated, or to the influence of an external stochastic potential
if the system is not isolated. In the first case, the system evolves because of “collisions”
(encounters) between the particles. In the second case, it evolves because of the action of
the external forcing. We briefly review the kinetic theories that have been developed in the
past in these two situations, starting with the case of isolated systems (see Refs. [7,8] for
more detailed reviews on this subject).

The first kinetic equation applicable to systems with long-range interactions was de-
rived by Landau [9] for a spatially homogeneous neutral Coulombian plasma. Starting from
the Boltzmann equation [10] and expanding this equation in terms of a weak deflection pa-
rameter, he obtained a kinetic equation governing the evolution of the velocity distribution
f (v, t). His approach ignores collective effects (Debye shielding) and exhibits a logarithmic
divergence at large scales that he cured heuristically by introducing a cut-off at the Debye
length [11]. There is also a logarithmic divergence at small scales due to the neglect of
strong collisions that Landau cured heuristically by introducing a cut-off at the distance
at which the particles are deflected by about 90◦ (Landau length). A more exact kinetic
equation taking into account collective effects was derived by Lenard [12] and Balescu [13]
from the Liouville equation.1 Their treatment removes the divergence at large scales present
in the Landau equation. As a result, the Debye length appears naturally in their formal-
ism. A kinetic theory of spatially homogeneous plasmas was independently developed
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by Hubbard [15,16]. He started from the Fokker–Planck equation [17–20] and derived the
diffusion tensor and the friction force by a direct calculation, taking collective effects into
account (see also Rostoker and Rosenbluth [21] and Thompson and Hubbard [22] in the
thermal bath approximation). When the diffusion tensor and the friction force are substi-
tuted in the Fokker–Planck equation and a simple transformation is carried out (a step that
Hubbard did not make explicitly), one obtains an equation identical to the Lenard–Balescu
equation. Therefore, the Fokker–Planck equation derived by Hubbard is equivalent to the
Lenard–Balescu equation. The Landau and the Lenard–Balescu equations can be applied
to the whole class of systems with long-range interactions in various dimensions of space
provided that they are spatially homogeneous [7,23,24]. These kinetic equations are valid
at the order 1/N (since they neglect three-body and higher correlations) so they describe
the evolution of the system of a timescale of the order N tD, where tD is the dynamical
time. In d ≥ 2 dimensions, they relax towards the Boltzmann distribution of statistical
equilibrium. However, when the kinetic theory is applied to one-dimensional (1D) systems,
such as 1D plasmas [25,26] and the Hamiltonian Mean Field (HMF) model [27,28], it is
found that the Landau and the Lenard–Balescu collision operators vanish identically for
spatially homogeneous systems. This is a situation of kinetic blocking at the order 1/N.
This implies that the relaxation towards statistical equilibrium takes more time that N tD
since it is due to higher order correlations [23]. Recently, a new kinetic equation has been
obtained by Fouvry et al. [29,30] for 1D homogeneous systems with long-range interactions.
This equation, which takes three-body correlations into account, is valid at the order 1/N2.
It satisfies an H-theorem and relaxes towards the Boltzmann distribution of statistical equi-
librium on a timescale of the order N2 tD whatever the potential of interaction (i.e., there is
no kinetic blocking at the order 1/N2).

The kinetic theory of stellar systems was initiated by Chandrasekhar [31–43] and
further developed by Rosenbluth et al. [44]. They proceeded as if stellar systems were
spatially homogeneous and neglected collective effects. Using the Fokker–Planck approach,
they obtained a kinetic equation which is essentially equivalent to the Landau equation
although written in a different—less symmetric—form (see Ref. [8] for a detailed com-
parison of the two approaches).2 This equation exhibits a logarithmic divergence at large
scales that they cured heuristically by introducing a cut-off at the size of the system (Jeans
length) [45] which is the presumed analogue of the Debye length in plasma physics.3 If
one tries to account for collective effects in homogeneous self-gravitating systems by using
the Lenard–Balescu equation, one obtains a strong (algebraic) divergence at large scales
associated with the Jeans instability of a uniform self-gravitating medium. This reveals
the inadequacy of kinetic theories of self-gravitating systems based on the homogeneity
assumption to correctly describe collective effects. If we consider finite homogeneous
systems and truncate the integration over wavelengths at a maximum wavelength λmax
smaller than the Jeans length λJ , we find that the diffusion and friction coefficients diverge
algebraically when λmax → λJ (see Ref. [50] and Appendix E of Ref. [8]). This suggests that,
if we were able to account for spatial inhomogeneity rigorously, collective effects (Debye
anti-shielding) would tend to decrease the relaxation time of stellar systems.4

There is a situation where a stellar system can be rigorously spatially homogeneous.
This is when it is uniformly rotating at a specific angular velocity Ω = (2πGρ)1/2 such
that the mean gravitational force is exactly balanced by the centrifugal force.5 In that case,
a spatially homogeneous system can be in static equilibrium in the rotating frame and
no Jeans swindle is necessary. The Landau and Lenard–Balescu equations for spatially
homogeneous rotating stellar systems were derived by Wu [53]. Following the earlier work
of Lynden-Bell [54], he also investigated their dynamical stability with respect to the Vlasov–
Poisson equations by studying the dispersion relation [55]. He found that the equilibrium
state is always linearly unstable so that it evolves on a dynamical timescale. Indeed,
a spatially homogeneous collisionless stellar system suffers from the Jeans instability
above a critical wavelength λJ [54]. As a result, the whole kinetic theory which implicitly
assumes that the system is dynamically (Vlasov) stable breaks down. At a formal level, the
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Lenard–Balescu equation which takes into account collective effects is ill-posed because it
suffers from an algebraic divergence at large scales associated with the Jeans instability. By
contrast, the Landau equation which ignores collective effects just suffers from a logarithmic
divergence. This is like in the case of nonrotating spatially homogeneous self-gravitating
systems when we make the Jeans swindle. As a result, Wu [53] had to truncate artificially
the integration over the wavelength at a maximum wavelength smaller than the Jeans
length in order to obtain sensible results. In other words, he considered a “very large but
finite” system characterized by a dimension smaller than the Jeans wavelength.

To solve these difficulties rigorously, it is necessary to develop an appropriate ki-
netic theory for spatially inhomogeneous stellar systems. This can be performed most
conveniently by using angle-action variables [46]. The inhomogeneous Landau equation
was obtained in Refs. [8,56,57] and the inhomogeneous Lenard–Balescu equation was
obtained in Refs. [58,59].6 The inhomogeneous Landau and Lenard–Balescu equations have
been recently studied in relation to stellar discs [62–64], globular clusters [65,66], galactic
nuclei [67–70], and 1D gravity [71]. The inhomogeneous Landau and Lenard–Balescu
equations have also been applied to other systems with long-range interactions such as
the inhomogeneous phase of the HMF model [72]. In Ref. [73] they have been used to
study the dynamics of spins with long-range interactions moving on a sphere (recovering
and generalizing previous works on the subject [74–76]) in relation to the process of vector
resonant relaxation (VRR) of stars in galactic nuclei [77–79]. In some cases, collective effects
can considerably accelerate the relaxation. For example, the work [63] demonstrated that
collective effects decrease the relaxation time of stellar discs by three orders of magnitude. A
similar acceleration is obtained for the periodic stellar cube as its mass approaches the Jeans
mass [8,50,80] and for the homogeneous HMF model close to the critical temperature Tc [24].
In other cases, such as a spherical galaxy modeled by an n = 3 polytrope [81], the inhomo-
geneous phase of the HMF model [72], globular clusters represented by a spherical isotropic
isochrone distribution function [66], and 1D self-gravitating systems [71], collective effects
unexpectedly reduce the diffusion and the friction and increase the relaxation time. The
inhomogeneous Landau and Lenard–Balescu equations also share many analogies with the
kinetic equations obtained in the context of point vortices in 2D hydrodynamics [82–88] and
in pure electron plasmas under a strong magnetic field [89,90]. The numerous analogies
between stellar systems and 2D vortices are discussed in Refs. [57,91–93].

The case of collisionless self-gravitating systems submitted to an external stochastic
forcing was first studied by Binney and Lacey [94] following the suggestion of Spitzer and
Schwarzschild [95,96] that inhomogeneities in a galactic disc accelerate stars (see also the
works of Lacey [97] and Lacey and Ostriker [98] for the problem of disc heating by giant
molecular clouds or massive black holes in galactic halos). They considered spatially inho-
mogeneous systems (using angle-action variables) and neglected collective effects. They
showed that the long-term evolution of the system is described by a nonlinear diffusion
equation in which the diffusion tensor is sourced by the power spectrum of the stochastic
force evaluated at the resonance frequencies. This formalism can be applied to a galactic
disc undergoing (cosmic) perturbations from its surrounding dark matter halo or to the
secular diffusion of accretion streams within the Galactic halo. This problem was also
treated independently by Weinberg [99] who stressed the importance of collective effects.
In the same spirit, Ma and Bertschinger [100] used a quasilinear approach to investigate
dark matter diffusion induced by cosmological fluctuations while Pichon and Aubert [101]
sketched a time-decoupling approach to solve the Vlasov equation and applied it to the
statistical study of dynamical flows through dark matter halos. The same types of prob-
lems were studied independently in the context of systems with long-range interactions,
such as the HMF model, by Nardini et al. [102,103] and Chavanis [7,23]. Specifically,
they considered the evolution of spatially homogeneous collisionless systems of particles
with long-range interactions driven by external stochastic forces and derived a nonlinear
diffusion equation. These calculations were generalized to the case of inhomogeneous
systems by Fouvry et al. [64,104–106] with specific applications to stellar discs. More re-
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cently, Fouvry and Bar-Or [107] developed an approach based on the η-formalism [108]
that allowed them to treat both graininess effects and external stochastic perturbations.7

The η-formalism also offers a numerical method to compute the long-term diffusion and
friction coefficients in inhomogeneous systems.

In summary, there are two main kinetic equations describing the secular evolution of
systems with long-range interactions. The first one is the Lenard–Balescu equation (or the
Landau equation when collective effects are neglected) which describes the “collisional”
evolution of an isolated system of particles undergoing perturbations arising from its
own discreteness (finite N effects). The second one is the secular dressed diffusion (SDD)
equation (or the secular bare diffusion (SBD) equation when collective effects are neglected)
which describes the long-term evolution of a collisionless system of particles (N → +∞
with m ∼ 1/N) undergoing external perturbations. In the first case, the perturbations are
intrinsic and self-induced, whereas in the second case the perturbations are exterior and the
system responds to them. The Lenard–Balescu equation has been discussed and reviewed
in several papers and books. The SDD equation is less well-known. Therefore, in this paper,
we offer a brief review of the formalism leading to that equation. We successively consider
nonrotating spatially homogeneous systems (Section 2), rotating spatially homogeneous
systems (Section 3), and spatially inhomogeneous systems (Sections 4 and 5). We adopt
the same presentation in each case in order to show the unity of the formalism. At the
end of each section, we specifically consider the case where the external noise is produced
by a random distribution of field particles and discuss the connection between the SDD
equation and the multi-species Lenard–Balescu equation.

2. Spatially Homogeneous Systems
2.1. Derivation of the SDD Equation from the Klimontovich Equation

We first derive the SDD equation from the Klimontovich equation. We follow an
approach similar to the one developed in Section 6 of [23].

2.1.1. Quasilinear Theory and Bogoliubov Ansatz

We consider a system of particles of mass m interacting via a long-range binary
potential u(|r− r′|) decreasing more slowly than r−γ with γ ≤ d in a space of dimension
d. We assume that the particles are subjected to an external stochastic force (exterior
perturbation) of zero mean arising from a fluctuating potential Φe(r, t). The equations of
motion of the particles are

dri
dt

= vi,
dvi
dt

= −∇Φd(ri)−∇Φe(ri, t), (1)

where Φd(r) = m ∑j u(|r− rj|) is the exact potential produced by the particles. They can be
written in Hamiltonian form as mdri/dt = ∂(Hd + He)/∂vi and mdvi/dt = −∂(Hd + He)/∂ri,
where Hd = (1/2)∑i mv2

i + ∑i<j m2u(|ri − rj|) is the Hamiltonian of the particles and
He = ∑i mΦe(ri, t) is the Hamiltonian associated with the external force. The discrete
distribution function of the particles, fd(r, v, t) = m ∑i δ(r− ri(t))δ(v− vi(t)), satisfies the
Klimontovich equation

∂ fd
∂t

+ v · ∂ fd
∂r
−∇(Φd + Φe) ·

∂ fd
∂v

= 0, (2)

where

Φd(r, t) =
∫

u(|r− r′|)ρd(r
′, t) dr′ (3)
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is the potential produced by the discrete density of particles ρd(r, t) =
∫

fd(r, v, t) dv =
m ∑i δ(r− ri(t)). The Klimontovich Equation (2) can be written under the form

∂ fd
∂t

+ { fd, Hd + He} = 0, (4)

where Hd + He = p2/2m + m(Φd + Φe) denotes here the total Hamiltonian of a particle
and { f , g} = ∂r f ∂pg− ∂p f ∂rg is the usual Poisson bracket (p = mv is the impulse). This
Poisson structure is valid for all canonical coordinates and is particularly useful to treat
spatially inhomogeneous systems (see Section 4 and Refs. [59,99,104]).

We introduce the mean distribution function f (r, v, t) = 〈 fd(r, v, t)〉 corresponding
to an ensemble average of fd(r, v, t). We then write fd(r, v, t) = f (r, v, t) + δ f (r, v, t),
where δ f (r, v, t) denotes the fluctuations about the mean distribution. Similarly, we write
Φd(r, t) = Φ(r, t) + δΦ(r, t), where δΦ(r, t) denotes the fluctuations about the mean poten-
tial Φ(r, t). Substituting these decompositions into Equation (2), we obtain

∂ f
∂t

+
∂δ f
∂t

+ v · ∂ f
∂r

+ v · ∂δ f
∂r
−∇Φ · ∂ f

∂v
−∇Φ · ∂δ f

∂v

−∇(δΦ + Φe) ·
∂ f
∂v
−∇(δΦ + Φe) ·

∂δ f
∂v

= 0. (5)

Taking the ensemble average of this equation, we find that

∂ f
∂t

+ v · ∂ f
∂r
−∇Φ · ∂ f

∂v
=

∂

∂v
· 〈δ f∇(δΦ + Φe)〉, (6)

where the right hand side is the “collision” term arising from the granularity of the sys-
tem (finite N effects) and the external stochastic force.8 Subtracting this expression from
Equation (5), we obtain the equation for the fluctuations of the distribution function

∂δ f
∂t

+ v · ∂δ f
∂r
−∇Φ · ∂δ f

∂v
−∇(δΦ + Φe) ·

∂ f
∂v

=
∂

∂v
· (δ f∇(δΦ + Φe))−

∂

∂v
· 〈δ f∇(δΦ + Φe)〉. (7)

The foregoing equations are exact since no approximation has been made for the
moment.

We now assume that the external force is weak and treat the stochastic potential Φe(r, t)
as a small perturbation to the mean field dynamics. We also assume that the fluctuations
δΦ(r, t) of the long-range potential are weak. Since the mass scales as m ∼ 1/N this
approximation is valid when N � 1. If we ignore the external stochastic force and the
fluctuations of the potential due to finite N effects altogether, the collision term vanishes
and Equation (6) reduces to the Vlasov equation

∂ f
∂t

+ v · ∂ f
∂r
−∇Φ · ∂ f

∂v
= 0, (8)

where

Φ(r, t) =
∫

u(|r− r′|)ρ(r′, t) dr′ (9)

is the potential produced by the mean density of particles ρ(r, t) =
∫

f (r, v, t) dv =
〈ρd(r, t)〉. The Vlasov equation describes a self-consistent mean field dynamics corre-
sponding to a collisionless and unperturbed evolution. It is valid in the limit Φe → 0 and
N → +∞ with m ∼ 1/N, or for sufficiently “short” times.

We now take into account a small correction to the Vlasov equation obtained by
keeping the collision term on the right hand side of Equation (6) but neglecting the
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quadratic terms on the right hand side of Equation (7). We therefore obtain a set of
two coupled equations

∂ f
∂t

+ v · ∂ f
∂r
−∇Φ · ∂ f

∂v
=

∂

∂v
· 〈δ f∇(δΦ + Φe)〉 (10)

and
∂δ f
∂t

+ v · ∂δ f
∂r
−∇Φ · ∂δ f

∂v
−∇(δΦ + Φe) ·

∂ f
∂v

= 0. (11)

These equations form the starting point of the quasilinear theory which is valid in a
weak coupling approximation (m ∼ 1/N � 1) and for a weak external stochastic force
(Φe � Φ). Equation (10) describes the evolution of the mean distribution function sourced
by the correlations of the fluctuations and Equation (11) describes the evolution of the
fluctuations due to the external stochastic potential and the granularities of the system
(finite N effects). These equations are valid at the order 1/N and to leading order in Φe.9

If we restrict ourselves to spatially homogeneous systems, the mean field force −∇Φ
vanishes. In that case, the unperturbed equations of motion of the particles are simply
straight lines traveled at constant velocity: v(t) = v and r(t) = r + vt. Any distribution
function f (v) is a steady state of the Vlasov equation. On the other hand, the fundamental
Equations (10) and (11) of the quasilinear theory reduce to10

∂ f
∂t

=
∂

∂v
· 〈δ f∇(δΦ + Φe)〉, (12)

∂δ f
∂t

+ v · ∂δ f
∂r
−∇(δΦ + Φe) ·

∂ f
∂v

= 0. (13)

Our goal is to solve Equation (13) for the fluctuations δ f (r, v, t) and substitute the result
back into Equation (12) in order to obtain a closed kinetic equation for the mean distribution
function f (v, t). Assuming a timescale separation, we will regard ∂ f /∂v in Equation (13)
as being independent of time (Bogoliubov ansatz). Indeed, the mean distribution function
evolves on a secular timescale which is long compared to the dynamical time over which the
correlations of the fluctuations have their essential support. In order to derive the Lenard–
Balescu equation describing the mean evolution of the system under purely discreteness
effects (“collisions”) at the order 1/N we take Φe = 0 and consider an initial value problem
as described in, e.g., Section 2 of [23]. In that case, Equation (13) must be solved by
introducing a Fourier transform in space and a Laplace transform in time. This involves the
initial perturbed distribution function δ f̂ (k, v, 0) which accounts for the granularities of
the system (finite N effects). Here, we neglect discreteness effects (assuming N → +∞) and
focus on the effect of the external stochastic potential Φe as in Section 6 of [23]. In that case,
Equation (13) can be solved by introducing Fourier transforms in space and time.11 The
Fourier transform of the fluctuations of the distribution function δ f (r, v, t) is defined by

δ f̂ (k, v, ω) =
∫ dr

(2π)d

∫
dt e−i(k·r−ωt)δ f (r, v, t) (14)

and its inverse Fourier transform is given by

δ f (r, v, t) =
∫

dk
∫ dω

2π
ei(k·r−ωt)δ f̂ (k, v, ω). (15)

Similar expressions hold for the fluctuating potentials δΦ(r, t) and Φe(r, t). We note
that, for periodic potentials, the integral over k must be replaced by a discrete summation
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over the different modes. For future reference, we recall the Fourier representation of the
Dirac δ-function

δ(t) =
∫ +∞

−∞
e−iωt dω

2π
, δ(k) =

∫
e−ik·r dr

(2π)d . (16)

2.1.2. Dielectric Function

We are now ready to solve the equation for the fluctuations for a given external
perturbation. Taking the Fourier transform of Equation (13), we find that

δ f̂ (k, v, ω) =
k · ∂ f

∂v
k · v−ω

[
δΦ̂(k, ω) + Φ̂e(k, ω)

]
. (17)

The fluctuations of the potential are related to the fluctuations of the density δρ(r, t) =∫
δ f (r, v, t) dv by a convolution

δΦ(r, t) =
∫

u(|r− r′|)δρ(r′, t) dr′. (18)

Taking the Fourier transform of this equation, we obtain

δΦ̂(k, ω) = (2π)dû(k)δρ̂(k, ω) (19)

with δρ̂(k, ω) =
∫

δ f̂ (k, v, ω) dv, where û(k) is the Fourier transform of the potential of
interaction. Integrating Equation (17) over v and using Equation (19), we find that the
Fourier transform of the fluctuations of the potential is related to the Fourier transform of
the external stochastic potential by

δΦ̂(k, ω) =
1− ε(k, ω)

ε(k, ω)
Φ̂e(k, ω), (20)

where the “dielectric” function is defined by12

ε(k, ω) = 1− (2π)dû(k)
∫ k · ∂ f

∂v
k · v−ω

dv. (21)

Without external perturbation, the system would be rigorously spatially homoge-
neous (in the limit N → +∞ that we consider here) and described by the distribu-
tion function f (v). The external perturbation Φe(r, t) creates a small inhomogeneity
δρ(r, t) =

∫
δ f (r, v, t) dv (via Equation (13)) producing in turn a weak potential δΦ(r, t)

(via Equation (18)). This is like a polarization process. As a result, the total poten-
tial acting on a particle, which is sometimes called the dressed or effective potential,
is δΦtot(r, t) = Φe(r, t) + δΦ(r, t). This is the sum of the external perturbation plus
the potential fluctuation induced by the system itself (i.e., the system’s own response).
Equations (13) and (18) are coupled together. One manner to solve this loop is to use
Fourier transforms as we have shown above. Using Equation (20), the Fourier transform of
the total potential δΦ̂tot(k, ω) = Φ̂e(k, ω) + δΦ̂(k, ω) is related to the Fourier transform of
the external stochastic potential Φ̂e(k, ω) by

δΦ̂tot(k, ω) =
Φ̂e(k, ω)

ε(k, ω)
. (22)

Although not explicitly written, we must use the Landau prescription ω → ω + i0+

in Equation (21).13 As a result, 1/ε(k, ω) is a complex function which plays the role
of the response function in plasma physics. It determines the response of the system
δΦ̂tot(k, ω) to an external perturbation Φ̂e(k, ω) through Equation (22). The dielectric
function takes into account the polarization of the medium caused by the self-interaction of
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the particles. This corresponds to the so-called “collective effects”. Depending on the form
of the self-interaction (attractive or repulsive), the polarization cloud can amplify or shield
the effect of the imposed external potential. This amounts to replacing the bare potential
Φ̂e(k, ω) by the dressed potential δΦ̂tot(k, ω) = Φ̂e(k, ω)/ε(k, ω) which is the potential
Φ̂e(k, ω) dressed by the polarization cloud. Without self-interaction, or if we neglect
collective effects, we just have δΦ̂tot(k, ω) = Φ̂e(k, ω), corresponding to ε(k, ω) = 1, and
δΦ̂(k, ω) = (1− ε(k, ω))Φ̂e(k, ω) ' 0. The notion of “dressed” particles (or quasiparticles)
has been introduced and developed by Hubbard [15,16,22] and Rostoker [115–117] in
plasma physics.

Remark 1. The dielectric function can be written as ε(k, ω) = 1− M(k, ω), where M(k, ω)
is the polarization function of the system such that δΦ̂(k, ω) = M(k, ω)Φ̂tot(k, ω). On the
other hand, R(k, ω) = (1− ε(k, ω))/ε(k, ω) is the potential response function of the system
such that δΦ̂(k, ω) = R(k, ω)Φ̂e(k, ω) (see, e.g., Refs. [46,118,119]). In the absence of external
perturbation (Φe = 0), we obtain the dispersion relation ε(k, ω) = 0 determining the proper
complex pulsations ω(k) = ωr(k) + iωi(k) of the system for each wavenumber k. A distribution
function f (v) is linearly stable with respect to the Vlasov equation if, and only if, ωi(k) < 0 for all
modes k [114]. The vanishing of ωi(k) at some kc signals the onset of an instability. This implies
the vanishing of ε(kc, ω), or the divergence of R(kc, ω), when the real pulsation ω → ω(kc).

2.1.3. Power Spectrum

We now assume that the time evolution of the perturbing potential is a stationary
stochastic process so that the auto-correlation function depends on t and t′ only in the
combination τ = t− t′. On the other hand, since the system is spatially homogeneous,
the auto-correlation function depends on r and r′ only in the combination x = r− r′. As a
result, the auto-correlation function of the external potential can be written as

〈Φe(r, t)Φe(r′, t′)〉 = C(r− r′, t− t′). (23)

The spectral auto-correlation function of the external stochastic potential is

〈Φ̂e(k, ω)Φ̂e(k′, ω′)∗〉 = 2πδ(k− k′)δ(ω−ω′)Ĉ(k, ω), (24)

where Ĉ(k, ω) is the Fourier transform in time of C(x, τ) (Wiener–Khinchin theorem [120,121]).
The function C(r− r′, t− t′) describes a possibly colored noise. A white noise corresponds
to a correlation function C(r − r′, t − t′) which is δ-correlated in time. In that case, its
Fourier transform Ĉ(k, ω) is independent of ω.

The auto-correlation function of the total fluctuating potential in Fourier space is given by

〈δΦ̂tot(k, ω)δΦ̂∗tot(k
′, ω′)〉 = 2πδ(k− k′)δ(ω−ω′)P(k, ω), (25)

where P(k, ω) is the power spectrum. Combining Equations (22), (24), and (25), we obtain14

P(k, ω) =
Ĉ(k, ω)

|ε(k, ω)|2 . (26)

This equation relates the power spectrum P(k, ω) of the total fluctuating potential
acting on the particles to the spectral auto-correlation function Ĉ(k, ω) of the external
stochastic potential. We note that Ĉ(k, ω) and P(k, ω) are real and positive. The power
spectrum P(k, ω) takes into account collective effects through the dielectric function ε(k, ω).
It can be seen as a dressed correlation function. If we neglect collective effects (ε = 1) we
obtain the bare power spectrum (or the bare correlation function)

Pbare(k, ω) = Ĉ(k, ω). (27)

It can be directly obtained from Equations (24) and (25) with δΦ̂tot(k, ω) = Φ̂e(k, ω).
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Remark 2. If the system has a weakly damped mode ωM, i.e., ε(k, ωM) = 0 with ωM = ω0 + iη
where η < 0 and |η| � ω0, then the power spectrum (for ω real) is close to a Lorentzian P(k, ω) ∼
1/[(ω − ω0)

2 + η2] (we have used ε(k, ω) ' ε[k, ωM + (ω − ωM)] ' ε′(k, ωM)(ω − ωM)
implying |ε(k, ω)|2 ' |ε′(k, ωM)|2[(ω−ω0)

2 + η2]). This is because the (real) pulsation is close
to the singularities of R(k, ω) or 1/ε(k, ω). The fluctuations become very large as η → 0−, i.e.,
as the mode approaches neutral stability. Indeed, P(k, ω) ∼ π

η δ(ω − ω0) when η → 0− (i.e.,
k→ kc). This is similar to the phenomenon of critical opalescence [122,123]. Large fluctuations
also occur in self-gravitating systems close to the Jeans length and in the HMF model close to the
critical temperature [8,50,80,124].

2.1.4. SDD Equation

The basic equations governing the evolution of the mean distribution function f (v, t)
of a spatially homogeneous system of particles with long-range interactions forced by an
external perturbation are given by Equations (12) and (13). Introducing the total fluctuating
potential δΦtot = δΦ + Φe, we can rewrite Equation (12) as

∂ f
∂t

=
∂

∂v
· 〈δ f∇δΦtot〉. (28)

We now compute the effective collision term15 appearing on the right hand side of
this equation. Introducing the Fourier transforms of the fluctuations of the distribution
function and potential, we obtain

∂ f
∂t

= −i
∫

dk
∫ dω

2π

∫
dk′

∫ dω′

2π

(
k′ · ∂

∂v

)
ei(k·r−ωt)e−i(k′ ·r−ω′t)〈δ f̂ (k, v, ω)δΦ̂∗tot(k

′, ω′)〉. (29)

Equation (13) can be written in Fourier space as (see Equation (17))

δ f̂ (k, v, ω) =
k · ∂ f

∂v
k · v−ω

δΦ̂tot(k, ω). (30)

Substituting Equation (30) into Equation (29), we obtain

∂ f
∂t

= −i
∫

dk
∫ dω

2π

∫
dk′

∫ dω′

2π

(
k′ · ∂

∂v

)
ei(k−k′)·re−i(ω−ω′)t

×
k · ∂ f

∂v
k · v−ω

〈δΦ̂tot(k, ω)δΦ̂∗tot(k
′, ω′)〉. (31)

Introducing the power spectrum from Equation (25) and performing the integration
over ω′ and k′, we find that

∂ f
∂t

= −i
∫

dk
∫ dω

2π

(
k · ∂

∂v

)
k · ∂ f

∂v
k · v−ω

P(k, ω). (32)

Recalling the Landau prescription ω → ω + i0+ and using the Sokhotski–Plemelj [125,126]
formula

1
x± i0+

= P
(

1
x

)
∓ iπδ(x), (33)

where P denotes the principal value, we can replace 1/(k · v−ω− i0+) by +iπδ(k · v−ω)
in Equation (32). Accordingly,

∂ f
∂t

= π
∫

dk
∫ dω

2π

(
k · ∂

∂v

)
δ(ω− k · v)P(k, ω)

(
k · ∂ f

∂v

)
. (34)
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The integration over ω, which corresponds to a condition of resonance at ω = k · v,
leads to the kinetic equation

∂ f
∂t

=
1
2

∫
dk
(

k · ∂

∂v

)
P(k, k · v)

(
k · ∂ f

∂v

)
. (35)

Therefore, for spatially homogeneous systems with long-range interactions, the secular
evolution of the mean distribution function f (v, t) of the particles sourced by an external
stochastic force is governed by a nonlinear diffusion equation of the form16

∂ f
∂t

=
∂

∂vi

(
Dij[ f , v]

∂ f
∂vj

)
, (36)

with an anisotropic diffusion tensor

Dij =
1
2

∫
dk kik jP(k, k · v). (37)

This equation expresses the diffusion tensor in terms of the power spectrum of the
total fluctuating potential at the resonance frequencies ω = k · v.

Using Equation (26), we can express the diffusion tensor in terms of the spectral
auto-correlation function of the external perturbation Ĉ(k, ω) as

Dij[ f , v] =
1
2

∫
dk kik j

Ĉ(k, k · v)
|ε(k, k · v)|2 . (38)

Therefore, the diffusion tensor involves the ratio of the power spectrum of the external
perturbation 〈|Φ̂e(k, ω)|2〉 divided by the squared susceptibility |ε(k, ω)|2 of the system
both evaluated at the resonance frequencies ω = k · v.17 Equation (36) implies that the
secular response of the system is due to the combined effect of the external noise and
its susceptibility. The diffusion tensor Dij[ f , v] depends on the velocity v and on the
velocity distribution f (v, t) itself through the dielectric function ε(k, k · v) defined by
Equation (21). As a result, Dij[ f , v] is a functional of f . Equation (36) with the diffusion
tensor from Equation (38) is therefore a complicated integrodifferential equation called the
SDD equation.

For noninteracting systems or when collective effects are neglected, i.e., when we
make ε = 1 in Equation (38), the diffusion tensor reduces to

Dij(v) =
1
2

∫
dk kik jĈ(k, k · v). (39)

In that case, it depends only on the velocity v. Equation (36) with Equation (39) is called
the SBD equation. If Φe(r, t) is a white noise in time so that Ĉ(k, ω) does not depend on ω,
we obtain a pure diffusion equation with a constant diffusion tensor Dij =

1
2

∫
dk kik jĈ(k).

If Ĉ(k) depends only on k = |k|, the diffusion tensor is isotropic: Dij = Dδij with D =
1

2d

∫
Ĉ(k)k2 dk. For a colored noise, the spectral auto-correlation function of the external

stochastic potential Ĉ(k, ω) is a function of ω that has to be evaluated at the resonance
frequencies ω = k · v.

Remark 3. The SDD Equation (36) with Equation (38) was first obtained in Section 6 of Chavanis [23].
A related equation was obtained by Nardini et al. [102] and studied in detail in [103]. However,
the diffusion tensor has a form different from Equation (38). Some connections between the two
equations have been discussed in [7].
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2.1.5. Properties of the SDD Equation

Some general properties of the SDD Equation (36) can be given. First of all, the total
mass of the system M =

∫
f dv is conserved since the right hand side of Equation (36) is

the divergence of a current. By contrast, the energy of the system is not conserved, contrary
to the case of the Lenard–Balescu Equation [23], since the system is forced by an external
medium. Taking the time derivative of the energy which, for a spatially homogeneous
system, reduces to the kinetic energy

E =
1
2

∫
f v2 dv, (40)

using Equation (36), and integrating by parts, we obtain

Ė = −
∫

Dij[ f , v]
∂ f
∂vj

vi dv. (41)

In general, Ė has not a definite sign. However, when f = f (H) with f ′(H) ≤ 0 where
H = (1/2)mv2, we obtain Ė = −

∫
f ′(H)Dijvivj dv ≥ 0 (since Dijvivj ≥ 0) so that energy

is injected in the system. Finally, introducing the H-functions

S = −
∫

C( f ) dv, (42)

where C( f ) is any convex function, we obtain

Ṡ =
∫

C′′( f )
∂ f
∂vi

Dij[ f , v]
∂ f
∂vj

dv. (43)

Because of the convexity condition C′′ ≥ 0 and the fact that the quadratic form xiDijxj

is definite positive (see Section 2.1.4), we find that Ṡ ≥ 0. Therefore, all the H-functions
increase monotonically with time. This is different from the case of the Lenard–Balescu equa-
tion in dimension d > 1 where only the Boltzmann entropy increases monotonically [23].

If we heuristically introduce a dissipative term in the SDD equation by analogy with
the homogeneous Kramers equation (see Section 4.1 of [23]), we get an equation of the form

∂ f
∂t

=
∂

∂vi

(
Dij[ f , v]

∂ f
∂vj

+ ξ f vi

)
, (44)

where ξ > 0 is the friction coefficient. The general behavior of this nonlinear equation
is difficult to predict as it depends on the potential of interaction of the particles and
on the correlation function of the external potential. Furthermore, the diffusion tensor
is a functional of f . Equation (44) may relax towards a non-Boltzmannian steady state
determined by the equation

Dij[ f , v]
∂ f
∂vj

+ ξ f vi = 0, (45)

or exhibit a complicated (e.g., periodic) dynamics. Since the diffusion tensor is a functional
of f , the nonlinear SDD equation presents a rich and complex behavior.

2.1.6. Stochastic SDD Equation

The SDD Equation (44), which is a deterministic partial differential equation, describes
the evolution of the mean distribution function f (v, t). If we take fluctuations into account,
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by analogy with the results presented in [124], we expect that the mesoscopic distribution
function f (r, v, t) will satisfy a stochastic partial differential equation of the form18

∂ f
∂t

+ v · ∂ f
∂r
−∇Φ · ∂ f

∂v
=

∂

∂vi

(
Dij[ f , v]

∂ f
∂vj

+ ξ f vi

)
+ ζ(r, v, t), (46)

where ζ(r, v, t) is a noise term with zero mean that generally depends on f (r, v, t). When
Dij = Dδij is constant and isotropic and when the fluctuation–dissipation theorem is
fulfilled so that ξ = Dβm, as in the case of Brownian particles with long-range interactions,
the noise term is given by [124]

ζ(r, v, t) =
∂

∂v
·
[√

2Dm f Q(r, v, t)
]

, (47)

where Q(r, v, t) is a Gaussian white noise satisfying 〈Qi(r, v, t)〉 = 0 and 〈Qi(r, v, t)Qj(r′, v′, t′)〉
= δijδ(r− r′)δ(v− v′)δ(t− t′). This expression can be obtained from an adaptation of the
theory of fluctuating hydrodynamics [124]. In that case, the stochastic partial differential
equation reads

∂ f
∂t

+ v · ∂ f
∂r
−∇Φ · ∂ f

∂v
=

∂

∂v
·
[

D

(
∂ f
∂v

+ βm f v

)]
+

∂

∂v
·
[√

2Dm f Q(r, v, t)
]

, (48)

and the deterministic equation for the mean distribution function (i.e., Equation (48) without
the noise term) relaxes towards the Boltzmann distribution f = Ae−βm(v2/2+Φ(r)). When
D[ f ] is a functional of f , the noise term may be more complicated.19 When the deterministic
Equation (44) admits several equilibrium states, the noise term in Equation (46) can trigger
random transitions from one state to the other (see, e.g., [128,129]).

Remark 4. We may alternatively consider a stochastic partial differential equation of the form

∂ f
∂t

+ v · ∂ f
∂r
−∇Φ · ∂ f

∂v
=

∂

∂vi

(
Dij[ f , v]

∂ f
∂vj

)
− ν f + ζ(r, v, t), (49)

where −ν f is a linear damping term with 0 < ν� 1. The stationary solutions of the corresponding
deterministic equation (Equation (49) with ζ = 0) are determined by

∂

∂vi

(
Dij[ f , v]

∂ f
∂vj

)
− ν f = 0. (50)

Since Dij[ f ] is a functional of f , Equation (50) is a very nonlinear equation which admits
nontrivial solutions.

2.2. Derivation of the SDD Equation from the Fokker–Planck Equation

In this section, we derive the SDD equation directly from the Fokker–Planck equation.
We follow an approach similar to the one developed in Section 3 of [23] to derive the
Lenard–Balescu equation.

2.2.1. Fokker–Planck Equation

Let us consider the evolution of a test particle of mass m moving in a spatially ho-
mogeneous medium and experiencing a stochastic perturbation Φe(r, t). The equations of
motion of the test particle are

dr
dt

= v and
dv
dt

= −∇δΦtot(r, t), (51)
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where δΦtot(r, t) is the total fluctuating potential acting on the particle. They can be written
in Hamiltonian form as mdr/dt = ∂(H + δHtot)/∂v and mdv/dt = −∂(H + δHtot)/∂r,
where H = (1/2)mv2 is the mean Hamiltonian and δHtot is the total fluctuating Hamil-
tonian. At leading order, the test particle follows a rectilinear trajectory at constant ve-
locity v (the mean force vanishes) but it also experiences a small stochastic perturbation
δΦtot = Φe + δΦ which is equal to the external potential Φe plus the fluctuating poten-
tial δΦ produced by the system itself (collective effects). Equations (51) can be formally
integrated into

r(t) = r +
∫ t

0
v(t′) dt′, v(t) = v−

∫ t

0
∇δΦtot(r(t′), t′) dt′, (52)

where we have assumed that, initially, the test particle is at position r with velocity v.
Since the fluctuations δΦtot of the potential are small, the changes in the velocity of the test
particle are also small. On the other hand, the fluctuation time is short with respect to the
evolution time of the distribution function. As a result, the dynamics of the test particle can
be represented by a stochastic process governed by a Fokker–Planck equation [34,112]. The
Fokker–Planck equation can be derived from the Master equation by using the Kramers–
Moyal [110,111] expansion truncated at the level of the second moments of the increment in
velocity.20 If we denote by f (v, t) the probability density that the test particle has a velocity
v at time t, the general form of this equation is

∂ f
∂t

=
∂2

∂vi∂vj

(
Dij f

)
− ∂

∂vi

(
f Ftot

i
)
. (53)

The diffusion tensor and the friction force are defined by

Dij(v) = lim
t→+∞

1
2t
〈(vi(t)− vi)(vj(t)− vj)〉 =

〈∆vi∆vj〉
2∆t

, (54)

Ftot
i (v) = lim

t→+∞

1
t
〈vi(t)− vi〉 =

〈∆vi〉
∆t

. (55)

In writing these limits, we have implicitly assumed that the time t is long compared to
the fluctuation time but short compared to the evolution time of the distribution function.

As shown in our previous papers [8,23,59], it is relevant to rewrite the Fokker–Planck
equation in the alternative form

∂ f
∂t

=
∂

∂vi

(
Dij

∂ f
∂vj
− f Fpol

i

)
. (56)

The total friction can be written as

Ftot
i = Fpol

i +
∂Dij

∂vj
, (57)

where Fpol is the friction by polarization (see Section 3.3 of [23]) while the second term is
due to the variation of the diffusion tensor with the velocity v (see Section 3.4 of [23]). As
explained in [8,23,59,136] in the context of the Lenard–Balescu equation, the friction by
polarization Fpol arises from the retroaction (response) of the system to the perturbation
caused by the test particle, just like in a polarization process. It represents, however, only
one component of the dynamical friction Ftot experienced by the test particle, the other
component being ∂jDij.

Remark 5. The two expressions (53) and (56) of the Fokker–Planck equation have their own interest.
The expression (53) where the diffusion tensor is placed after the second derivative ∂2(DP) involves
the total friction Ftot while the expression (56) where the diffusion tensor is placed between the
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derivatives ∂D∂P isolates the friction by polarization Fpol. It is shown in [23] that this second form
is directly related to the Lenard–Balescu equation. This is also the form corresponding to the SDD
Equation (36). It has therefore a clear physical meaning.

2.2.2. Absence of Friction by Polarization

In the limit N → +∞ with m ∼ 1/N where the collisions between the particles are
negligible, the friction by polarization (which is proportional to m [23]) vanishes

Fpol = 0. (58)

Indeed, the perturbation on the system caused by the test particle is negligible. In that
case, the Fokker–Planck Equation (56) reduces to

∂ f
∂t

=
∂

∂vi

(
Dij

∂ f
∂vj

)
. (59)

We note that, in Equation (59), the diffusion tensor is “sandwiched” between the two
derivatives ∂/∂v in agreement with Equation (36). As mentioned previously, this is not the
usual form of the Fokker–Planck equation which is given by Equation (53). Therefore, the
test particle experiences a friction (see Equation (57))

Ftot
i =

∂Dij

∂vj
, (60)

arising from the velocity dependence of the diffusion tensor.21 Using Equations (54) and
(55), this relation can be written as

〈∆vi〉
∆t

=
1
2

∂

∂vj

〈∆vi∆vj〉
∆t

. (61)

Remark 6. This relation is sometimes referred to as a fluctuation-dissipation theorem because it
links the friction to the diffusion. However, this is not the usual fluctuation-dissipation theorem
which arises in connection to the Fokker–Planck form of the Lenard–Balescu Equation [136].
Equation (60) links Dij and Ftot when Fpol = 0 while the usual fluctuation–dissipation theorem

Fpol
i = −βmDijvj [23] links Dij and Fpol at statistical equilibrium (i.e., for the Maxwellian

distribution function).

2.2.3. First Calculation of Dij

We now calculate the diffusion tensor from Equation (54) following the approach
developed in Section 3.2 of [23]. According to Equation (51) the increment in velocity of the
test particle is

∆v = −
∫ t

0
∇δΦtot(r(t′), t′) dt′. (62)

Substituting Equation (62) into Equation (54) and assuming that the correlations of the
fluctuating force persist for a time less than the time for the trajectory of the test particle to
be much altered, we can make a linear trajectory approximation22

r(t′) = r + vt′, v(t′) = v, (63)

and write

Dij = lim
t→+∞

1
2t

∫ t

0
dt′
∫ t

0
dt′′
〈

∂δΦtot

∂xi
(r + vt′, t′)

∂δΦtot

∂xj
(r + vt′′, t′′)

〉
. (64)
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Introducing the Fourier transform of the total fluctuating potential, we obtain〈
∂δΦtot

∂xi
(r + vt′, t′)

∂δΦtot

∂xj
(r + vt′′, t′′)

〉
=
∫

dk
∫ dω

2π

∫
dk′

∫ dω′

2π
kik′j

×eik·(r+vt′)e−iωt′ e−ik′ ·(r+vt′′)eiω′t′′〈δΦ̂tot(k, ω)δΦ̂tot(k′, ω′)∗〉. (65)

Substituting Equation (25) into Equation (65), and carrying out the integrals over k′

and ω′, we end up with the result〈
∂δΦtot

∂xi
(r + vt′, t′)

∂δΦtot

∂xj
(r + vt′′, t′′)

〉
=
∫

dk
∫ dω

2π
kik jei(k·v−ω)(t′−t′′)P(k, ω). (66)

This expression shows that the correlation function appearing in Equation (64) depends
only on the difference of times s = t′ − t′′. Using the identity

∫ t

0
dt′
∫ t

0
dt′′ f (t′ − t′′) = 2

∫ t

0
dt′
∫ t

t′
dt′′ f (t′ − t′′) = 2

∫ t

0
dt′
∫ t−t′

0
ds f (s)

= 2
∫ t

0
ds
∫ t−s

0
dt′ f (s) = 2

∫ t

0
ds (t− s) f (s), (67)

and assuming that the force auto-correlation function f (s) decreases more rapidly than
s−1,23 we find for t→ +∞ that24

Dij =
∫ +∞

0

〈
∂δΦtot

∂xi
(r, 0)

∂δΦtot

∂xj
(r + vs, s)

〉
ds. (68)

Therefore, as in the theory of Brownian motion [34,112,138–140], turbulent fluids [141],
plasma physics [15,16,22,49,142], and stellar dynamics [8,31,137,143–147], the diffusion
tensor of the test particle is equal to the integral of the temporal auto-correlation function
〈Fi(0)Fj(t)〉 of the fluctuating force acting on it along the unperturbed motions:

Dij =
∫ +∞

0
〈Fi(0)Fj(t)〉 dt. (69)

Replacing the auto-correlation function by its expression from Equation (66), which
can be written as

〈Fi(0)Fj(t)〉 =
∫

dk
∫ dω

2π
kik jei(k·v−ω)tP(k, ω), (70)

we obtain

Dij =
∫ +∞

0
dt
∫

dk
∫ dω

2π
kik jei(k·v−ω)tP(k, ω). (71)

Making the change of variables t→ −t, k→ −k and ω → −ω, and using the fact that
P(−k,−ω) = P(k, ω), we see that we can replace

∫ +∞
0 dt by (1/2)

∫ +∞
−∞ dt in Equation (71).

As a result,

Dij =
1
2

∫ +∞

−∞
dt
∫

dk
∫ dω

2π
kik jei(k·v−ω)tP(k, ω). (72)

Using the identity (16), we obtain

Dij = π
∫

dk
∫ dω

2π
kik jδ(k · v−ω)P(k, ω). (73)
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The time integration has given a δ-function which creates a resonance condition for
interaction. Integrating over the δ-function (resonance), we find that

Dij =
1
2

∫
dk kik jP(k, k · v). (74)

This is the general expression of the diffusion tensor of a test particle submitted to a
stochastic perturbation in a spatially homogeneous system with long-range interactions.
Since P(k, ω) > 0 (see Section 2.1.3), the diffusion tensor is positive definite. Using the
relation between the power spectrum of the total fluctuating potential and the spectral
auto-correlation function of the external perturbation (see Equation (26)), we obtain

Dij =
1
2

∫
dk kik j

Ĉ(k, k · v)
|ε(k, k · v)|2 . (75)

We thus recover the expressions from Equations (37) and (38) obtained from the
Klimontovich approach. Therefore, the Klimontovich approach and the Fokker–Planck
approach coincide.

2.2.4. Second Calculation of Dij

In order to compute the diffusion tensor, we can also proceed as follows. The
change in velocity of the test particle due to the total fluctuating potential is given by
(see Equation (51))

dv
dt

= −∇δΦtot(r, t). (76)

Integrating this equation between 0 and t, we obtain

∆v = −
∫ t

0
∇δΦtot(r(t′), t′) dt′

= −
∫ t

0
∇δΦtot(r + vt′, t′) dt′, (77)

where we have used the unperturbed equations of motion (63) in the second equality (this
accounts for the fact that the test particle follows a rectilinear trajectory at leading order).
Decomposing the total fluctuating potential δΦtot in Fourier modes and integrating over
time t′, we obtain

∆v = −
∫ t

0
dt′∇

∫
dk
∫ dω

2π
eik·(r+vt′)e−iωt′δΦ̂tot(k, ω)

= −
∫

dk
∫ dω

2π
ikeik·rδΦ̂tot(k, ω)

∫ t

0
dt′ ei(k·v−ω)t′

= −
∫

dk
∫ dω

2π
ikeik·rδΦ̂tot(k, ω)

ei(k·v−ω)t − 1
i(k · v−ω)

. (78)

Substituting Equation (78) into Equation (54), we find that

Dij = lim
t→+∞

1
2t

∫
dk
∫

dk′
∫ dω

2π

∫ dω′

2π
kik′je

i(k−k′)·r〈δΦ̂tot(k, ω)δΦ̂tot(k′, ω′)∗〉

× ei(k·v−ω)t − 1
i(k · v−ω)

e−i(k′ ·v−ω′)t − 1
−i(k′ · v−ω′)

. (79)

Introducing the power spectrum from Equation (25) into Equation (79) and carrying
out the integrals over k′ and ω′ we are left with

Dij = lim
t→+∞

1
2t

∫
dk
∫ dω

2π
kik j
|ei(k·v−ω)t − 1|2
(k · v−ω)2 P(k, ω). (80)
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This equation can also be directly obtained from Equation (64) with Equation (66)
by integrating over t′ and t′′. Taking the limit t → +∞ and using the identity (see,
e.g., Appendix E1 of [60])

lim
t→+∞

|eixt − 1|2
x2t

= 2πδ(x), (81)

we find that
Dij = π

∫
dk
∫ dω

2π
kik jδ(k · v−ω)P(k, ω). (82)

Integrating over the δ-function (resonance), we obtain

Dij =
1
2

∫
dk kik jP(k, k · v), (83)

which returns Equation (74). Then, using Equation (26), we obtain Equation (75).

Remark 7. If we do not take the limit t → +∞ in Equation (80), we obtain a time-dependent
diffusion tensor of the form

Dij(t) = π
∫

dk
∫ dω

2π
kik j∆(k · v−ω, t)P(k, ω) (84)

with the regularized function

∆(x, t) =
1

2πt
|eixt − 1|2

x2 =
1− cos(xt)

πtx2 . (85)

When t→ +∞, we can make the replacement ∆(x, t)→ δ(x).

2.2.5. Third Calculation of Dij

We can make the calculations of the previous section in a slightly different manner. In
Equation (77) we decompose the total fluctuating potential in Fourier modes in position
but not in time. In that case, we obtain

∆v = −
∫ t

0
dt′∇

∫
dk eik·(r+vt′)δΦ̂tot(k, t′)

= −
∫ t

0
dt′
∫

dk ikeik·(r+vt′)δΦ̂tot(k, t′). (86)

Substituting Equation (86) into Equation (54), we obtain

Dij = limt→+∞
1
2t
∫ t

0 dt′
∫ t

0 dt′′
∫

dkdk′kik′je
ik·(r+vt′)e−ik′ ·(r+vt′′)〈δΦ̂tot(k, t′)δΦ̂tot(k′, t′′)∗

〉
. (87)

Using the relation〈
δΦ̂tot(k, t)δΦ̂tot(k′, t′)∗

〉
= δ(k− k′)P(k, t− t′), (88)

where P(k, t) is the temporal inverse Fourier transform of P(k, ω), we can rewrite the
foregoing equation as

Dij = lim
t→+∞

1
2t

∫ t

0
dt′
∫ t

0
dt′′

∫
dk kik jeik·v(t′−t′′)P(k, t′ − t′′). (89)

Using the identity (67), we obtain

Dij = lim
t→+∞

1
t

∫ t

0
ds (t− s)

∫
dk kik jeik·vsP(k, s). (90)
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Assuming that P(k, s) decreases more rapidly than s−1, we find that

Dij =
∫ +∞

0
ds
∫

dk kik jeik·vsP(k, s). (91)

Making the change of variables s → −s and k → −k, and using the fact that
P(−k,−s) = P(k, s), we see that we can replace

∫ +∞
0 ds by (1/2)

∫ +∞
−∞ ds. Therefore,

Dij =
1
2

∫ +∞

−∞
ds
∫

dk kik jeik·vsP(k, s). (92)

Taking the inverse Fourier transform of P(k, s) we obtain

Dij =
1
2

∫
dk kik jP(k, k · v), (93)

which returns Equation (74). Then, using Equation (26), we obtain Equation (75). We
note that P(k, s) is complex while P(k, ω) is real. They satisfy the identities P(−k, s) =
P(k, s)∗ = P(k,−s) and P(k, ω) = P(k, ω)∗ = P(−k,−ω). We also note that the static
power spectrum is P(k) = P(k, 0) =

∫ dω
2π P(k, ω).

Remark 8. If we introduce the temporal Fourier transform of P(k, t) in Equation (89) we obtain

Dij = lim
t→+∞

1
2t

∫ t

0
dt′
∫ t

0
dt′′

∫
dk
∫ dω

2π
kik jeik·v(t′−t′′)e−iω(t′−t′′)P(k, ω), (94)

which is equivalent to Equation (64) with Equation (66). If we integrate over t′ and t′′, we recover
Equation (80).

2.3. Energy of Fluctuations

The energy of fluctuations

E =
1
2
〈δρtotδΦtot〉, (95)

where δρtot = δρ + ρe is the total perturbed density, can be calculated as follows. Decom-
positing the fluctuations of density and potential in Fourier modes, we obtain

E =
1
2

∫
dkdk′

∫ dω

2π

dω′

2π
ei(k·r−ωt)e−i(k′ ·r−ω′t)〈δρ̂tot(k, ω)δΦ̂tot(k′, ω′)∗〉. (96)

Using Equation (19) we can rewrite the foregoing equation as

E =
1
2

∫
dkdk′

∫ dω

2π

dω′

2π
ei(k·r−ωt)e−i(k′ ·r−ω′t) 1

(2π)dû(k)
〈δΦ̂tot(k, ω)δΦ̂tot(k′, ω′)∗〉. (97)

Introducing the power spectrum from Equation (25) and integrating over k′ and ω′,
we obtain

E =
1
2

∫
dk
∫ dω

2π

P(k, ω)

(2π)dû(k)
. (98)

Finally, using Equation (26), we can rewrite the energy of fluctuations as

E =
1
2

∫
dk
∫ dω

2π

Ĉ(k, ω)

(2π)dû(k)|ε(k, ω)|2
. (99)

Remark 9. In the gravitational case, the energy of fluctuations is negative since Ĉ(k, ω) > 0 and
û(k) < 0 in agreement with the relation E = − 1

8πG 〈(∇δΦtot)2〉 that can be deduced directly from
Equation (95) by using the Poisson equation ∆Φ = SdGρ. More generally, the energy is positive
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for repulsive potentials with û(k) > 0 (like plasmas) and negative for attractive potentials with
û(k) < 0 (like gravity).

2.4. Connection between the SDD Equation and the Multi-Species Lenard–Balescu Equation

In this section, we discuss the connection between the SDD Equation (36) with
Equation (38) and the multi-species Lenard–Balescu equation. The multi-species Lenard–
Balescu equation reads (see, e.g., [8,148])

∂ fa

∂t
= ∑

b
π(2π)d ∂

∂vi

∫
dkdv′ kik j

û(k)2

|ε(k, k · v)|2 δ
[
k · (v− v′)

]
×
(

mb
∂

∂vj
−ma

∂

∂v′j

)
fa(v, t) fb(v

′, t). (100)

This equation governs the evolution of the distribution function fa(v, t) of particles
of species a under the effects of “collisions” with particles of all species “b” (including the
particles of species a) with distribution function fb(v′, t). The dielectric function is given by
Equation (21) where f (v, t) denotes the total distribution function ∑b fb(v, t). The set of
Equations (100), in which all the distribution functions fa(v, t) evolve in a self-consistent
manner, is closed.

We now make the following approximations to simplify these equations. The particles
of mass ma with a distribution function fa(v, t) form our system. They will be called the
test particles. The particles of masses {mb}b 6=a with distribution functions { fb(v, t)}b 6=a
form the external—background—medium. They will be called the field particles. We
take into account the collisions induced by the field particles on the test particles but we
neglect the collisions induced by the test particles on the field particles and on themselves.
This approximation is valid for very light test particles ma � mb or, more precisely, in
the limit Na → +∞ with ma ∼ 1/Na. The distribution functions { fb(v, t)}b 6=a of the field
particles are either assumed to be fixed (bath) or evolve according to their own dynamics
(i.e., following equations that we do not write explicitly). Under these conditions, the
kinetic Equation (100) reduces to

∂ fa

∂t
= ∑

b 6=a
π(2π)d ∂

∂vi

∫
dkdv′ kikj

û(k)2

|ε(k, k · v)|2 δ
[
k · (v− v′)

](
mb

∂

∂vj

)
fa(v, t) fb(v

′). (101)

This equation can be interpreted as a Fokker–Planck equation. The diffusion arises
from the discrete distribution of the field particles which creates a fluctuating gravitational
force (Poisson shot noise) acting on the test particles. For that reason, the diffusion tensor
is proportional to the masses {mb} of the field particles. The diffusion tensor has no
contribution from particles of species a. The condition ma � mb justifies neglecting the
fluctuations induced by the test particles on themselves.25 On the other hand, the friction by
polarization vanishes (Fpol = 0). Indeed, since the mass ma of the test particles is small, the
test particles do not significantly perturb the distribution function of the medium, so there
is no friction by polarization (no retroaction).26 As a result, the mass ma of the particles of
species a does not appear in the kinetic Equation (101).

Equation (101) can be written as an SDD equation

∂ f
∂t

=
∂

∂vi

(
Dij[v, f ]

∂ f
∂vj

)
(102)

with a diffusion tensor

Dij[v, f ] = ∑
b

π(2π)d
∫

dkdv′ kik j
û(k)2

|ε(k, k · v)|2 δ
[
k · (v− v′)

]
mb fb(v

′), (103)



Universe 2023, 9, 68 20 of 53

where we have dropped the subscript a for clarity. One can show [136] that the expres-
sion (103) of the diffusion tensor is consistent with Equation (38) where

Ĉ(k, ω) = ∑
b
(2π)d+1û(k)2

∫
dv′ δ(ω− k · v′)mb fb(v

′) (104)

is the bare correlation function of the potential created by a discrete collection of field
particles of masses {mb}. To exactly recover the SDD Equation (36) with Equation (38),
we have to replace f (v, t) + ∑b fb(v) by f (v, t) in the dielectric function. This assumes
that the external medium—field particles—is non polarizable (i.e., collective effects can be
neglected) while our system—test particles—is polarizable (i.e., collective effects must be
taken into account).27 As we have already mentioned, the SDD Equation (102) is a nonlinear
diffusion equation involving a diffusion tensor which depends on the distribution function
of the system f (v, t) itself. This is therefore a complicated integrodifferential equation.
Combining Equations (26), (98) and (104) we obtain the dressed power spectrum

P(k, ω) = ∑
b
(2π)d+1 û(k)2

|ε(k, ω)|2
∫

dv′ δ(ω− k · v′)mb fb(v
′), (105)

the static power spectrum

P(k) = (2π)d ∑
b

∫
dv

û(k)2

|ε(k, k · v)|2 mb fb(v) = (2π)d ∑
b

ρbmbû(k)2

1 + (2π)dû(k)βρb
, (106)

and the energy of fluctuations

E =
1
2 ∑

b

∫
dk
∫

dv
û(k)

|ε(k, k · v)|2 mb fb(v) =
1
2 ∑

b

∫ mbρbû(k)
1 + (2π)dû(k)βρb

dk. (107)

The last equalities in Equations (106) and (107) are valid for the Maxwell–Boltzmann
distribution (see Appendix C of [119]).

Remark 10. This type of equations was first introduced and studied by Spitzer and Schwarzschild [95]
in an astrophysical context.28 These authors showed that the collisions of test particles with external
massive perturbers such as molecular clouds can considerably increase their diffusion and heating. A
recent discussion of this problem has been given in Appendix F of [135] where a self-similar solution
of the Spitzer–Schwarzschild equation is obtained.

3. Rotating Homogeneous Systems

We consider here a 3D homogeneous system of particles with long-range interactions
rotating with a constant angular velocity Ω. We assume that the mean field force is balanced
by the centrifugal force so that the system is in static equilibrium in the rotating frame.
We also assume that the system is submitted to a weak external stochastic perturbation
that slowly changes its velocity distribution function f (v, t). We wish to derive the SDD
equation in that context. Since the formalism is complicated and has been developed
elsewhere, we just give the main steps of the derivation and refer to earlier works [53,55,149]
for technical details. The fundamental equations of the quasilinear theory are

∂ f
∂t
− 2(Ω× v) · ∂ f

∂v
=

∂

∂v
· 〈δ f∇(δΦ + Φe)〉, (108)

∂δ f
∂t

+ v · ∂δ f
∂r
− 2(Ω× v) · ∂δ f

∂v
−∇(δΦ + Φe) ·

∂ f
∂v

= 0, (109)
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where 2Ω× v is the Coriolis force. We assume that f is isotropic in the plane perpendicular
to the axis of rotation Ω. Taking the Fourier transform of Equation (109), integrating over
the azimuthal angle φ, and averaging over this angle (see Ref. [53] for details), we obtain

δ f̂ (k, v, ω) =
ik · ∂ f

∂v
i(k · v−ω) + 2Ω∂φ

[
δΦ̂(k, ω) + Φ̂e(k, ω)

]
. (110)

In this equation, the notation

1
i(k · v−ω) + 2Ω∂φ

(111)

stands for the operator defined in Appendix A of [149]. Integrating Equation (110) over
v and using Equation (19), we find that the Fourier transform of the fluctuations of the
potential is related to the Fourier transform of the external stochastic potential by

δΦ̂(k, ω) =
1− ε(k, ω)

ε(k, ω)
Φ̂e(k, ω), (112)

where the dielectric function is defined by (see Appendix A of [149])

ε(k, ω) = 1− (2π)3û(k)
∫

dv
+∞

∑
n=−∞

J2
n(k⊥v⊥/2Ω)

(k · v)n −ω

(
k · ∂ f

∂v

)
n
. (113)

Following Wu [53,149], we have introduced the notations(
k · ∂ f

∂v

)
n
= kz

∂

∂vz
+

2nΩ
v⊥

∂

∂v⊥
(114)

and
(k · v)n = kzvz + 2nΩ. (115)

The Fourier transform of the total potential acting on a particle, δΦ̂tot(k, ω) = δΦ̂(k, ω)
+Φ̂e(k, ω), is therefore related to the Fourier transform of the external stochastic potential by

δΦ̂tot(k, ω) =
Φ̂e(k, ω)

ε(k, ω)
. (116)

We can use the foregoing expressions to compute the collision term appearing on the
right hand side of Equation (108). Introducing the notation

C[ f ] =
∂

∂v
· 〈δ f∇δΦtot〉, (117)

and decomposing the fluctuations of distribution function and potential in Fourier modes,
we obtain

C[ f ] = −i
∫

dk
∫ dω

2π

∫
dk′

∫ dω′

2π

(
k′ · ∂

∂v

)
ei(k·r−ωt)e−i(k′ ·r−ω′t)〈δ f̂ (k, v, ω)δΦ̂∗tot(k

′, ω′)〉. (118)

Using Equations (110) and (116), we obtain successively

C[ f ] = −i
∫

dk
∫ dω

2π

∫
dk′

∫ dω′

2π

(
k′ · ∂

∂v

)
ei(k−k′)·re−i(ω−ω′)t

×
ik · ∂ f

∂v
i(k · v−ω) + 2Ω∂φ

〈δΦ̂tot(k, ω)δΦ̂∗tot(k
′, ω′)〉 (119)
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and

C[ f ] = −i
∫

dk
∫ dω

2π

∫
dk′

∫ dω′

2π

(
k′ · ∂

∂v

)
ei(k−k′)·re−i(ω−ω′)t

×
ik · ∂ f

∂v
i(k · v−ω) + 2Ω∂φ

1
ε(k, ω)

1
ε(k′, ω′)∗

〈Φ̂e(k, ω)Φ̂e(k′, ω′)∗〉. (120)

Substituting Equation (24) into Equation (120), we find that

C[ f ] = −i
∫

dk
∫ dω

2π

(
k · ∂

∂v

)
ik · ∂ f

∂v
i(k · v−ω) + 2Ω∂φ

1
|ε(k, ω)|2 Ĉ(k, ω). (121)

Averaging this expression over the azimuthal angle φ and using Equation (42) of [53],
we get

C[ f ] = i
∫

dk
∫ dω

2π

+∞

∑
n=−∞

(
k · ∂

∂v

)
n

J2
n(k⊥v⊥/2Ω)

ω− (k · v)n

(
k · ∂ f

∂v

)
n

1
|ε(k, ω)|2 Ĉ(k, ω). (122)

Using the Landau prescription ω → ω + i0+ and the Sokhotski–Plemelj Formula (33),
we can replace 1/((k · v)n −ω− i0+) by +iπδ((k · v)n −ω). Accordingly,

C[ f ] = π
∫

dk
∫ dω

2π

+∞

∑
n=−∞

(
k · ∂

∂v

)
n

J2
n

(
k⊥v⊥

2Ω

)
δ(ω− (k · v)n)

(
k · ∂ f

∂v

)
n

Ĉ(k, ω)

|ε(k, ω)|2 . (123)

The integration over ω, which corresponds to a condition of resonance, is straightfor-
ward and leads to the final expression of the collision term

C[ f ] =
1
2

∫
dk

+∞

∑
n=−∞

(
k · ∂

∂v

)
n

J2
n

(
k⊥v⊥
2Ω

)
Ĉ(k, (k · v)n)

|ε(k, (k · v)n)|2

(
k · ∂ f

∂v

)
n
. (124)

In conclusion, the secular evolution of the mean distribution function of the particles
sourced by the external stochastic force is governed by a nonlinear diffusion equation of
the form

∂ f
∂t

=
∂

∂vi

(
Dij[ f , v]

∂ f
∂vj

)
, (125)

where Dij[ f , v] is a diffusion tensor whose components are

Dzz =
1
2

∫
dk

+∞

∑
n=−∞

k2
z J2

n

(
k⊥v⊥
2Ω

)
Ĉ(k, (k · v)n)

|ε(k, (k · v)n)|2
, (126)

D⊥⊥ =
1
2

∫
dk

+∞

∑
n=−∞

(
2nΩ
v⊥

)2
J2
n

(
k⊥v⊥
2Ω

)
Ĉ(k, (k · v)n)

|ε(k, (k · v)n)|2
, (127)

D⊥z = Dz⊥ =
1
2

∫
dk

+∞

∑
n=−∞

kz
2nΩ
v⊥

J2
n

(
k⊥v⊥
2Ω

)
Ĉ(k, (k · v)n)

|ε(k, (k · v)n)|2
. (128)

The SDD equation for a spatially homogeneous rotating system with long-range
interactions can be written as

∂ f
∂t

=
1
2

∫
dk

+∞

∑
n=−∞

(
k · ∂

∂v

)
n

J2
n

(
k⊥v⊥
2Ω

)
Ĉ(k, (k · v)n)

|ε(k, (k · v)n)|2

(
k · ∂ f

∂v

)
n
. (129)
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It can be compared to the multi-species Lenard–Balescu equation [53]

∂ fa

∂t
= π(2π)3 ∑

b

∫
dk

+∞

∑
n=−∞

+∞

∑
m=−∞

(
k · ∂

∂v

)
n

∫
dv′

û(k)2

|ε(k, (k · v)n)|2
δ
[
(k · v)n − (k · v′)m

]
×J2

n

(
k⊥v⊥

2Ω

)
J2
m

(
k⊥v′⊥

2Ω

)[
mb

(
k · ∂

∂v

)
n
−ma

(
k · ∂

∂v′

)
m

]
fa(v) fb(v

′). (130)

Taking the limit ma → 0 and proceeding as in Section 2.4, we obtain the SDD Equa-
tion (129) with a function Ĉ(k, ω) corresponding to the bare correlation function of the
potential created by a discrete collection of N field particles of masses {mb}:

Ĉ(k, ω) = π(2π)3 ∑
b

+∞

∑
m=−∞

∫
dv′û(k)2δ

[
ω− (k · v′)m

]
J2
m

(
k⊥v′⊥
2Ω

)
mb fb(v

′). (131)

4. Spatially Inhomogeneous Systems

We now consider a spatially inhomogeneous system of particles with long-range
interactions submitted to a weak external stochastic perturbation. We take the limit N →
+∞ with m ∼ 1/N in which the collisions between the particles can be neglected. For
sufficiently short times, the external perturbation can also be neglected. Therefore, the
initial stage of the system’s evolution is governed by the Vlasov equation (see Equations (8)
and (9)) involving only mean field effects. During this regime, the system generically
reaches a quasistationary (virialized) state as a result of a process of violent relaxation [5].
This is a stable steady state of the Vlasov equation. Then, on a longer timescale, the
system undergoes a slow evolution due to the effect of the external stochastic perturbation.
This slow evolution is described by the SDD equation. In order to deal with spatial
inhomogeneity, it is convenient to introduce angle-action variables (w, J) [46]. In a steady
state of the Vlasov equation, the particles move through a mean potential Φ(r) on orbits
characterized by isolating integrals J called the actions. These are adiabatic invariants.
By construction, the mean field Hamiltonian H of a particle in angle and action variables
depends only on the actions J that are constants of the motion: H = H(J). The conjugate
coordinates w are called the angles. The Hamilton equations become J̇ = −∂H/∂w = 0 and
ẇ = ∂H/∂J = Ω(J), where Ω(J) = ∂H/∂J is the angular frequency (pulsation) of the orbit
with action J. The unperturbed equations of motion of the particles are simply straight lines
in angle-action space traveled at constant action: J(t) = J and w(t) = w + Ω(J)t. One can
show that the distribution function of a perfectly relaxed collisionless system is a function
f = f (J) of the actions only (Jeans theorem) [2]. Such a distribution is a steady state of
the Vlasov equation. Because of the external stochastic perturbation29 the actions slowly
(secularly) drift from their initial values. This causes the particles to diffuse. As a result, the
distribution function f slowly evolves in time. If the perturbation is small the particles keep
their action J for at least several orbital times. On a long timescale they slowly drift from
one orbit of constant J to another. This is because there is a timescale separation between the
dynamical time tD which is the timescale during which the system readjusts itself to reach
a new steady state and the diffusion time which is the timescale over which the system
evolves under the effect of the external perturbation. Making an adiabatic approximation,
we can assume that f remains at any given time a function of the actions only, though
a function that changes slowly in time. Thus, we assume that the distribution function
is a function of the form f = f (J, t) which, at fixed secular time, only depends on the
actions according to the Jeans theorem. Therefore, the system evolves through a sequence
of quasistationary states that are steady states of the Vlasov equation, depending only on
the actions J, slowly changing in time as a result of the external stochastic perturbation.
The system is approximately in mechanical equilibrium at each stage of the dynamics but
the external perturbation makes it slowly diffuse in action space. Below, we derive the SDD
equation from the Klimontovich equation and from the Fokker–Planck equation.
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4.1. Derivation of the SDD Equation from the Klimontovich Equation
4.1.1. Quasilinear Theory and Bogoliubov Ansatz

For spatially inhomogeneous systems, the fundamental equations of the quasilinear
theory written in terms of angle-action variables30 are [59,99,104]

∂ f
∂t

=
∂

∂J
·
〈

δ f
∂

∂w
(δΦ + Φe)

〉
, (132)

∂δ f
∂t

+ Ω · ∂δ f
∂w
− ∂

∂w
(δΦ + Φe) ·

∂ f
∂J

= 0. (133)

In order to solve Equation (133) for the fluctuations, we resort to the Bogoliubov ansatz.
We assume that there exists a timescale separation between a slow and a fast dynamics and
we regard Ω(J) and f (J) in Equation (133) as “frozen” (independent of time) at the scale
of the fast dynamics.31 This amounts to neglecting the temporal variations of the mean
field when we consider the evolution of the fluctuations. This is possible when the mean
distribution function evolves on a secular timescale that is long compared to the dynamical
time (the time over which the correlations of the fluctuations have their essential support).
Since we ignore collisions, we can solve Equation (133) with Fourier transforms.32 The
Fourier transform of the fluctuations of the distribution function δ f (w, J, t) is defined by

δ f̂ (k, J, ω) =
∫ dw

(2π)d

∫ +∞

−∞
dt e−i(k·w−ωt)δ f (w, J, t) (134)

and its inverse Fourier transform is given by

δ f (w, J, t) = ∑
k

∫ dω

2π
ei(k·w−ωt)δ f̂ (k, J, ω). (135)

Similar expressions hold for the fluctuations of the potential δΦ(w, J, t) and for the
external potential Φe(w, J, t). Since the angles w are 2π-periodic, we have introduced
discrete Fourier expansions with respect to these variables. For future reference, we recall
the Fourier representation of the Dirac δ-function

δ(t) =
∫ +∞

−∞
e−iωt dω

2π
, δk,0 =

∫
e−ik·w dw

(2π)d . (136)

4.1.2. Dielectric Tensor

We are now ready to solve the equation for the fluctuations for a given external
perturbation. Taking the Fourier transform of Equation (133) in w and t, we obtain

δ f̂ (k, J, ω) =
k · ∂ f

∂J

k ·Ω−ω

[
δΦ̂(k, J, ω) + Φ̂e(k, J, ω)

]
. (137)

The fluctuations of the potential are related to the fluctuations of the density by
Equation (18). The coupled Equations (18) and (133) are difficult to solve because their
natural coordinates are different. The natural coordinates for solving the linearized Vlasov
equation are angle-action variables which make the solution by Fourier transform easy.
On the other hand, the natural coordinates for solving Equation (18) are the position
coordinates r. If we transform the fluctuating potential to angle-action variables, we obtain

δΦ̂(k, J, ω) = (2π)d ∑
k′

∫
dJ′Ak,k′(J, J′)δ f̂ (k′, J′, ω), (138)
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where Ak,k′(J, J′) is the Fourier transform of the potential of interaction in angle-action
variables [59]. If we substitute Equation (137) into Equation (138) we obtain a Fredholm
integral equation

δΦ̂(k, J, ω) = (2π)d ∑
k′

∫
dJ′Ak,k′(J, J′)

k′ · ∂ f ′
∂J′

k′ ·Ω′ −ω

[
δΦ̂(k′, J′, ω) + Φ̂e(k′, J′, ω)

]
, (139)

which determines δΦ̂(k, J, ω). However, this equation is complicated to solve explicitly
because of the summation on k′ and the integration over J′. In order to solve Equation (137)
with Equation (18), we follow Kalnajs’ matrix method [150]. We assume that the fluctuations
of density δρ(r, t) and potentials δΦ(r, t) and Φe(r, t) can be expanded on a complete
biorthonormal basis such that

δρ(r, t) = ∑α Aα(t)ρα(r), δΦ(r, t) = ∑α Aα(t)Φα(r), Φe(r, t) = ∑α Ae
α(t)Φα(r), (140)

where the functions ρα(r) and Φα(r) satisfy33

Φα(r) =
∫

u(|r− r′|)ρα(r′) dr′,
∫

ρα(r)Φα′(r)
∗ dr = −δαα′ . (141)

Multiplying the first relation in Equation (140) by Φ∗α(r), integrating over r, and using
Equation (141), we obtain

Aα(t) = −
∫

δρ(r, t)Φ∗α(r) dr. (142)

Substituting the relation

δρ(r, t) =
∫

δ f (r, v, t) dv =
∫

dv ∑
k

eik·wδ f̂ (k, J, t) (143)

into Equation (142), we find that

Aα(t) = −
∫

drdv ∑
k

eik·wδ f̂ (k, J, t)Φ∗α(r)

= −
∫

dwdJ ∑
k

eik·wδ f̂ (k, J, t)Φ∗α(w, J)

= −(2π)d
∫

dJ ∑
k

δ f̂ (k, J, t)Φ̂∗α(k, J), (144)

where we have use the fact that the transformation (r, v) → (w, J) is canonical so that
drdv = dwdJ. Taking the temporal Fourier transform of Equation (144), we obtain

Âα(ω) = −(2π)d
∫

dJ ∑
k

δ f̂ (k, J, ω)Φ̂∗α(k, J). (145)

Using Equations (137) and (140), we find that

Âα(ω) = −(2π)d
∫

dJ ∑
k

k · ∂ f
∂J

k ·Ω−ω

[
δΦ̂(k, J, ω) + Φ̂e(k, J, ω)

]
Φ̂∗α(k, J)

= −(2π)d
∫

dJ ∑
k

k · ∂ f
∂J

k ·Ω−ω ∑
α′

[
Âα′ (ω) + Âe

α′ (ω)
]
Φ̂α′ (k, J)Φ̂∗α(k, J). (146)

Introducing the dielectric tensor

εαα′(ω) = δαα′ + (2π)d
∫

dJ ∑
k

k · ∂ f
∂J

k ·Ω−ω
Φ̂α′(k, J)Φ̂∗α(k, J), (147)



Universe 2023, 9, 68 26 of 53

the foregoing equation can be rewritten as

Âα(ω) = ∑
α′

[
Âα′(ω) + Âe

α′(ω)
]
(δαα′ − εαα′(ω)). (148)

Solving this equation for Âα(ω), we obtain

Âα(ω) = ∑
α′

[
(ε−1)αα′(ω)− δαα′

]
Âe

α′(ω). (149)

Without external perturbation, the system would be described by the distribution
function f (J). The external perturbation Φe(w, J, t) polarizes the system and creates a small
change in the distribution function δ f (w, J, t) (see Equation (133)) producing in turn a weak
potential δΦ(w, J, t) (see Equation (18)). As a result, the total potential acting on a particle,
which is sometimes called the dressed or effective potential, is δΦtot(w, J, t) = Φe(w, J, t) +
δΦ(w, J, t). This is the sum of the external potential plus the potential fluctuation induced
by the system itself (i.e., the system’s own response). Equations (18) and (133) are coupled
together and written in terms of different variables. One manner to solve this loop is
to use a biorthonormal basis and Fourier transforms as we have shown above. Using
Equation (149), we find that the Fourier amplitudes Âtot

α (ω) = Âα(ω) + Âe
α(ω) of the

total fluctuating potential δΦtot = δΦ + Φe acting on a particle are related to the Fourier
amplitudes of the external stochastic potential Φe by34

Âtot
α (ω) = ∑

α′
(ε−1)αα′(ω)Âe

α′(ω). (150)

Although not explicitly written, we must use the Landau prescription ω → ω + i0+

in Equation (147). As a result, (ε−1)αα′(ω) is a complex tensor which plays the role of the
response function in plasma physics. It determines the response of the system Âtot

α (ω)
to an external perturbation Âe

α′(ω) through Equation (150). The dielectric tensor takes
into account the polarization of the medium caused by the self-interaction of the particles.
This corresponds to the so-called “collective effects”. Depending on the form of the self-
interaction and on the geometry of the system, the polarization cloud may amplify or
shield the action of the imposed external perturbation. Therefore, the action of the external
potential is modified by collective effects. This amounts to replacing the bare potential
Φ̂e(k, J, ω) by the dressed potential δΦ̂tot(k, J, ω) which is the potential Φ̂e(k, J, ω) dressed
by the polarization cloud. Without self-interaction, or if we neglect collective effects, we
just have δΦ̂tot(k, J, ω) = Φ̂e(k, J, ω), corresponding to ε = 1 and δΦ = 0.

Remark 11. The dielectric tensor (147) can be written as ε = 1−M where M is the polarization
tensor such that Â = MÂtot. On the other hand, R = ε−1 − 1 is the response tensor such that
Â = RÂe. Equation (150) may be written in matrix form as εÂtot = Âe. When Âe = 0 this
equation has nontrivial solutions only if det[ε(ω)] = 0. This is the dispersion relation which
determines the proper complex pulsations ω of the system associated with the distribution function
f (J). It can be used to study the (Vlasov) linear dynamical stability of the system. A zero of the
dispersion relation det[ε(ω)] = 0 for ωi > 0 signifies an unstable growing mode.

4.1.3. Power Spectrum

We assume that the time evolution of the perturbing potential is a stationary stochastic
process and write the auto-correlation function of its different components as

〈Ae
α(t)Ae

α′(t
′)∗〉 = Cαα′(t− t′). (151)
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The function Cαα′(t− t′) describes a possibly colored noise. The spectral auto-correlation
function of the components of the external stochastic potential is

〈Âe
α(ω)Âe

α′(ω
′)∗〉 = 2πδ(ω−ω′)Ĉαα′(ω), (152)

where Ĉαα′(ω) is the temporal Fourier transform of Cαα′(t− t′) (Wiener–Khinchin theorem).
The auto-correlation function of the external potential is

〈Φ̂e(k, J, t)Φ̂e(k, J, t′)∗〉 = C(k, J, t− t′), (153)

and its temporal Fourier transform is

〈Φ̂e(k, J, ω)Φ̂e(k, J, ω′)∗〉 = 2πδ(ω−ω′)Ĉ(k, J, ω). (154)

According to Equation (140) we have

〈Φ̂e(k, J, ω)Φ̂e(k, J, ω′)∗〉 = ∑
αα′
〈Âe

α(ω)Âe
α′(ω

′)∗〉Φ̂α(k, J)Φ̂α′(k, J)∗. (155)

Comparing Equations (152), (154) and (155) we find that

Ĉ(k, J, ω) = ∑
αα′

Φ̂α(k, J)Ĉαα′(ω)Φ̂α′(k, J)∗. (156)

Similarly, we write the spectral auto-correlation function of the components of the
total fluctuating potential as

〈Âtot
α (ω)Âtot

α′ (ω
′)∗〉 = 2πδ(ω−ω′)Pαα′(ω), (157)

where Pαα′(ω) is the power spectrum tensor. The auto-correlation function of the total
fluctuating potential in Fourier space is given by

〈δΦ̂tot(k, J, ω)δΦ̂tot(k, J, ω′)∗〉 = 2πδ(ω−ω′)P(k, J, ω), (158)

where P(k, J, ω) is the power spectrum. According to Equation (140) we have

〈δΦ̂tot(k, J, ω)δΦ̂tot(k, J, ω′)∗〉 = ∑
αα′
〈Âtot

α (ω)Âtot
α′ (ω

′)∗〉Φ̂α(k, J)Φ̂α′(k, J)∗. (159)

Comparing Equations (157)–(159) we find that

P(k, J, ω) = ∑
αα′

Φ̂α(k, J)Pαα′(ω)Φ̂α′(k, J)∗. (160)

On the other hand, using Equation (150), we obtain

〈Âtot
α (ω)Âtot

α′ (ω
′)∗〉 = ∑

α′′α′′′
ε−1

αα′′(ω)〈Âe
α′′(ω)Âe

α′′′(ω
′)∗〉ε−1

α′α′′′(ω
′)∗. (161)

Equations (152), (157) and (161) then yield

Pαα′(ω) =
[
ε−1Ĉ(ε−1)†

]
αα′

(ω). (162)

Substituting Equation (162) into Equation (160), we finally obtain

P(k, J, ω) = ∑
αα′

Φ̂α(k, J)
[
ε−1Ĉ(ε−1)†

]
αα′

(ω) Φ̂α′(k, J)∗, (163)

where we have used (ε−1)†
αα′ = (ε−1)∗α′α. This equation relates the power spectrum

P(k, J, ω) of the total fluctuating potential acting on the particles to the auto-correlation
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function Ĉαα′(ω) of the external stochastic potential. We note that Ĉαα′(ω), Ĉ(k, J, ω),
Pαα′(ω) and P(k, J, ω) are real and positive. The power spectrum P(k, J, ω) takes into
account collective effects through the dielectric tensor εαα′ . It can be seen as a dressed
correlation function. If we neglect collective effects (ε = 1) we obtain the bare power
spectrum (or the bare correlation function)

Pbare(k, J, ω) = ∑
αα′

Φ̂α(k, J)Ĉαα′(ω)Φ̂α′(k, J)∗ = Ĉ(k, J, ω). (164)

It can be directly obtained from Equations (154) and (158) with δΦ̂tot(k, J, ω) =
Φ̂e(k, J, ω).

4.1.4. SDD Equation

The basic equations governing the evolution of the mean distribution function f (J, t)
of a spatially inhomogeneous system of particles with long-range interactions forced by
an external perturbation are given by Equations (132) and (133). Introducing the total
fluctuating potential δΦtot = δΦ + Φe, we can rewrite Equation (132) as

∂ f
∂t

=
∂

∂J
·
〈

δ f
∂

∂w
δΦtot

〉
. (165)

Introducing the Fourier transforms of the fluctuations of distribution function and
potential, we obtain

∂ f
∂t = −i ∑k

∫ dω
2π ∑k′

∫ dω′
2π

(
k′ · ∂

∂J

)
ei(k·w−ωt)e−i(k′ ·w−ω′t)〈δ f̂ (k, J, ω)δΦ̂∗tot(k

′, J, ω′)〉. (166)

On the other hand, Equation (133) can be written in Fourier space as (see Equation (137))

δ f̂ (k, J, ω) =
k · ∂ f

∂J

k ·Ω−ω
δΦ̂tot(k, J, ω). (167)

Substituting Equation (167) into Equation (166), we obtain

∂ f
∂t

= −i ∑
k

∫ dω

2π ∑
k′

∫ dω′

2π

(
k′ · ∂

∂J

)
ei(k−k′)·we−i(ω−ω′)t

×
k · ∂ f

∂J

k ·Ω−ω
〈δΦ̂tot(k, J, ω)δΦ̂∗tot(k

′, J, ω′)〉. (168)

Since the mean distribution function f depends only on the action J, we can average
the collision term over the angle w. This brings a Kronecker factor δk,k′ which amounts to
taking k′ = k. Therefore,

∂ f
∂t = −i ∑k

∫ dω
2π

∫ dω′
2π

(
k · ∂

∂J

)
e−i(ω−ω′)t k· ∂ f

∂J
k·Ω−ω 〈δΦ̂tot(k, J, ω)δΦ̂∗tot(k, J, ω′)〉. (169)

Introducing the power spectrum from Equation (158) and performing the integration
over ω′, we find that

∂ f
∂t

= −i ∑
k

∫ dω

2π

(
k · ∂

∂J

) k · ∂ f
∂J

k ·Ω−ω
P(k, J, ω). (170)

Recalling the Landau prescription ω → ω + i0+ and using the Sokhotski–Plemelj
Formula (33), we can replace 1/(k ·Ω−ω− i0+) by +iπδ(k ·Ω−ω). Accordingly,

∂ f
∂t

= π ∑
k

∫ dω

2π

(
k · ∂

∂J

)
δ(k ·Ω−ω)P(k, J, ω)

(
k · ∂ f

∂J

)
. (171)
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Integrating over the δ-function (resonance), we obtain the kinetic equation

∂ f
∂t

=
1
2 ∑

k

(
k · ∂

∂J

)
P(k, J, k ·Ω)

(
k · ∂ f

∂J

)
. (172)

Therefore, for spatially inhomogeneous systems with long-range interactions, the
secular evolution of the mean distribution function f (J, t) of the particles sourced by an
external stochastic force is governed by a nonlinear diffusion equation of the form

∂ f
∂t

=
∂

∂Ji

(
Dij[ f , J]

∂ f
∂Jj

)
, (173)

with an anisotropic diffusion tensor

Dij[ f , J] =
1
2 ∑

k
kik jP(k, J, k ·Ω). (174)

This equation expresses the diffusion tensor in terms of the power spectrum of the
fluctuations at the resonances ω = k ·Ω(J).

Using Equation (163), we can express the diffusion tensor in terms of the correlation
tensor of the external perturbation as

Dij[ f , J] =
1
2 ∑

k
∑
αα′

kik jΦ̂α(k, J)
[
ε−1Ĉ(ε−1)†

]
αα′

(k ·Ω(J))Φ̂α′(k, J)∗. (175)

The diffusion tensor depends on the spectral auto-correlation tensor of the external
perturbation Ĉαα′(ω) and on the inverse dielectric tensor ε−1(ω) both evaluated at the
resonance frequencies ω = k ·Ω(J).35 As a result, the diffusion tensor Dij[ f , J] depends
not only on the action J but is also a functional of the distribution function f (J, t) itself
through the dielectric tensor εαα′(k ·Ω(J)) defined by Equation (147). It also depends
implicitly on f through the orbital frequencies Ω(J). Equation (173) with the diffusion
tensor from Equation (175) is therefore a complicated integrodifferential equation called the
inhomogeneous SDD equation. In the spatially homogeneous case, we recover Equation (36)
with Equation (38).

When collective effects are neglected, i.e., when we make ε = 1 in Equation (175) and
use Equation (156), or replace P(k, J, k ·Ω) by Pbare(k, J, k ·Ω) (given by Equation (164))
in Equation (174), the diffusion tensor reduces to36

Dij(J) =
1
2 ∑

k
kik jĈ(k, J, k ·Ω(J)). (176)

In that case, it depends only on J and Ω(J). Equation (173) with Equation (176) is
called the inhomogeneous SBD equation.

4.1.5. Properties of the SDD Equation

Some general properties of the inhomogeneous SDD Equation (173) can be given.
First of all, the total mass M =

∫
f dJ of the system is conserved since the right hand

side of Equation (173) is the divergence of a current in action space. By contrast, the
energy of the system is not conserved, contrary to the case of the inhomogeneous Lenard–
Balescu equation [58,59], since the system is forced by an external medium. Taking the time
derivative of the energy

E =
∫

f H(J) dv, (177)
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using Equation (173), and integrating by parts, we obtain

Ė = −
∫

Dij[ f , J]
∂ f
∂Jj

Ωi dJ. (178)

In general, Ė has not a definite sign. However, when f = f (H) with f ′(H) ≤ 0, we
obtain Ė = −

∫
f ′(H)DijΩiΩj dJ ≥ 0 (since DijΩiΩj ≥ 0) so that energy is injected in the

system. Finally, introducing the H-functions

S = −
∫

C( f ) dJ, (179)

where C( f ) is any convex function, we obtain

Ṡ =
∫

C′′( f )
∂ f
∂Ji

Dij[ f , J]
∂ f
∂Jj

dJ. (180)

Because of the convexity condition C′′ ≥ 0 and the fact that the quadratic form xiDijxj is
definite positive (see Section 4.1.4), we find that Ṡ ≥ 0. Therefore, all the H-functions increase
monotonically with time. This is different from the case of the inhomogeneous Lenard–Balescu
equation where only the Boltzmann entropy increases monotonically [58,59].

If we heuristically introduce a dissipative term in the inhomogeneous SDD equation
by analogy with the inhomogeneous Kramers equation (see Section 3.6 of [59]), we obtain
an equation of the form

∂ f
∂t

=
∂

∂Ji

(
Dij[ f , J]

∂ f
∂Jj

+ ξ f Ωi(J)

)
, (181)

where ξ > 0 is the friction coefficient. Here, Ω(J) = ∂H/∂J is either a given external “force”
or the pulsation generated by the distribution function f (J, t) itself in a self-consistent
manner. The general behavior of this nonlinear equation is difficult to predict. It may relax
towards a non-Boltzmannian steady state determined by the equation

Dij[ f , J]
∂ f
∂Jj

+ ξ f Ωi(J) = 0, (182)

or exhibit a complicated (e.g., periodic) dynamics. Since the diffusion tensor is a functional
of f , the nonlinear SDD equation presents a rich and complex behavior.

4.1.6. Stochastic SDD Equation

The SDD Equation (181), which is a deterministic partial differential equation, de-
scribes the evolution of the mean distribution function f (J, t). If we take fluctuations into
account, by analogy with the results presented in [124], we expect that the mesoscopic
distribution function f (J, t) will satisfy a stochastic partial differential equation of the form

∂ f
∂t

=
∂

∂Ji

(
Dij[ f , J]

∂ f
∂Jj

+ ξ f Ωi(J)

)
+ ζ(J, t), (183)

where ζ(J, t) is a noise term with zero mean that generally depends on f (J, t). When
Dij = Dδij is constant and isotropic and when the fluctuation–dissipation theorem is
fulfilled so that ξ = Dβm, as in the case of Brownian particles with long-range interactions,
the noise term is given by [124]

ζ(J, t) =
∂

∂J
·
(√

2Dm f Q(J, t)
)

, (184)



Universe 2023, 9, 68 31 of 53

where Q(J, t) is a Gaussian white noise satisfying 〈Qi(J, t)〉 = 0 and 〈Qi(J, t)Qj(J′, t′)〉 =
δijδ(J− J′)δ(t− t′). This expression can be obtained from an adaptation of the theory of fluc-
tuating hydrodynamics [124]. In that case, the stochastic partial differential equation reads

∂ f
∂t

=
∂

∂J
·
[

D

(
∂ f
∂J

+ βm f Ω(J)

)]
+

∂

∂J
·
(√

2Dm f Q(J, t)
)

, (185)

and the deterministic equation for the mean distribution function (i.e., Equation (185) with-
out the noise term) relaxes towards the Boltzmann distribution f = Ae−βmH(J). When D[ f ]
is a functional of f , the noise term may be more complicated (see note 19). When the deter-
ministic Equation (181) admits several equilibrium states, the noise term in Equation (183)
can trigger random transitions from one state to the other (see, e.g., [128,129]).

Remark 12. We may alternatively consider a stochastic partial differential equation of the form

∂ f
∂t

=
∂

∂Ji

(
Dij[ f , J]

∂ f
∂Jj

)
− ν f + ζ(J, t), (186)

where −ν f is a linear damping term with 0 < ν� 1. The stationary solutions of the corresponding
deterministic equation (Equation (186) with ζ = 0) are determined by

∂

∂Ji

(
Dij[ f , J]

∂ f
∂Jj

)
− ν f = 0. (187)

Since Dij[ f ] is a functional of f , Equation (187) is a very nonlinear equation which admits
nontrivial solutions.

4.2. Derivation of the SDD Equation from the Fokker–Planck Equation

In this section, we derive the SDD equation directly from the Fokker–Planck equation.
We follow an approach similar to the one developed in Section 3 of [59] to derive the
inhomogeneous Lenard–Balescu equation.

4.2.1. Fokker–Planck Equation

Let us consider the evolution of a test particle of mass m moving in a spatially inho-
mogeneous medium and experiencing a stochastic perturbation Φe(r, t). The equations of
motion of the test particle, written with angle-action variables, are

dw
dt

= Ω(J) +
∂δΦtot

∂J
(w, J, t),

dJ
dt

= −∂δΦtot

∂w
(w, J, t), (188)

where δΦtot(w, J, t) is the total fluctuating potential acting on the particle. They can be
written in Hamiltonian form as ẇ = ∂(H + δHtot)/∂J and J̇ = −∂(H + δHtot)/∂w, where
H is the mean Hamiltonian and δHtot is the total fluctuating Hamiltonian. At leading order,
the test particle moves on an orbit characterized by a constant action J and a pulsation
Ω(J) = ∂H/∂J but it also experiences a small stochastic perturbation δΦtot = Φe + δΦ
which is equal to the external potential Φe plus the fluctuating potential δΦ produced by
the system itself (collective effects). Equations (188) can be formally integrated into

w(t) = w +
∫ t

0
Ω(J(t′)) dt′ +

∫ t

0

∂δΦtot

∂J
(w(t′), J(t′), t′) dt′, (189)

J(t) = J−
∫ t

0

∂δΦtot

∂w
(w(t′), J(t′), t′) dt′, (190)

where we have assumed that, initially, the test particle has an angle w and an action J.
Since the fluctuations δΦtot of the potential are small, the changes in the action of the test
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particle are also small. On the other hand, the fluctuation time is short with respect to the
evolution time of the distribution function. As a result, the dynamics of the test particle can
be represented by a stochastic process governed by a Fokker–Planck equation [34,112]. The
Fokker–Planck equation can be derived from the Master equation by using the Kramers–
Moyal [110,111] expansion truncated at the level of the second moments of the increment
in action. If we denote by f (J, t) the probability density that the test particle has an action J
at time t, the general form of this equation is

∂ f
∂t

=
∂2

∂Ji∂Jj

(
Dij f

)
− ∂

∂Ji

(
f Ftot

i
)
. (191)

The diffusion tensor and the friction force are defined by

Dij(J) = lim
t→+∞

1
2t
〈(Ji(t)− Ji)(Jj(t)− Jj)〉 =

〈∆Ji∆Jj〉
2∆t

, (192)

Ftot
i (J) = lim

t→+∞

1
t
〈Ji(t)− Ji〉 =

〈∆Ji〉
∆t

. (193)

In writing these limits, we have implicitly assumed that the time t is long compared to
the fluctuation time but short compared to the evolution time of the distribution function.

As shown in our previous paper [59], it is relevant to rewrite the Fokker–Planck
equation in the alternative form

∂ f
∂t

=
∂

∂Ji

(
Dij

∂ f
∂Jj
− f Fpol

i

)
. (194)

The total friction can be written as

Ftot
i = Fpol

i +
∂Dij

∂Jj
, (195)

where Fpol is the friction by polarization (see Section 3.3 of [59]) while the second term is
due to the variation of the diffusion tensor with J (see Section 3.4 of [59]). As explained
in [8,23,59,136] in the context of the Lenard–Balescu equation, the friction by polarization
Fpol arises from the retroaction (response) of the system to the perturbation caused by the
test particle, just like in a polarization process. It represents, however, only one component
of the dynamical friction Ftot experienced by the test particle, the other component being
∂jDij.

Remark 13. The two expressions (191) and (194) of the Fokker–Planck equation have their own
interest. The expression (191) where the diffusion tensor is placed after the second derivative
∂2(DP) involves the total friction Ftot and the expression (194) where the diffusion tensor is placed
between the derivatives ∂D∂P isolates the friction by polarization Fpol. It is shown in [59] that this
second form is directly related to the inhomogeneous Lenard–Balescu equation. This is also the form
corresponding to the inhomogeneous SDD Equation (173). It has therefore a clear physical meaning.

4.2.2. Absence of friction by polarization

In the limit N → +∞ with m ∼ 1/N where the collisions between the particles are
negligible, the friction by polarization (which is proportional to m [59]) vanishes

Fpol = 0. (196)
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Indeed, the perturbation on the system caused by the test particle is negligible. In that
case, the Fokker–Planck Equation (194) reduces to

∂ f
∂t

=
∂

∂Ji

(
Dij

∂ f
∂Jj

)
. (197)

We note that, in Equation (197), the diffusion tensor is “sandwiched” between the two
derivatives ∂/∂J in agreement with Equation (173). As mentioned previously, this is not
the usual form of the Fokker–Planck equation which is given by Equation (191). Therefore,
the test particle experiences a friction [see Equation (195)]

Ftot
i =

∂Dij

∂Jj
, (198)

arising from the inhomogeneity of the diffusion tensor.37 Using Equations (192) and (193),
this relation can be written as

〈∆Ji〉
∆t

=
1
2

∂

∂Jj

〈∆Ji∆Jj〉
∆t

. (199)

Remark 14. The relation (199) was first derived by Binney and Lacey [94] (see their Equation
(3.10)) from general considerations (see their Appendix A). As a result, they obtained the diffusion
Equation (197) where the diffusion tensor is placed between the two action derivatives. They
computed the diffusion tensor Dij but did not take into account collective effects. Weinberg [99]
independently considered the same problem. He computed the diffusion tensor Dij and the friction
force Ftot by taking collective effects into account but did not notice that they satisfy the relation
from Equation (198). As a result, he wrote the Fokker–Planck equation under the general form of
Equation (191) but did not obtain the simpler form of Equation (197) resulting from Equation (199).

4.2.3. First Calculation of Dij

We now calculate the diffusion tensor from Equation (192) following the approach
developed in Section 3.2 of [59]. According to Equation (188) the increment in action of the
test particle is

∆J = −
∫ t

0

∂δΦtot

∂w
(w(t′), J(t′), t′) dt′. (200)

Substituting Equation (200) into Equation (192) and assuming that the correlations of
the fluctuating force persist for a time less than the time for the trajectory of the test particle
to be much altered, we can make a linear trajectory approximation in angle-action space
(i.e., we assume that the test particle follows an unperturbed orbit when calculating the
dynamics of the fluctuations)

w(t′) = w + Ωt′, J(t′) = J, (201)

and write

Dij = lim
t→+∞

1
2t

∫ t

0
dt′
∫ t

0
dt′′
〈

∂δΦtot

∂wi
(w + Ωt′, J, t′)

∂δΦtot

∂wj
(w + Ωt′′, J, t′′)

〉
. (202)

Introducing the Fourier transform of the total fluctuating potential, we obtain〈
∂δΦtot

∂wi
(w + Ωt′, J, t′)

∂δΦtot

∂wj
(w + Ωt′′, J, t′′)

〉
= ∑

k

∫ dω

2π ∑
k′

∫ dω′

2π
kik′j

×eik·(w+Ωt′)e−iωt′ e−ik′ ·(w+Ωt′′)eiω′t′′〈δΦ̂tot(k, J, ω)δΦ̂tot(k′, J, ω′)∗〉. (203)
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Since the distribution function depends only on the action, we can average the diffu-
sion tensor over w. This brings a Kronecker factor δk,k′ which amounts to taking k′ = k.
Then, substituting Equation (158) into Equation (203), and carrying out the integrals over
ω′, we end up with the result〈

∂δΦtot
∂wi

(w + Ωt′, J, t′) ∂δΦtot
∂wj

(w + Ωt′′, J, t′′)
〉
= ∑k

∫ dω
2π kik jei(k·Ω−ω)(t′−t′′)P(k, J, ω). (204)

This expression shows that the correlation function appearing in Equation (202) de-
pends only on the difference of times s = t′ − t′′. Using the identity (67) and assuming that
the auto-correlation function of the total fluctuating force f (s) decreases more rapidly than
s−1, we find for t→ +∞ that38

Dij =
∫ +∞

0

〈
∂δΦtot

∂wi
(w, J, 0)

∂δΦtot

∂wj
(w + Ωs, J, s)

〉
ds. (205)

Therefore, as in the theory of Brownian motion [34,112,138–140], turbulent fluids [141],
plasma physics [15,16,22,49,142], and stellar dynamics [8,31,137,143–147], the diffusion
tensor of the test particle is equal to the integral of the temporal auto-correlation function
〈Fi(0)Fj(t)〉 of the fluctuating force acting on it:

Dij =
∫ +∞

0
〈Fi(0)Fj(t)〉 dt. (206)

Replacing the auto-correlation function by its expression from Equation (204), which
can be written as

〈Fi(0)Fj(t)〉 = ∑
k

∫ dω

2π
kik je−i(k·Ω−ω)tP(k, J, ω), (207)

we obtain

Dij =
∫ +∞

0
dt ∑

k

∫ dω

2π
kik je−i(k·Ω−ω)tP(k, J, ω). (208)

Making the change of variables t → −t, k → −k and ω → −ω, and using the fact
that P(−k, J,−ω) = P(k, J, ω), we see that we can replace

∫ +∞
0 dt by (1/2)

∫ +∞
−∞ dt in

Equation (208). As a result,

Dij =
1
2

∫ +∞

−∞
dt ∑

k

∫ dω

2π
kik je−i(k·Ω−ω)tP(k, J, ω). (209)

Using the identity (136), we obtain

Dij = π ∑
k

∫ dω

2π
kik jδ(k ·Ω−ω)P(k, J, ω). (210)

The time integration has given a δ-function which creates a resonance condition for
interaction. Integrating over the δ-function (resonance), we arrive at the following equation

Dij =
1
2 ∑

k
kik jP(k, J, k ·Ω(J)). (211)

This is the general expression of the diffusion tensor of a test particle submitted to a
stochastic perturbation in a spatially inhomogeneous system with long-range interactions.
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Using the relation between the power spectrum and the correlation function of the external
perturbation (see Equation (163)), we obtain

Dij[ f , J] =
1
2 ∑

k
∑
αα′

kik jΦ̂α(k, J)
[
ε−1Ĉ(ε−1)†

]
αα′

(k ·Ω(J))Φ̂α′(k, J)∗. (212)

We thus recover the expressions from Equations (174) and (175) obtained from the
Klimontovich approach. Therefore, the Klimontovich approach and the Fokker–Planck
approach coincide.

4.2.4. Second Calculation of Dij

In order to compute the diffusion tensor, we can also proceed as follows. The change in
action of the test particle due to the total fluctuating potential is given by see (Equation (188))

dJ
dt

= −∂δΦtot

∂w
(r(w, J), t). (213)

Integrating this equation between 0 and t, we obtain

∆J = −
∫ t

0

∂δΦtot

∂w
(w(t′), J(t′), t′) dt′

= −
∫ t

0

∂δΦtot

∂w
(w + Ωt′, J, t′) dt′, (214)

where we have used the unperturbed equations of motion (201) in the second equation
(this accounts for the fact that the test particle follows the mean field trajectory at leading
order). Decomposing the potential in Fourier modes, we obtain

∆J = −
∫ t

0
dt′

∂

∂w ∑
k

∫ dω

2π
eik·(w+Ωt′)e−iωt′δΦ̂tot(k, J, ω)

= −∑
k

∫ dω

2π
ikeik·wδΦ̂tot(k, J, ω)

∫ t

0
ei(k·Ω−ω)t′ dt′

= −∑
k

∫ dω

2π
ikeik·wδΦ̂tot(k, J, ω)

ei(k·Ω−ω)t − 1
i(k ·Ω−ω)

. (215)

Substituting Equation (215) into Equation (192) and averaging over w, we find that

Dij = lim
t→+∞

1
2t

∫ dw
(2π)d ∑

kk′

∫ dω

2π

∫ dω′

2π
kik′je

i(k−k′)·w

× 〈δΦ̂tot(k, J, ω)δΦ̂tot(k′, J, ω′)∗〉 e
i(k·Ω−ω)t − 1
i(k ·Ω−ω)

e−i(k′ ·Ω−ω′)t − 1
−i(k′ ·Ω−ω′)

. (216)

Performing the integral over w and the sum over k′, we obtain

Dij = lim
t→+∞

1
2t ∑

k

∫ dω

2π

∫ dω′

2π
kik j〈δΦ̂tot(k, J, ω)δΦ̂tot(k, J, ω′)∗〉

× ei(k·Ω−ω)t − 1
i(k ·Ω−ω)

e−i(k·Ω−ω′)t − 1
−i(k ·Ω−ω′)

. (217)

Introducing the power spectrum from Equation (158), the foregoing equation can be
rewritten as

Dij = lim
t→+∞

1
2t ∑

k

∫ dω

2π
kik jP(k, J, ω)

|ei(k·Ω−ω)t − 1|2
(k ·Ω−ω)2 . (218)
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This equation can also be directly obtained from Equation (202) with Equation (204) by
integrating over t′ and t′′. Taking the limit t→ +∞ and using the identity (81) we find that

Dij = π ∑
k

∫ dω

2π
kik jP(k, J, ω)δ(k ·Ω−ω). (219)

Integrating over the δ-function (resonance), we obtain

Dij =
1
2 ∑

k
kik jP(k, J, k ·Ω), (220)

which returns Equation (211). Then, using Equation (163), we obtain Equation (212).

Remark 15. If we do not take the limit t → +∞ in Equation (218), we obtain a time-dependent
diffusion tensor of the form

Dij(t) = π ∑
k

∫ dω

2π
kik jP(k, J, ω)∆(k ·Ω−ω, t) (221)

with the regularized function (85).

4.2.5. Third Calculation of Dij

We can make the calculations of the previous section in a slightly different manner. In
Equation (214) we decompose the total fluctuating potential in Fourier modes in angle but
not in time. In that case, we obtain

∆J = −
∫ t

0
dt′

∂

∂w ∑
k

eik·(w+Ωt′)δΦ̂tot(k, J, t′)

= −
∫ t

0
dt′ ∑

k
ikeik·(w+Ωt′)δΦ̂tot(k, J, t′). (222)

Substituting Equation (222) into Equation (192), we obtain

Dij = lim
t→+∞

1
2t

∫ t

0
dt′
∫ t

0
dt′′ ∑

kk′
kik′je

ik·(w+Ωt′)e−ik′ ·(w+Ωt′′)〈δΦ̂tot(k, J, t′)δΦ̂tot(k′, J, t′′)∗
〉
. (223)

Since the mean distribution function f depends only on the action J, we can average
Dij over the angle w. This amounts to taking k′ = k, yielding

Dij = lim
t→+∞

1
2t

∫ t

0
dt′
∫ t

0
dt′′ ∑

k
kik jeik·Ω(t′−t′′)〈δΦ̂tot(k, J, t′)δΦ̂tot(k, J, t′′)∗

〉
. (224)

Using the relation〈
δΦ̂tot(k, J, t)δΦ̂tot(k, J, t′)∗

〉
= P(k, J, t− t′), (225)

where P(k, J, t) is the temporal inverse Fourier transform of P(k, J, ω), we can rewrite the
foregoing equation as

Dij = lim
t→+∞

1
2t

∫ t

0
dt′
∫ t

0
dt′′ ∑

k
kik jeik·Ω(t′−t′′)P(k, J, t′ − t′′). (226)

Using the identity (67), we obtain

Dij = lim
t→+∞

1
t

∫ t

0
ds (t− s)∑

k
kik jeik·ΩsP(k, J, s). (227)
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Assuming that P(k, J, s) decreases more rapidly than s−1, we find that

Dij =
∫ +∞

0
ds ∑

k
kik jeik·ΩsP(k, J, s). (228)

Making the change of variables s → −s and k → −k, and using the fact that
P(−k, J,−s) = P(k, J, s), we see that we can replace

∫ +∞
0 ds by (1/2)

∫ +∞
−∞ ds. Therefore,

Dij =
1
2

∫ +∞

−∞
ds ∑

k
kik jeik·ΩsP(k, J, s). (229)

Taking the inverse Fourier transform of P(k, J, s) we obtain

Dij =
1
2 ∑

k
kik jP(k, J, k ·Ω), (230)

which returns Equation (211). Then, using Equation (163), we obtain Equation (212).
We note that P(k, J, s) is complex while P(k, J, ω) is real. They satisfy the identities
P(−k, J, s) = P(k, J, s)∗ = P(k, J,−s) and P(k, J, ω) = P(k, J, ω)∗ = P(−k, J,−ω). We
also note that the static power spectrum is P(k, J) = P(k, J, 0) =

∫ dω
2π P(k, J, ω).

Remark 16. If we introduce the temporal Fourier transform of P(k, J, t) in Equation (226)
we obtain

Dij = lim
t→+∞

1
2t

∫ t

0
dt′
∫ t

0
dt′′ ∑

k

∫ dω

2π
kik jeik·Ω(t′−t′′)e−iω(t′−t′′)P(k, J, ω), (231)

which is equivalent to Equation (202) with Equation (204). If we integrate over t′ and t′′, we recover
Equation (218).

4.3. Energy of Fluctuations

The energy of fluctuations

E =
1
2

∫
〈δρtotδΦtot〉 dr, (232)

where δρtot = δρ + ρe is the total perturbed density, can be calculated as follows. De-
compositing the fluctuations of density and potential on the biorthonormal basis, using
Equation (140), we obtain

E =
1
2 ∑

αα′
〈Atot

α (t)Atot
α′ (t)

∗〉
∫

ρα(r)Φ∗α′(r) dr. (233)

Using the orthonormalization condition from Equation (141), we find that

E = −1
2 ∑

α

〈|Atot
α (t)|2〉. (234)

Decomposing the amplitudes in temporal Fourier modes, we can rewrite the foregoing
equation as

E = −1
2 ∑

α

∫ dω

2π

dω′

2π
e−iωteiω′t〈Âtot

α (ω)Âtot
α (ω′)∗〉. (235)

Introducing the power spectrum tensor from Equation (157) and integrating over ω′,
we obtain

E = −1
2 ∑

α

∫ dω

2π
Pαα(ω). (236)
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Finally, using Equation (162), we can rewrite the energy of fluctuations as

E = −1
2 ∑

α

∫ dω

2π

[
ε−1Ĉ(ε−1)†

]
αα
(ω). (237)

This is the proper generalization of Equation (99) to spatially inhomogeneous systems.

4.4. Connection between the SDD Equation and the Multi-Species Lenard–Balescu Equation

We can readily adapt to the case of spatially inhomogeneous systems the discus-
sion given in Section 2.4 concerning the connection between the SDD equation and the
multi-species Lenard–Balescu equation. The multi-species inhomogeneous Lenard–Balescu
equation reads [60,136]

∂ fa

∂t
= π(2π)d ∂

∂J
·∑

b
∑
k,k′

∫
dJ′ k |Ad

k,k′(J, J′, k ·Ω)|2δ(k ·Ω− k′ ·Ω′)

×
(

mb f ′bk · ∂ fa

∂J
−ma fak′ ·

∂ f ′b
∂J′

)
, (238)

where f ′ stands for f (J′), Ω′ stands for Ω(J′) and Ad
k,k′(J, J′, ω) is the Fourier transform of

the dressed potential of interaction in angle-action variables defined by39

Ad
k,k′(J, J′, ω) = −∑

αα′
Φ̂α(k, J)(ε−1)αα′(ω)Φ̂∗α′(k

′, J′). (239)

Let us focus on the species of particles of mass ma (test particles). We take into account
the collisions induced by the field particles of masses {mb}b 6=a on the test particles but we
neglect the collisions induced by the test particles on the field particles and on themselves.
This approximation is valid for very light test particles ma � mb or, more precisely, in
the limit Na → +∞ with ma ∼ 1/Na. In that case, the inhomogeneous Lenard–Balescu
Equation (238) reduces to

∂ fa

∂t
= π(2π)d ∂

∂J
· ∑

b 6=a
∑
k,k′

∫
dJ′ k |Ad

k,k′ (J, J′, k ·Ω)|2δ(k ·Ω− k′ ·Ω′)
(

mb f ′bk · ∂ fa

∂J

)
. (240)

We note that the friction by polarization vanishes (Fpol = 0) and that the diffusion
tensor has no contribution from particles of species a. As a result, the mass ma of the
particles of species a does not appear anymore in the kinetic equation.

Equation (240) can be written as an inhomogeneous SDD equation

∂ f
∂t

=
∂

∂Ji

(
Dij[ f , J]

∂ f
∂Jj

)
(241)

with a diffusion tensor

Dij[ f , J] = π(2π)d ∑
b

∑
k,k′

∫
dJ′ kik j |Ad

k,k′(J, J′, k ·Ω)|2δ(k ·Ω− k′ ·Ω′)mb f ′b, (242)

where we have dropped the subscript a for clarity. One can show [136] that the expres-
sion (242) of the diffusion tensor is consistent with Equation (175) where

Ĉαα′(ω) = (2π)d+1 ∑
b

mb ∑
k

∫
δ(ω− k ·Ω)Φ̂∗α(k, J)Φ̂α′(k, J) fb(J) dJ (243)
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is the bare correlation function of the potential created by a discrete collection of field
particles of masses {mb}. Combining Equations (160), (162), (236) and (243) we obtain the
dressed power spectrum

Pαα′ (ω) = (2π)d+1 ∑
b

mb ∑
k

∫
δ(ω− k ·Ω)

[
ε−1(ω)Φ̂∗(k, J)

]
α

[
ε−1(ω)∗Φ̂(k, J)

]
α′

fb(J) dJ, (244)

P(k, J, ω) = (2π)d+1 ∑
b

mb ∑
k′

∫
δ(ω− k′ ·Ω′)|Ad

k,k′(J, J′, ω)|2 fb(J
′) dJ′, (245)

the static power spectrum

Pαα′ = (2π)d ∑
b

mb ∑
k

∫ [
ε−1(k ·Ω)Φ̂∗(k, J)

]
α

[
ε−1(k ·Ω)∗Φ̂(k, J)

]
α′

fb(J) dJ, (246)

P(k, J) = (2π)d ∑
b

mb ∑
k′

∫
dJ′ |Ad

k,k′(J, J′, k′ ·Ω′)|2 fb(J
′), (247)

and the energy of fluctuations

E = −1
2
(2π)d ∑

b
mb ∑

k

∫
|ε−1(k ·Ω)Φ̂∗(k, J)|2 fb(J) dJ, (248)

where |ε−1(k ·Ω)Φ̂∗(k, J)|2 = ∑α[ε
−1(k ·Ω)Φ̂∗(k, J)]α[ε−1(k ·Ω)∗Φ̂(k, J)]α. If we neglect

collective effects, the energy of fluctuations can be written as

Ebare =
1
2
(2π)d ∑

b
mb ∑

k

∫
Ak,k(J, J) fb(J) dJ. (249)

5. Derivation of the SDD Equation in Physical Space
5.1. SDD Equation

In this section, we derive the SDD equation in physical space without using Fourier
transforms. This formal derivation provides some insight on the physical structure of
this equation. We consider a possibly spatially inhomogeneous system of particles with
long-range interactions submitted to an external stochastic perturbation Φe(r, t). Denoting
byFtot = −∇(δΦ+Φe) the total fluctuating force by unit of mass experienced by a particle,
the fundamental Equations (10) and (11) of the quasilinear theory can be rewritten as

∂ f
∂t

+ L f = − ∂

∂v
· 〈δ fFtot〉, (250)

∂δ f
∂t

+ Lδ f = −Ftot ·
∂ f
∂v

, (251)

where L = v · ∂/∂r −∇Φ · ∂/∂v is the mean field Liouvillian (or Vlasov) operator, i.e.,
the advection term in phase space. Equation (251) for the fluctuations can be formally
integrated into

δ f (r, v, t) = −
∫ +∞

0
G(t, t− τ)Ftot(r, t− τ) · ∂ f

∂v
(r, v, t− τ) dτ, (252)

where

G(t2, t1) = exp
{
−
∫ t2

t1

L(t) dt
}

(253)

is the Greenian operator constructed with the mean field Liouvillian operator. We have
taken δ f (r, v,−∞) = 0 because we neglect the fluctuations due to finite N effects (we
do not consider the collisions between the particles of the system but only the influence
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of the external perturbation).40 This is valid for N → +∞ with m ∼ 1/N. Substituting
Equation (252) into Equation (250), we obtain the non-Markovian kinetic equation

∂ f
∂t

+ v · ∂ f
∂r
−∇Φ · ∂ f

∂v
=

∂

∂vi

∫ +∞

0
dτ 〈F tot

i (r, t)F tot
j (r(t− τ), t− τ)〉

× ∂ f
∂vj

(r(t− τ), v(t− τ), t− τ), (254)

where the notations r(t− τ) and v(t− τ) recall that the particles move along the mean field
trajectories determined by the time-dependent potential Φ(r(t− τ), t− τ) according to

dr
dt
(t− τ) = v(t− τ),

dv
dt

(t− τ) = −∇Φ(r(t− τ), t− τ). (255)

Making a Markovian approximation, we can replace f (r(t − τ), v(t − τ), t − τ) by
f (r(t− τ), v(t− τ), t) and Φ(r(t− τ), t− τ) by Φ(r(t− τ), t). In this manner, we obtain
the inhomogeneous SDD equation

∂ f
∂t

+ v · ∂ f
∂r
−∇Φ · ∂ f

∂v
=

∂

∂vi

∫ +∞

0
dτ 〈F tot

i (r, t)F tot
j (r(t− τ), t− τ)〉

× ∂ f
∂vj

(r(t− τ), v(t− τ), t). (256)

When integrating over τ, we must consider that the mean field is “frozen” at its
value at time t (Bogoliubov ansatz). In that case, the particles move along the mean field
trajectories determined by the static potential Φ(r(t− τ), t) according to

dr
dt
(t− τ) = v(t− τ),

dv
dt

(t− τ) = −∇Φ(r(t− τ), t). (257)

Although appealing, Equation (256) is formal because δF(r, t) = −∇δΦ(r, t) in
F tot(r, t) = δF(r, t) + Fe(r, t) depends on δ f (r, v, t) through Equation (18) which itself
depends on δF(r, t) through Equation (251). We can solve this loop by introducing a formal
generalization of the dielectric function in physical space (instead of Fourier space). In
that case, F tot(r, t) can be interpreted as the dressed force acting on the particles and
〈F tot

i (r, t)F tot
j (r(t − τ), t − τ)〉 must be viewed as a functional of f which accounts for

collective effects. If we neglect collective effects and take F tot(r, t) ' Fe(r, t), Equation (256)
reduces to

∂ f
∂t

+ v · ∂ f
∂r
−∇Φ · ∂ f

∂v
=

∂

∂vi

∫ +∞

0
dτ 〈Fe

i (r, t)Fe
j (r(t− τ), t− τ)〉 ∂ f

∂vj
(r(t− τ), v(t− τ), t). (258)

In this manner, we obtain the inhomogeneous SBD equation.41

For spatially homogeneous systems, we have f = f (v, t) and 〈F〉 = 0. Since the mean
field force vanishes, the mean field trajectories of the particles are just straight lines traveled
at constant velocity:

r(t− τ) = r− vτ, v(t− τ) = v. (259)

In that case, Equation (254) reduces to

∂ f
∂t

=
∂

∂vi

∫ +∞

0
dτ 〈Ftot

i (r, t)Ftot
j (r− vτ, t− τ)〉 ∂ f

∂vj
(v, t− τ). (260)

If we make a Markovian approximation, we obtain the homogeneous SDD equation

∂ f
∂t

=
∂

∂vi

∫ +∞

0
dτ 〈Ftot

i (r, t)Ftot
j (r− vτ, t− τ)〉 ∂ f

∂vj
(v, t). (261)
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If we neglect collective effects, we obtain the homogeneous SBD equation

∂ f
∂t

=
∂

∂vi

∫ +∞

0
dτ 〈Fe

i (r, t)Fe
j (r− vτ, t− τ)〉 ∂ f

∂vj
(v, t). (262)

It can be written as a diffusion equation

∂ f
∂t

=
∂

∂vi

(
Dij

∂ f
∂vj

)
(263)

with the anisotropic diffusion tensor

Dij =
∫ +∞

0
dτ 〈Fe

i (r, t)Fe
j (r− vτ, t− τ)〉. (264)

For a colored noise, the diffusion tensor depends on the velocity v of the test particle.
When the external force is δ-correlated in time (white noise), i.e.,

〈Fe
i (r, t)Fe

j (r
′, t′)〉 = Cij(r− r′)δ(t− t′), (265)

the Markovian approximation becomes exact and we obtain

Dij =
1
2

Cij(0). (266)

In that case, the spatial correlation of the external perturbation is unimportant (only
the value of Cij(0) matters) and the diffusion tensor is constant. We recover the results of
the discussion following Equation (39).

Remark 17. Equations (263) and (264) (or more generally Equation (261)) are equivalent to
Equations (59) and (68) obtained in Section 2.2 from the Fokker–Planck approach. We stress,
however, that the derivation based on the Klimontovich equation exposed in this section is very
different from the one relying on the Fokker–Planck approach in Section 2.2. In particular, we do not
have to use Equations (53), (56), (58) and (64). Therefore, the Klimontovich approach is another
manner to derive the Fokker–Planck Equations (59) and (68) without using the Master equation and
the Kramers–Moyal expansion. We note that the Klimontovich approach directly leads to a diffusion
equation of the form of Equation (56) where the diffusion tensor is sandwiched between the velocity
derivatives whereas, in the usual Fokker–Planck approach, the diffusion tensor is placed after the
two velocity derivatives (see Equation (53)). Since Fpol = 0 the two equations are equivalent as
discussed in Section 2.2.2. The same remarks apply to the results of Section 2.1.

5.2. Application to the Theory of Brownian Motion

Let us consider a system of self-interacting Brownian particles immersed in a fluid.
We write the equations of motion of the Brownian particles as

dri
dt

= vi,
dvi
dt

= −∇Φ(ri)− ξvi −∇Φe(ri, t). (267)

The friction force −ξv and the external stochastic force Fe = −∇Φe model the “colli-
sions” between the Brownian particles and the molecules of the fluid in which they move.42

In stellar dynamics, these equations can describe the motion of test stars a experiencing
a stochastic force which may be due to collisions with other stars or have a more general
origin. For simplicity, we neglect discreteness effects due to the Brownian particles.43

Therefore, Φ(r) =
∫

u(|r− r′|)ρ(r′) dr′ represents the self-consistent mean field potential
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produced by the Brownian particles. Repeating the calculations of Section 5.1 with the addi-
tional friction force (which is a deterministic term), we obtain the Fokker–Planck equation

∂ f
∂t

+ v · ∂ f
∂r
−∇Φ · ∂ f

∂v
=

∂

∂v
·
(

D
∂ f
∂v

+ ξ f v
)

, (268)

like in the theory of Brownian motion [34,43]. This is the so-called Kramers or Klein–
Kramers–Chandrasekhar equation [34,35,37–39,43,110,132].44 However, it is derived here in
a completely different manner without using the Langevin equations, the Master equation,
and the Kramers–Moyal expansion. The diffusion coefficient is given by (see Equation (264))

D =
1
3

∫ +∞

0
〈F(0) · F(t)〉 dt, (269)

where F represents the stochastic force acting on the Brownian particle (the factor 1/3
accounts for the dimensionality of space d = 3). For simplicity, we have assumed that the
diffusion tensor is isotropic (Dij = Dδij) and constant (independent of f and v). This is
the case when the external potential Φe(r, t) is δ-correlated in time (white noise) and when
collective effects can be neglected (e.g., when the Brownian particles are noninteracting).
The diffusion coefficient can be approximated by

D ∼ 1
3

τ〈F2〉, (270)

where τ is a typical decorrelation time and 〈F2〉 is the variance of the inter-molecular forces.
In the case of stellar systems, the distribution of the gravitational force produced by a
random distribution of stars is a particular Lévy law called the Holtsmark [162] distribution
(see, e.g., [163]) and the diffusion coefficient can be calculated from a stochastic approach
[8,31,32,36,40,41,49,137,143,144].

If we apply the general argument of Chandrasekhar [34,43] and require that the kinetic
Equation (268) relaxes towards the Maxwell–Boltzmann distribution function of statistical
equilibrium45

f = Ae−βm[v2/2+Φ(r)], (271)

where β = 1/(kBT) in the inverse temperature, we find that the friction coefficient is related
to the diffusion coefficient by the Einstein relation

ξ = Dβm. (272)

We can then write the Fokker–Planck equation as

∂ f
∂t

+ v · ∂ f
∂r
−∇Φ · ∂ f

∂v
=

∂

∂v
·
[

D
(

∂ f
∂v

+ βm f v
)]

. (273)

Combining Equations (269) and (272), we obtain the formula

ξ =
1
3

βm
∫ +∞

0
〈F(0) · F(t)〉 dt. (274)

This is the so-called Green–Kubo [139,140,153] relation expressing the fluctuation–
dissipation theorem. Actually, this formula was first derived by Kirkwood [152] by a direct
calculation of the friction force (see also [8,136,139,140,144–147,153–159]).

If D is constant, the Langevin equations associated with the Fokker–Planck Equation (268)
are [112]46

dr
dt

= v,
dv
dt

= −∇Φ(r)− ξv +
√

2D R(t), (275)
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where R(t) is a Gaussian white noise satisfying 〈Ri(t)〉 = 0 and 〈Ri(t)Rj(t′)〉 = δijδ(t− t′).47

If we take fluctuations into account at a mesoscopic level of description, we obtain a
stochastic partial differential equation of the form (see [124] and Section 2.1.6)

∂ f
∂t

+ v · ∂ f
∂r
−∇Φ · ∂ f

∂v
=

∂

∂v

(
D

∂ f
∂v

+ ξ f v

)
+

∂

∂v
·
[√

2Dm f Q(r, v, t)
]

, (276)

where Q(r, v, t) is a Gaussian white noise satisfying 〈Qi(r, v, t)〉 = 0 and 〈Qi(r, v, t)Qj(r′, v′, t′)〉
= δijδ(r− r′)δ(v− v′)δ(t− t′). When the deterministic Equation (268) admits several equi-
librium states, the noise term in Equation (276) can trigger random transitions from one
state to the other (see, e.g., [128,129]).

Remark 18. In the original approach of Einstein [130], the value of the friction coefficient was
assumed to be known (e.g., being given by the Stokes [165] formula) and Equation (272) was used
to determine the diffusion coefficient D from the friction ξ, the temperature T, and the particle mass
m.48 Alternatively, in the approach of Kirkwood [152], the friction coefficient is determined via
Equation (274) by the auto-correlation function of the inter-molecular forces. This is a very different
point of view. In this sense, Equation (274) may be viewed as a generalization of the Stokes formula.

5.3. Generalization for a Velocity-Dependent Diffusion Coefficient

If we account for the possibility that the diffusion coefficient depends on the velocity,
we must write the equations of motion of the Brownian particles in our approach as

dri
dt

= vi,
dvi
dt

= Fpol
i −∇Φ(ri)−∇Φe(ri, t). (277)

In that case, the Fokker–Planck equation becomes (see Section 5.1)

∂ f
∂t

+ v · ∂ f
∂r
−∇Φ · ∂ f

∂v
=

∂

∂v
·
[

D(v)
∂ f
∂v
− f Fpol

]
. (278)

If we require that the kinetic Equation (278) relaxes towards the Maxwell–Boltzmann
distribution function (271), we find that the friction force (more precisely the friction by
polarization) is related to the diffusion coefficient by the generalized Einstein relation

Fpol = −D(v)βmv. (279)

The Fokker–Planck equation can then be rewritten as

∂ f
∂t

+ v · ∂ f
∂r
−∇Φ · ∂ f

∂v
=

∂

∂v
·
[

D(v)
(

∂ f
∂v

+ βm f v
)]

. (280)

The friction by polarization is of the form

Fpol = −ξ(v)v with ξ(v) = D(v)βm. (281)

The friction coefficient depends on the velocity.
If D = D(v), the Langevin equations associated with the Fokker–Planck Equation (280)

are [8,112]

dr
dt

= v,
dv
dt

= −∇Φ(r)− ξ(v)v +
1
2

∂D
∂v

+
√

2D(v)R(t), (282)

where R(t) is a Gaussian white noise satisfying 〈Ri(t)〉 = 0 and 〈Ri(t)Rj(t′)〉 = δijδ(t− t′).
Since the diffusion coefficient depends on the velocity, we have a multiplicative noise. In
that case, the Langevin equations involve a term 1

2
∂D
∂v in addition to the naive friction force

−ξ(v)v. This spurious drift is not very intuitive. In contrast, the equations of motion (277)
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with Equation (281) do not involve a spurious drift; they are therefore more intuitive. This
shows that the approach based on Equation (277) with Equation (279) is fundamentally
different from the (Langevin) approach based on the Equation (282).

5.4. Generalization for an Anisotropic Diffusion Tensor

If we account for the possibility that the diffusion tensor is anisotropic, we must write
the equations of motion of the Brownian particles in our approach as

dri
dt

= vi,
dvi
dt

= Fpol
i −∇Φ(ri)−∇Φe(ri, t). (283)

In that case, the Fokker–Planck equation becomes (see Section 5.1)

∂ f
∂t

+ v · ∂ f
∂r
−∇Φ · ∂ f

∂v
=

∂

∂vi
·
(

Dij
∂ f
∂vj

+ f Fpol
i

)
. (284)

The diffusion tensor is given by

Dij =
∫ +∞

0
〈Fi(0)Fj(t)〉 dt. (285)

In the general case, Dij[ f , v] depends on v and is a functional of f . If we require that the
kinetic Equation (284) relaxes towards the Maxwell–Boltzmann distribution function (271),
we find that the friction force (more precisely the friction by polarization) is related to the
diffusion tensor by the generalized Einstein relation

Fpol
i = −Dijβmvj, (286)

so that
∂ f
∂t

+ v · ∂ f
∂r
−∇Φ · ∂ f

∂v
=

∂

∂vi
·
[

Dij

(
∂ f
∂vj

+ βm f vj

)]
. (287)

Combining Equations (285) and (286), we obtain the generalized Green–Kubo formula

Fpol
i = −βmvj

∫ +∞

0
〈Fi(0)Fj(t)〉 dt (288)

expressing the fluctuation-dissipation theorem.
If Dij = Dij(v), the Langevin equations associated with the Fokker–Planck Equation (287)

are [112]

dr
dt

= v,
dv
dt

= −∇Φ(r) + Fpol + gij
∂gkj

∂vk
+ gijΓj(t), (289)

where Dij = gikgjk and Γ(t) is a Gaussian white noise satisfying 〈Γi(t)〉 = 0 and 〈Γi(t)Γj(t′)〉 =
2δijδ(t− t′). Using Equation (57) the Langevin equations can also be written as

dr
dt

= v,
dv
dt

= −∇Φ(r) + Ftot − gkj
∂gij

∂vk
+ gijΓj(t). (290)

As mentioned above, these equations are less intuitive than Equation (283). This shows
the physical interest of our formulation.

6. Conclusions

We have reviewed the SDD equation for spatially homogeneous and inhomogeneous
systems with long-range interactions submitted to an externally imposed stochastic force.
The SDD equation describes the evolution of a near-equilibrium system caused by scatter-
ing of orbits by fluctuations in the potential due to the external perturbation. The evolution
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timescale is intermediate between the violent collisionless relaxation timescale and the
collisional relaxation timescale. We have derived the SDD equation either from the Klimon-
tovich approach or from the Fokker–Planck approach. We have considered the case of an
external stochastic force with an arbitrary correlation function. When the external noise
is produced by a random distribution of N field particles, we have made the connection
between the SDD equation and the Lenard–Balescu equation (see also [136]).

The SDD equation may have several applications in astrophysics and cosmology.
Some examples have been given in the Introduction and in Section 4 in relation to the
secular evolution of stellar discs. In this context, Fouvry et al. [64,104–106] have computed
the initial flux (∂ f /∂t)0 due to the external forcing in thin and thick discs and compared
the theoretical prediction with direct numerical simulations (similar calculations have
been performed with the Lenard–Balescu equation taking into account internal Poisson
shot noise [62–64]). Here, we consider the case of dark matter halos. Classical N-body
cosmological simulations suggest that dark matter halos have a universal density profile,
the so-called Navarro–Frenk–White (NFW) profile [166]. This profile results from a process
of collisionless violent relaxation.49 It decreases as r−3 at large distances and presents a
r−1 cusp for r → 0. This cuspy density profile is in conflict with observations [167] which
reveal that dark matter halos have a flat core, not a cusp. This core-cusp problem could be
solved by baryonic feedback that can transform cusps into cores [168–170] or by quantum
mechanics which prevents infinite densities if dark matter is made of fermions or bosons
with a very small mass (see, e.g., [135] and references therein). In addition to baryonic
feedback and quantum effects, the SDD equation could also be used in the context of
galactic halos to predict their density profile resulting from a (slow) secular evolution due
to external perturbations (e.g., fly-by encounters, satellite mergers, black holes, baryons,
etc.). The evolution of haloes in noisy environments was first considered by Weinberg [171]
who predicted a universal density profile with a flattened core. He mentioned that results of
large-scale structure simulations and observations of substructures in the Milky Way halo
provide evidence that galaxies are not in equilibrium and that dynamical evolution does not
stop after the galaxy formation. A wide variety of instabilities and interactions may drive
a galaxy away from equilibrium in the 10 Gyrs subsequent to formation. Weinberg [171]
emphasized that galaxies often have very weakly damped modes and these result in large
amplification when excited. If the noise excites the weakly damped mode, he showed
that the repetitive stochastic response of the galaxy drives the equilibrium toward some
universal profile independent of its initial condition and from the detailed characteristics of
the noise. The halo profile obtained by Weinberg [171] differs from the NFW profile because
it is due to a repetitive excitation from equilibrium and subsequent (secular) relaxation to a
new equilibrium while the cosmological mechanism leading to the NFW profile is rapid
and violent. For technical reasons Weinberg [171] did not consider cuspy density profiles.
However, he showed that the noise results in flattening the profile of the dark matter
distribution. This suggests that external perturbations can transform cusps into cores. The
SDD equation reviewed in the present paper could be used to study this possibility. It
may also be interesting to derive hydrodynamic equations from the kinetic theory and
investigate their possible applications in cosmology on a long timescale (see, e.g., [172]).

The SDD equation also occurs in other systems with long-range interactions such
as the HMF model [7,23,102,103]. When the dynamics includes a form of dissipation,
the system may relax towards a non-Boltzmannian distribution function arising from the
competition between the nonlinear diffusion and the friction, or display a complicated
(e.g., oscillatory) dynamics. On a mesoscopic scale, these systems may present out-of-
equilibrium phase transitions. These interesting results may be worth investigating further.
This could be a topic for future research. Similar results are expected to hold for 2D point
vortices and for geophysical flows submitted to an external stochastic perturbation (see [88]
and references therein).
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Notes
1 Prigogine and Balescu [14] previously derived a kinetic equation without collective effects being unaware of the earlier work of

Landau [9]. Their equation (which corresponds to the Lenard–Balescu equation with the dielectric function ε(k, k · v) replaced
by 1) involves the Fourier transform of the potential of interaction û(k) and exhibits a condition of resonance δ[k · (v− v′)].
If we perform the integral over the wavenumber k (see, e.g., Appendix C of [8]) we recover the original form of the Landau
equation [9].

2 Note that the kinetic approach developed by Chandrasekhar [31–43] and Rosenbluth et al. [44] allowed them to take strong
collisions into account (unlike Landau [9]) so that no divergence occurs at small scales in their Fokker–Planck equation. In
particular, the gravitational Landau length appears naturally in their formalism.

3 Self-gravitating systems are never spatially homogeneous even in theory. Indeed, an infinite homogeneous distribution of stars
is not a steady state of the Vlasov–Poisson equations (except in an expanding background). Even if we advocate the “Jeans
swindle” [46], or take into account the expansion of the Universe, we find that an infinite homogeneous distribution of stars
is linearly unstable to perturbations whose wavelengths are above the Jeans length λJ . Therefore, Chandrasekhar [31–43] and
Rosenbluth et al. [44] actually considered spatially inhomogeneous stellar systems with a size of the order of the Jeans length
λJ and made a “local approximation” so as to treat them as if they were spatially homogeneous (this could be referred to
as “Chandrasekhar’s swindle”). This local approximation gives relatively good results in the case of globular clusters when
an orbit average approximation is implemented, leading to the orbit-averaged Fokker–Planck equation [47,48]. In his works,
Chandrasekhar [31–43] argued that the Coulombian factor ln Λ should be cut-off at the interparticle distance but it was later
recognized [49] that this claim is incorrect and that the Jeans length (i.e., the system’s size) provides a better prescription for the
large scale cut-off.

4 This rough argument may sometimes be misleading (see below).
5 It is interesting to point out the analogies between the effect of a solid rotation on a stellar system and the effect of a constant

magnetic field in plasma physics. The small oscillations of a fully ionized plasma in a constant magnetic field were first studied
by Bernstein [51] and the kinetic equation of a plasma in a constant magnetic field was first derived by Rostoker [52]. Of course,
there are also differences between stellar systems and plasmas since gravity is attractive whereas electricity is repulsive.

6 Heyvaerts [58] derived the inhomogeneous Lenard–Balescu equation from the BBGKY hierarchy and Chavanis [59] derived
it from the Klimontovich formalism. The inhomogeneous Lenard–Balescu equation can also be directly derived from the
Fokker–Planck equation as shown in [59–61]. The inhomogeneous Landau and Lenard–Balescu equations are structurally very
different from the orbit-averaged-Fokker–Planck equation [47,48] used to describe globular clusters.

7 The η-formalism which treats the fluctuating force acting on a particle as a stochastic force is closely related to the Fokker–Planck
approach developed in [59,60]. However, it relies on the rather technical Novikov theorem [109] while the Fokker–Planck
approach is based on the more physical Kramers–Moyal [110,111] expansion (see, e.g., Ref. [112]).

8 We generically call it the “collision” term although it may have a more general meaning due to the contribution of the external
perturbation. Actually, in this paper, we shall be exclusively interested by the contribution of the external perturbation. A more
proper name could be the “correlational” term.

9 For the simplicity of the presentation, we have assumed that the external potential Φe is of zero mean. If there is an external mean
component 〈Φe〉, it can be included in Φ by making the substitution Φ→ Φ + 〈Φe〉. In other words, Φ represents the total mean
potential including the mean potential produced by the system of particles and by the external perturbation. In Section 4, this
amounts to replacing the pulsation Ω of a particle in an inhomogeneous system by the total pulsation Ω + Ωe.

10 In the following, we assume that the system remains spatially homogeneous during its whole evolution. This may not always
be the case. Even if we start from a spatially homogeneous distribution f (v), the collision term will change it. The system
may become dynamically (Vlasov) unstable and undergo a dynamical phase transition from an homogeneous phase to an
inhomogeneous phase (see, e.g., Ref. [113]).

11 In our approach, the initial condition is rejected to the infinite past but we have to add a small imaginary term i0+ in the pulsation
ω of the Fourier transform to ensure the vanishing of the fluctuations and the convergence of the integrals for t → −∞. In a
sense, our procedure amounts to using a Laplace transform in time but neglecting the initial condition.
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12 Equation (21) is the generalization, for an arbitrary binary potential of interaction, of the dielectric function introduced in plasma
physics [114]. We generically call it the “dielectric” function although it has a more general meaning.

13 It is implicit throughout the calculations that a small imaginary term i0+ should be added to the pulsation when necessary. For
convenience, we do not write this term at each step of the calculations and refer to the “Landau prescription” when necessary.
The Landau prescription ω → ω + i0+ ensures the vanishing of the Fourier modes δ fω(t) ∝ e−iωt for t→ −∞ and regularizes
the resonant denominators (see note 11).

14 Since we have assumed that the system is linearly Vlasov stable, we have ε(k, ω) 6= 0 for any real pulsation ω (the solution of the
dispersion relation ε(k, ω) = 0 is of the form ω = ωr + iωi with ωi < 0) so that Equation (26) is well-defined.

15 We call it “effective” because it is not due to collisions (finite N effects) between particles but to the external perturbation (see
note 8).

16 Here, and in the following, we use the Einstein summation convention on repeated indices.
17 We have assumed that the system is stable so ε(k, ω) does not vanish for any real ω = k · v (see note 14).
18 This mesoscopic level of description characterized by f (coarse-grained dynamics) is intermediate between the discrete level of

description characterized by fd (exact dynamics) and the smooth—locally averaged—level of description characterized by f
(mean dynamics). It takes into account fluctuations with respect to the mean dynamics f but replaces the sum of δ-functions in fd
by a continuous (yet stochastic) distribution function f . If we average f over the noise, we recover f .

19 A general approach to obtain the noise term and the corresponding action is to use the theory of large deviations [127].
20 The idea of this expansion was introduced by Einstein [130] who used it to derive the diffusion equation, thereby improving the

heuristic approach of Fick [131]. It was then generalized by Fokker [17–19] and Planck [20] to derive the Fokker–Planck equation
(the same results were obtained independently by Klein [132] a little later). Landau [9] used a similar expansion to derive the
Landau equation from the Boltzmann equation. Actually, this type of Taylor expansion was introduced by Lord Rayleigh [133]
long before all the classic papers on Brownian theory. He considered the dynamics of massive particles bombarded by numerous
small projectiles. This paper can be seen as a precursor of the theory of Brownian motion that is usually considered to start with
the seminal work of Einstein [130] (see Refs. [129,134,135] for some additional comments about the paper of Lord Rayleigh and
the history of Brownian theory).

21 This formula is established by a direct calculation in Section 3.4 of [23].
22 This protocol is usually called the quasilinear approximation, i.e., we assume that the test particle follows an unperturbed

trajectory when calculating the dynamics of the fluctuations.
23 The auto-correlation of the gravitational force in d = 3 in an infinite homogeneous medium decreases precisely as s−1 [41,49].

This leads to logarithmic corrections as discussed by Lee [137].
24 This formula can also be obtained by using the identity

Dij =
1
2

d
dt
〈∆vi∆vj〉 =

1
2
〈v̇i∆vj + v̇j∆vi〉 =

1
2

〈∫ t

0
dt′
[

Fi(r, 0)Fj(r(t′), t′) + Fj(r, 0)Fi(r(t′), t′)
]〉

, (291)

where F = −∇δΦtot is the total fluctuating force (by unit of mass) experienced by the test particle. Making a linear trajectory
approximation and taking the limit t→ +∞, we obtain

Dij =
∫ +∞

0

〈
Fi(r, 0)Fj(r + vs, s)

〉
ds, (292)

in agreement with Equation (68).
25 A more precise criterion for neglecting the contribution of the test particles on the diffusion is ma fa � ∑b mb fb.
26 A more precise criterion for neglecting the friction by polarization is ma fa∂ f /∂v� ∑b mb fb∂ fa/∂v.
27 In this sense Equation (102) with Equation (103) is more general than the SDD Equation (36) with Equation (38) because it takes

into account the polarizability of the external medium.
28 In these studies, collective effects were neglected for the reasons given in the introduction.
29 In the context of stellar discs, the stochastic perturbation may be due to weak mergers, transient spiral structure, orbiting blobs,

giant molecular clouds, massive sub-halos around the disc, spiral arms, the presence of a bar, dwarf or large satellites, a halo of
super-massive black holes, gas accretion, orbiting dwarf galaxies, debris streams, dark clusters, dwarf galaxy mergers, disrupting
dwarfs, fly-by encounters, etc. (see [94,99,101] and references therein).

30 We assume that the background potential of the system is stationary and integrable so that we can always remap the usual phase
space coordinates (r, v) to the angle-action coordinates (w, J). This is consistent with the Bogoliubov ansatz discussed below. We
also assume that the system remains Vlasov stable during the whole evolution. This may not always be the case. Even if we
start from a Vlasov stable distribution function f0(J), the “collision” term (r.h.s. in Equation (132)) will change it and induce a
temporal evolution of f (J, t). The system may become dynamically (Vlasov) unstable and undergo a dynamical phase transition
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from one state to the other. We assume here that this transition does not take place or we consider a period of time preceding this
transition.

31 For convenience, we shall often write f for f (J) and Ω for Ω(J).
32 In order to derive the inhomogeneous Lenard–Balescu equation describing the collisional evolution of the system due to finite

N effects, we have to solve an initial value problem and use Laplace transforms in time as explained in Section 2 of [59]. This
involves the initial perturbed distribution function δ f̂ (k, J, 0) which accounts for the granularities of the system.

33 We consider an attractive self-interaction, such as gravity, hence the sign − in the second term of Equation (141).
34 In matrix form, we have Â = (1− ε)(Â + Âe) yielding εÂ = (1− ε)Âe, then Â = ε−1(1− ε)Âe = (ε−1 − 1)Âe, and finally

Âtot = Â + Âe = ε−1 Âe. If we neglect collective effects, we have Âtot = Âe corresponding to ε = 1 and Â ' (1− ε)Âe ' 0.
35 We have assumed that the system is stable so the dielectric tensor is invertible on the real axis.
36 When collective effects are neglected, it is not necessary to introduce a biorthonormal basis.
37 This formula is established by a direct calculation in Section 3.4 of [59].
38 This formula can also be obtained by using the identity

Dij =
1
2

d
dt
〈∆Ji∆Jj〉 =

1
2
〈 J̇i∆Jj + J̇j∆Ji〉 =

1
2

〈∫ t

0
dt′
[
Fi(w, J, 0)Fj(w(t′), J(t′), t′) +Fj(w, J, 0)Fi(w(t′), J(t′), t′)

]〉
, (293)

where F = −∂δΦtot/∂w is the total fluctuating force (by unit of mass) experienced by the test particle. Making a linear trajectory
approximation in angle-action space and taking the limit t→ +∞, we obtain

Dij =
∫ +∞

0

〈
Fi(w, J, 0)Fj(w + Ω(J)s, s)

〉
ds, (294)

in agreement with Equation (205).
39 The Fourier transform of the dressed potential of interaction in angle-action variables is written as −1/Dk,k′ (J, J′, ω) in

Refs. [58,59]. The Fourier transform of the bare potential of interaction in angle-action variables is recovered by taking ε = 1
yielding Ak,k′ (J, J′) = −∑α Φ̂α(k, J)Φ̂∗α(k′, J′).

40 See the difference with Section 2.1 of [147] where we derive the collision term due to finite N effects by considering an initial
value problem.

41 This equation is exact for noninteracting systems forced by an external perturbation.
42 Note that we depart from the standard Langevin [151] approach where the equations of motion are written as

dri
dt

= vi,
dvi
dt

= −ξvi −∇Φ(ri) + Fi(t), (295)

where Fi(t) is a random force (per unit of mass) acting on particle i [34,43,112]. The difference of formalism will become more
apparent in the following sections.

43 Actually, the friction force arises precisely from discreteness effects. The friction force is introduced here in a purely heuristic man-
ner as in the original works on Brownian motion [34]. Chandrasekhar [37–39,43] also introduced the friction force in an ad hoc man-
ner in his early works on stellar dynamics based on the analogy with Brownian motion. We refer to [8,136,139,140,144–147,152–161],
in addition to the references given in the introduction, for a self-consistent treatment of discreteness effects and a direct calculation
of the friction force.

44 This equation (without the advection term) was introduced by Lord Rayleigh [133] long before all the classic papers on Brownian
theory (see additional comments in Refs. [129,134,135]). This equation was further studied by Uhlenbeck and Ornstein [138].

45 This argument was also advocated by Klein [132], Uhlenbeck and Ornstein [138], and Kramers [110]. Actually, it was first given
by Lord Rayleigh [133] long before all the classic papers on Brownian theory, including the seminal paper of Einstein [130] (see
Refs. [129,134,135] for additional comments on this point of history).

46 For simplicity, we omit the index labeling the particles.
47 Following Uhlenbeck and Ornstein [138], the diffusion coefficient defined by Equation (54) can be obtained from the Langevin

equations by writing the autocorrelation function of the noise term as 〈F(t) · F(t′)〉 = Kδ(t− t′) where δ(x) is a function with a
very sharp maximum at x = 0 (like the δ-function). Using the relation (see Equation (67))

D =
〈(∆v)2〉

6∆t
=

1
6∆t

∫ ∆t

0
dt′
∫ ∆t

0
dt′′〈F(t′) · F(t′′)〉 = 1

3

∫ +∞

0
〈F(0) · F(t)〉 dt, (296)

one finds that the constant K is given by K = 6D so that 〈F(t) · F(t′)〉 = 6Dδ(t− t′). This justifies the expression of the stochastic
force in Equation (275). Following Chandrasekhar [34,43], the diffusion coefficient can also be obtained from the Langevin



Universe 2023, 9, 68 49 of 53

equations by writing ∆v =
∫ ∆t

0 F(t′) dt′ = ∑Ni=1 δvi with N � 1. Therefore, the net increment in velocity ∆v is a sum of N
random variables δvi. We then have 〈(∆v)2〉 = N〈(δv)2〉, yielding

D =
〈(∆v)2〉

6∆t
=

1
6

n〈(δv)2〉, (297)

where n is the number of collisions per unit time between a Brownian particle and the molecules of the surrounding fluid (about
1021 collisions per second) and 〈(δv)2〉 is the mean square increment in velocity of a particle per collision. The Brownian particle
experiences a great number of weak deflections. One can show that the probability of occurrence of different net increments of
velocity ∆v during an interval ∆t is given by the Gaussian distribution [34,43]

W(∆v) =
1

(4πD∆t)3/2 e−
(∆v+ξv∆t+∇Φ∆t)2

4D∆t . (298)

This is a consequence of the central limit theorem [164] according to which the distribution of the sum ofN � 1 random variables
of finite variance is a Gaussian.

48 Note that Einstein [130] was working in physical space (instead of phase space) by considering a strong friction limit ξ → +∞.
Therefore, the original Einstein relation reads D = µkBT where µ = 1/(ξm) is the mobility.

49 The NFW profile is, however, different from the prediction of Lynden-Bell [5] based on statistical mechanics. This discrepancy
may possibly be due to incomplete relaxation.
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