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Abstract: The de Sitter spacetime is a maximally symmetric spacetime. It is one of the vacuum
solutions to Einstein equations with a cosmological constant. It is the solution with a positive cosmo-
logical constant and describes a universe undergoing accelerated expansion. Among the possible
signs for a cosmological constant, this solution is relevant for primordial and late-time cosmology. In
the case of a zero cosmological constant, studies on the representations of its isometry group have
led to a broader understanding of particle physics. The isometry group of d + 1-dimensional de
Sitter is the group SO(d + 1, 1), whose representations are well known. Given this insight, what
can we learn about the elementary degrees of freedom in a four dimensional de Sitter universe by
exploring how the unitary irreducible representations of SO(4, 1) present themselves in cosmological
setups? This article aims to summarize recent advances along this line that benefit towards a broader
understanding of quantum field theory and holography at different signs of the cosmological constant.
Particular focus is given to the manifestation of SO(4, 1) representations at the late-time boundary of
de Sitter. The discussion is concluded by pointing towards future questions at the late-time boundary
and the static patch with a focus on the representations.

Keywords: de Sitter spacetime; SO(4, 1) representations; wavefunction; two-point functions;
late-time boundary

1. Introduction

Symmetries give us a way to digest why nature is the way it is. The symmetries that
help us reconcile with our understanding of particles are the coordinate transformations that
make up the Poincaré group, ISO(3, 1) [1]. This group involves the whole list of coordinate
transformations that leave the four dimensional flat spacetime which has a vanishing
cosmological constant, invariant. Observations from the primordial universe, as well as
the current day universe indicate the presence of a positive cosmological constant in these
two epochs, at large distances. Even if there be tensions in the exact numerical value of
the cosmological constant, these observations agree on the sign of it. The spacetime with
a positive cosmological constant is de Sitter spacetime. The de Sitter spacetime also has
a well established set of coordinate transformations that leave it invariant. The symmetries
of the de Sitter spacetime make up the de Sitter group, SO(4, 1).

In the case of the vanishing cosmological constant, studying the unitary irreducible
representations of the Poincaré group have guided us in terms of how many degrees of
freedom to expect for massive and massless particles with a given spin. So far, these
predictions have stood well against tests with experiments at particle colliders and have
formed our current understanding of quantum field theory on flat spacetime.

In this review, we would like to point out the properties and representations of the de
Sitter group, which may help invoke new ways to approach the presence of the positive
cosmological constant. One place where the unitary irreducible representations of the de
Sitter group can easily be recognized is at the late-time boundary of de Sitter. This is also
the slice which resembles where inflationary observables from the primordial universe live.
Motivated by these four dimensional observations from particle physics and cosmology,
we will work in four spacetime dimensions in this review. We will support our discussion
with examples from the late-time boundary of de Sitter involving free scalar fields.
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The unitary irreducible representations of the de Sitter group fall under the following
categories: principal series, complementary series, exceptional series, discrete series. In four space-
time dimensions, focusing on scalars alone provides a relatively easy, yet adequately
equipped setup for recognizing various categories of the de Sitter representations. It will
only be the category of exceptional series that we do not get to discuss. The examples
will be in terms of the late-time operators introduced and recognized as unitary irreducible
representations of the de Sitter group for general dimensions in [2], and their two-point
functions further studied in [3]. Within the review, we will also point out references that
deal with non-zero spin and interactions.

The Poincaré and the de Sitter groups are both noncompact groups, which makes them
more intricate to study compared to compact groups. Both of these groups are realized
in physical situations. Establishments in the representation theory of the de Sitter group
in general dimensions mainly rely on the works of Harish-Chandra in mathematics litera-
ture [4–9]. Reference [10] is an introductory and pedagogical review on the development of
the subject. In our review, we will mainly follow the monograph [11], which focuses on the
construction of representations from group elements. Other recent reviews involve [12],
which proposes a limit to flat space physics, and [13], which discusses cases with various
spin as well as provides an algebraic construction of the representations from the group
algebra and makes connections with the constructions in conformal field theory literature.
Both of these later references compute characters of the representations and compare the
separate cases of unitary irreducible representations in the presence of negative and positive
cosmological constants. Another recent review which compares quantum field theory in the
cases of zero and positive cosmological constants is that of [14] where group contractions
and concepts of being massive and massless are also considered along other points. Our goal
in this review is to draw attention to some recent directions in the discussion of de Sitter
representations and their recognition in physical setups in a focused manner. Providing
a full list of references on the historical developments of the subject is beyond the aim of
this review.

We start our discussion with a summary of de Sitter geometry and its Killing vectors
in Section 2. One of the main messages of this section is the lack of global time translation
invariance in the case of a positive cosmological constant. We leave the technical details
behind this message to Appendix A.1. In Appendix A.2, we discuss the ambient space
formalism and point towards relevant references. For the purpose of our discussion, this
formalism allows for a convenient way to compare the case of the positive cosmological
constant with that of the zero cosmological constant.

In Section 3, we give a brief summary on the representation theory of the de Sitter
group. These representations fall under three different categories for SO(4, 1) relevant
to four dimensional de Sitter. Different categories are designated by the range of the so
called scaling weight, c. We introduce this label, the scaling weight, in the main body
of the discussion. Each category also involves a label related to spin. We focus on the
normalizability properties of the representations and the properties of the intertwining
operators that play an important role on this matter to motivate the different categories of
representations that exist.

In Section 4, we introduce the late-time operators into our discussion which exhibit all
the properties we discussed of the representations in Section 3. For instance, these late-time
operators are normalized with respect to the inner products of Section 3. We discuss the
late-time operators themselves as well as their two point functions. We denote a general
late-time operator by O. In four spacetime dimensions, these operators have dimensions of
the form ∆ = 3

2 ± µp, where µp can be either real or purely imaginary. When it becomes
important to distinguish the dimensions, we denote the operator with the lower dimension
∆ = 3

2 − µp by α and the operator with the higher dimension ∆ = 3
2 + µp by β. We use

a superscript L, H and M to denote if the operator corresponds to a light or heavy field
whose mass, respectively, belongs to the ranges m < 3

2 H and m > 3
2 H. We reserve the

superscript M to denote the field with mass zero. We refer to this field as the massless field;
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however, the concept of masslessness on de Sitter is far more involved beyond the case of
zero mass scalar. The review [14] involves a better summary on the concept of masslessness.

The late-time solution for the mode functions of the massless scalar is studied within
the light fields, yet from among the representation categories, it belongs to the discrete
series representations while light fields belong to complementary series representations
in general. We discuss the scalar field with zero mass in more detail in Section 4.2. We
indicate the normalized late-time operator by a subscript N. Therefore, throughout the text
there are the late-time operators αL, βL, αM, βM, αH , βH prior to being normalized and the
normalized late-time operators αL

N , βL
N , αM

N , βM
N ,αH

N , βH
N .

In Section 5, we point out new insights on holographic properties of de Sitter by
focusing on the wavefunction picture. Our discussion relies on being able to track the
contribution of late-time operators to late-time two point functions of fields and conjugate
momenta in cannonical quantization and in wavefunction picture.

We conclude in Section 6 by pointing towards recent advances on spectral decompo-
sition, cases of fermions and gauge fields, the role of characters on the calculations of de
Sitter horizon entropy and discussions on the unitarity of interactions on de Sitter. Each of
these venues rely on representations in the presence of a positive cosmological constant.

Our convention for the metric signature is mostly plus and we mainly focus on the
global and Poincaré patches of de Sitter.

2. The de Sitter Geometry and Symmetries

In four dimensions, the de Sitter metric in global coordinates is

ds2
gl = −dT2 +

1
H2 cosh2(HT)dΩ2

3 (1)

where

dΩ2
3 = dθ2

1 + sin2θ1

[
dθ2

2 + sin2θ2dθ2
3

]
, (2)

is the metric on three sphere, and the coordinates lie in the following ranges −∞ < T < ∞,
0 ≤ θ1 < π, 0 ≤ θ2 < π, 0 ≤ θ3 < 2π [15]. The spatial sections of this geometry are
spheres that grow with time in the range 0 ≤ T < ∞, due to the behaviour of the scale
factor cosh(HT). These coordinates cover more than what is accessible to a single observer
living in de Sitter, or to an observer who has access to a primordial de Sitter phase. We
will talk about coordinates for these observers, especially the later one, below in due time.
One of the merits of the global coordinates, even though they are not the coordinates of
a physical observer, is that they carry information about the global properties of the de
Sitter spacetime. One such property we want to emphasize is that translations in global
time T is not an isometry of de Sitter. That is, one cannot find a global timelike Killing
vector ξT−tr = ξµ∂µ = ∂T as a solution to the Killing equations, as explicitly demonstrated
in Appendix A.1.

Considering the solutions to Einstein equations with a cosmological constant (Λ), in the
case of ΛM = 0, we have the Minkowski spacetime. For vanishing cosmological constant,
the coordinate transformation t→ t + a with a = constant leaves the Minkowkski metric

ds2
M = −dt2 + dx2 + dy2 + dz2, (3)

invariant. Time translation is an element of the Poincaré group and the associated Killing
vector is an element of its algebra. In the case of ΛAdS < 0, we have the Anti de Sitter space.
For negative cosmological constant, time translation τ → τ +A, is a symmetry of the Anti
de Sitter space with metric, which in global coordinates can be written as follows

ds2
A = L2

AdS

[
−(r2 + 1)dτ2 +

dr2

r2 + 1
+ r2dΩ2

2

]
, (4)
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where dΩ2
2 is the metric on unit two sphere. In the case of de Sitter with ΛdS > 0, the coor-

dinate transformation T → T + A with A constant, does not leave the de Sitter metric (1)
invariant. Among the solutions of Einstein Equations with a cosmological constant, the pos-
itive cosmological constant case seems to be a bit of an outcast for not accommodating time
translation invariance. This implies that different rules and notions are at play for quantum
fields on geometries with a cosmological constant depending on the sign of the constant.
Special care must be given to the case of the positive cosmological constant. What these
rules are and especially how they differ in the case of a positive cosmological constant, is
an active area of investigation. To name a few, the presence of time translation invariance
implies conservation of energy. This sets a lower bound on the possible masses of fields on
AdS [16,17]. The presence of time translation invariance also allows for asymptotic states
to be defined, which sets the S-matrix scattering programme on Minkowski [18].

The de Sitter and Anti de Sitter spacetimes can be embedded in a flat spacetime of one
higher dimension. The differences in the nature of these spacetimes at different signs of the
cosmological constant also get highlighted when embedding the non-zero cosmological
constant ones into a higher dimensional flat spacetime. This embedding is achieved by the
ambient space formalism, also referred to as the embedding space formalism. Embedding the
positive cosmological constant case, that is de Sitter spacetime, requires adding an extra
space-like dimension while the negative cosmological constant case, that is Anti de Sitter,
requires adding an extra time-like dimension. We give a summary on the details of the
embedding space formalism in Appendix A.2 where we also list more detailed references
and refer to the appendix whenever we make use of a fact from the embedding space
formalism in our discussion. In short, a positive cosmological constant can be embedded
into one higher dimensional Minkowski spacetime which is a zero cosmological constant
solution, while the negative cosmological constant solution gets embedded into a flat
spacetime with two time-like dimensions. While the presence of a global time-like Killing
vector is a shared feature between the zero and the negative cosmological constant solution,
the embedding space formalism suggests there may be other features shared between
Minkowski and de Sitter among the three signs of the cosmological constant. A clue in this
direction comes from the fact that the principal series representations make an appearance in
de Sitter quantum field theory and holography as we will discuss more thoroughly below,
as well as in flat space holography [19,20] as part of the unitary irreducible representations
in both problems. We will explain the properties of principal series representations in detail
and give exemplary cases of their realization in our main discussion. An example that
hosts principal series representations in the case of a negative cosmological constant on
the other hand is that of [21]. This example involves additional structure, such as having
U(1) charge, and is explored for the case of two dimensions which is a special case in terms
of the number of dimensions where the two signs of the cosmological constant share the
same symmetries.

There is a link between the metric on global de Sitter and the metric on the sphere.
In four dimensions, from the metric on the sphere

dΩ2
4 = dθ2

4 + sin2 θ4

[
dθ2

1 + sin2 θ1

[
dθ2

2 + sin2 θ2dθ2
3

]]
, (5)

one can obtain the global metric on de Sitter

ds2
gl = −dT2 +

1
H2 cosh2(HT)

[
dθ2

1 + sin2θ1

[
dθ2

2 + sin2θ2dθ2
3

]]
(6)

by analytically continuing one of the angular directions into the time direction as θ4 = π
2 − iT.

What such an analytical continuation implies for unitarity of the representations between
the two geometries is better tracked in the embedding space formalism. There is a di-
rect link between the generators and the embedding space coordinates as we highlight in
Appendix A.2. Due to this fact the effects of the analytical continuation are transferred to an
analytical continuation at the level of the generators. This fact makes it difficult to quickly
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recognize what will be a unitary representation on one geometry based on knowledge
of what is unitary on the other. References [22–24] are examples that explore this line of
investigation further with explicit examples from the case of two dimensions. A comple-
mentary approach is that of reference [25] which explicitly discusses which one of the
unitary representations on the sphere can be analytically continued into unitary irreducible
representations on de Sitter in the case of bosons. In identifying which representations
can be analytically continued, special care is given to check the normalization of the de
Sitter representations obtained from symmetric tensor spherical harmonics which set up
the unitary representations on the sphere. This method is discussed for dimensions higher
than two. Reference [26] extends this disscussion to the case of fermions starting with Dirac
spinors. One can also relate the cases of positive and negative cosmological constant by
analytical continuation as discussed in [27].

With all this insight, let us summarize the symmetries that are present in the case of
a positive cosmological constant.

The isometry group of de Sitter spacetime is a group that has long been studied in
mathematics literature, starting with the works of Harish-Chandra [4,6–9]. For de Sitter in
general d + 1 dimensions, this is the group SO(d + 1, 1). This group also happens to be the
conformal group of Eudlidean space in d dimensions. Therefore it is a group of interest both
in cosmology and in Euclidean conformal field theory. This is a noncompact group with
real parameters. We refer the reader to [22] for a nice comparison of the compact rotation
group SO(3) and the group SO(2, 1) which addresses the case of two spacetime dimensions.
Here, we will focus on the case of four dimensions relevant to cosmological observations,
which brings us to the group SO(4, 1). Most of the results we will discuss can be extended
to general dimensions, except for the case of discrete series, as we will highlight where
necessary. A self-contained review in general dimensions is the monograph [11], where the
representations are built from finite group elements. More recent summaries include [2,13]
and reference [28] which focuses on fermions and gauge fields in the discussion.

A group G is made up of group elements and an operation defined among them such
that, among the group elements, there exists an identity element, the operation is closed and
associative and each group element has an inverse under this operation. The group elements
correspond to transformations that leave a system of equations of interest invariant. In our
case of interest, the group elements are coordinate transformations that leave the metric
invariant. Apart from group elements, continuous groups, such as SO(d + 1, 1), have
generators L(B) that satisfy a specific algebra. In this case, the group elements g ∈ G are
parametrized by continuous parameters and are related to the generators of the group
algebra via exponential maps. The differentiation of the group element with respect to this
continuous parameter gives the generator. One can build further operators by considering
combinations of generators in the group algebra. Among such combinations there will
be operators which commute with all the generators of the algebra. Such operators are
called the Casimir operators. They can be built at different orders and play a special role in
that the eigenvalues of the quadratic Casimir label the unitary irreducible representations
that correspond to physical states. In essence, the problem of finding possible particles
corresponds to the problem of figuring out the eigenvalue spectrum of the Casimir operator.
Before giving examples to the particles on a de Sitter universe, in this section we will
discuss how they are labelled and categorized.

The Killing vectors ξ(B), provide a realization of the group generators L(B). We use
the upper case Latin letter (B) to label the Killing vector and the generator, below this label
will stand for dilatations, rotations, etc. What defines the generators is the algebra that they
satisfy. The Killing vectors on the other hand are differential operators. The commutations
of Killing vectors acting on functions matches the group algebra. This is one way to
confirm that the generators can be represented by the Killing vectors. Another way is
to consider embedding de Sitter spacetime into flat spacetime of one higher dimension
where group generators are easier to recognize. This is called the embedding space or ambient
space formalism and we demonstrate this method in Appendix A.2. While we are more
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accustomed to Hermitian operators in Physics, in Mathematics literature, it is more common
to use antiHermitian generators, and because this makes the reality of the eigenvalue of the
Casimir more explicit, we will also make use of antiHermitian generators which we will
denote by L(B) in which case [

L(B), φ
]
= −ξ(B)φ, (7)

where the anti Hermitian generator L(B) gets identified with the Killing vector −ξ(B) [13].
The Hermitian generator can be obtained via L(B)

H = iL(B)

For fields with spin, one needs to include a spin related term in the compact subgroup
generators [28]. We will introduce the compact subgroups shortly below.

In general, a group G will be composed of subgroups whose properties determine
the properties of the whole group. Certain subgroups play a distinguished role, especially
when talking about unitary irreducible representations. The subgroups of SO(d + 1, 1)
are dilatation, special conformal transformations, spatial rotations, spatial translations and the
maximally compact subgroup. Each category of a subgroup corresponds to a category of
a Killing vector or a linear combination of them. In this list, spatial rotations and the
maximally compact subgroup are the only compact groups. Now let us list the Killing
vectors in conformal planar patch coordinates and discuss these subgroups in the case of
SO(4, 1) one by one.

The Dilatation subgroup: This is the one parameter, noncompact subgroup SO(1, 1)
which we will also denote by A. The dilatation generator corresponds to the dilatation
Killing vector. With unit parameter, this Killing vector is

ξ(A) = η∂η + xj∂j. (8)

Under a dilatation with parameter λ coordinates transform as (η,~x) → (λη, λ~x), and
a unitary irreducible representation of the dilatation subgroup transforms as

O(λ~x) = λ−∆O(~x). (9)

The exponent ∆ is called the scaling dimension of the representation O. While de Sitter
has both temporal and spatial coordinates, the representation O depends only on spatial
coordinates which fits in well with it being recognizable at the late-time boundary, which is
a purely spacelike surface.

In the case of SO(d + 1, 1), the scaling dimension has a fixed format. It takes on the
form where the number of spatial dimensions enter in as

∆ =
d
2
+ c (10)

The component d
2 corresponds to the half sum of the restricted positive roots while

c, called the scaling weight [11], involves information about the mass of the field. In
general dimensions

c =

√
d2

4
− m2

H2 , (11)

and depending on the mass of the field with respect to both the Hubble parameter and
the number of spatial dimensions, the scaling weight can be either purely real or purely
imaginary. Both these categories correspond to unitary representations. In what follows,
we will denote the scaling weight c as ±ν, ±iρ where ν and ρ are positive, when giving
examples to different categories. The scaling dimension being allowed to be complex
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sets SO(4, 1) apart from SO(3, 2), even though both groups host dilatations. For SO(4, 1)
we have

∆ =
3
2
+ c. (12)

The spatial rotation subgroup: This is the group M = SO(d), in the case of four spacetime
dimensions SO(3). It is a compact subgroup with real parameters and antisymmetric
generators which for unit parameter along the axis (î× ĵ) correspond to the Killing vectors

ξ(M−î× ĵ) = xi∂j − xj∂i (13)

When working with nontrivial spin, one adds a spin component to the SO(d) and
SO(d + 1) generators [28].

Spatial translation subgroup: We will denote this subgroup by Ñ. For unit parameter
along the ith direction its generators correspond to the Killing vectors

ξ(Ñ−i) = ∂i. (14)

This is another one parameter noncompact subgroup like the dilatation subgroup, and again
it is an abelian subgroup.

Special Conformal Transformations subgroup: This is a three parameter noncompact
subgroup, which we will also denote by N. Its generators for unit parameter along the ith
direction correspond to the Killing vectors

ξ(N−i) = (x2 − η2)∂i − 2xi(η∂η + xj∂j). (15)

Maximally Compact subgroup: This is the group K = SO(d + 1) in a general number of
dimensions. In the case of four spacetime dimensions, it is the group SO(4). This group
is made up of all of the SO(3) rotation subgroup generators. Additionally, it involves
generators which we explicitly list in appendix A.2, that come as a specific combination of
translation and special conformal transformation generators. In terms of the Killing vectors
the generators of the maximally compact subgroup correspond to

ξ(M−î× ĵ) and
1
2

(
ξ(Ñ−i) − ξ(N−i)

)
. (16)

As outlined in more detail in Appendix A.2, the eigenvalue of the quadratic Casimir
for SO(4, 1) is [11]

C = l(l + 1) + c2 − 9
4

. (17)

Notice that this depends on the spin l and the scaling weight c. Hence, the unitary irre-
ducible representations are labeled by spin and scaling weight. This is collectively denoted
as χ = {l, c}. The value of the scaling weight being purely imaginary, discrete or real within
a finite spin-dependent range puts the representation in the category of principal, discrete
and complementary series. In general, the range of the scaling weight for the complementary
series has overlaps with the discrete series range. The unitary representations at these
overlaps are referred to as the exceptional series. These representations are reducible down to
unitary irreducible discrete series representations [11], and for four spacetime dimensions
the exceptional series simply corresponds to the discrete series [13]. The eigenvalue of the
Casimir gives insight on what category a field of interest belongs to. However, to empha-
size the unitarity properties of the representation it hosts, it helps to check normalizability
properties and this is what we mainly discuss next.
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3. Unitarity of the Representations

One example to identify the unitary irreducible representations of SO(4, 1) is in the
late-time limit of field solutions in the free field theory, that satisfy Bunch–Davies initial
conditions. These unitary irreducible representations, let us denote an arbitrary one of
them byO, can be written in both the position or the momentum space. The two are related
by the usual Fourier transformation

O(~x) =
∫ d3k

(2π)3O(~k)e
i~k·~x. (18)

The scaling dimension ∆ = 3
2 + c is read off from the position space version.

The unitarity of these representations implies having a well-defined finite inner prod-
uct with which they can be normalized. In order to better appreciate the merits of this inner
product, it will be more instructive to understand how these representations are built. There
are two ways to build the representations. Either one can construct them as states on which
the generators act on or build them from finite group elements. In both ways, unitarity
implies having normalizable representations. In the construction from the generators,
the unitarity of the states are encoded in their normalization such that different categories
have different normalizations. Reference [22] explicitly shows what is the normalization for
each category of principal, complementary and discrete series representations in the case of
two dimensions; and explains why the normalization for SO(2, 1) states is different from
the normalization of SO(3) states. This algebraic approach has also been used in recent
references to recognize principal series states on dS2 with a holographic counterpart in [29]
and on AdS2 from charged scalar fields in [21]. Here, we will focus on the construction
from finite group elements following [2,11] where the representations are constructed as
maps from group elements to vector spaces. These maps act as homomorphisms on the
elements of function spaces built with specific covariance properties as we will summarize
below. Both methods have also been summarized in [13].

Among the subgroups of SO(4, 1), the combination of special conformal transforma-
tions, dilatations and rotations make up the stability subgroup, referred to as the parabolic
subgroup, P = NAM. This discussion also applies to general dimensions, as summarized
in [2]. For the group SO(4, 1), the parabolic subgroup does the same job that the Little
group does in studying the representations of the Poincaré group in the case of a zero
cosmological constant. That is, the elementary representations of SO(4, 1) are built up from
the parabolic subgroup. In essence their behaviour are determined by rotations, dilatations
and special conformal transformations. This works into the covariance properties of the
function spaces on group elements.

In general, a representation Π, is a map from group elements g ∈ G, to a vector space
V with elements v ∈ V, including the automorphism of this vector space,

Π : G → aut(V) (19)

such that this map is a homomorphism. That is, for elements g, g′ ∈ G and v ∈ V, the structure
is preserved as follows

ΠgΠg′v = Πgg′v. (20)

Representations induced by the parabolic subgroup are maps from group elements to
automorphisms of function spaces where the elements of the function space are infinitely
differentiable functions whose domain consists of group elements and whose range is the
finite dimensional Hilbert space where the unitary representations of the rotation subgroup
are realized. Denoting the rotation group elements by m ∈ M = SO(3) and labeling the
unitary irreducible representations of the rotation subgroup by l, we will denote the unitary
irreducible representations of the rotation subgroup by Dl(m) and the Hilbert space where
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these representations are realized by V l . With this notation we have functions on group
elements f(g), such that

f : G → V l . (21)

Moreover, these functions satisfy certain covariance conditions, each of which defines a
certain function space. Apart from functions over group elements, function spaces with
functions whose domain is the maximally compact subgroup K = SO(4), also enter the
discussion. We will denote the function spaces by Cχ when the domain is the elements of
the full group g ∈ G = SO(4, 1) and by C(K,V l) when the domain is over the maximally
compact subgroup q ∈ K = SO(4).

The representations induced by the parabolic subgroup are maps Iχ from the group
to the function space such that they are homomorphisms

Iχ : G → Cχ such that
(
Igf
)
(g′) = f

(
g−1g′

)
. (22)

The structure of the argument g−1g′, where g−1 denotes the inverse elements, guarantees
that the structure is preserved, as in (20).

The covariance conditions determine what happens to functions in the function space
under certain transformations. These transformations are carried out by considering the
combination of a group element from the domain of the function with elements from
subgroups. With the properties of these function spaces written in the format

C = {f : Domain→ Range; covariance condition }, (23)

the two function spaces of interest are

Cχ =
{
f : G → V l ; f(gnam) = |a|

3
2+cDl(m)−1f(g)

}
, (24)

C(K,V l) =
{
f : K → V l ; f(qna) = |a|

3
2+cf(q), f(qm) = Dl(m)−1f(q)

}
. (25)

A group element g ∈ G can be decomposed in terms of elements of subgroups.
There are a couple of ways to perform such decompositions, each of which involves
different subgroups. Denoting the elements of the subgroups as m ∈ M, a ∈ A, n ∈ N,
ñ ∈ Ñ, q ∈ K, one such decomposition is the Iwasawa decomposition, g = qna, which
highlights contributions from the maximally compact subgroup (K). Another one is the
Bruhat decomposition, g = ñnam which highlights contributions from translations (Ñ) and
rotations (M). Due to these decompositions, there is a unique correspondence between the
group elements g ∈ G and the elements of the maximally compact subgroup q ∈ K, which
further makes it possible to identify the functionspace Cχ with the function space C(K,V l).

Notice that the covariance condition f(qna) = |a| d2 +cf(q) is the covariance condition of Cχ

for the specific case where g is set to overlap with the maximally compact subgroup element
q and m is set to identity. Similarly the covariance condition f(qm) = Dl(m)−1f(q) is the
covariance condition of Cχ with g again chosen to be q and na set to be the unit element.

While functions over group elements might sound abstract, when in practice we work
with spacetime coordinates, there is a connection between the two. This is established
via the spatial translations. Considering position as an element of R3, we will call this
the ~x−space with ~x ∈ R3, there is a unique connection between elements of ~x−space and
elements of the subgroup spatial translations ñ ∈ Ñ. A specific element over ~x−space
corresponds to a specific element ñ~x of translation subgroup, such that the functions f (~x)
and f(ñ) match each other

~x ↔ ñ~x : f (~x) = f(ñ~x). (26)
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To complete the whole relation between group elements and ~x−space elements, there is
also a unique correspondence between a group element g ∈ G and an ~x−space element
~xg ∈ R3 such that

g↔ ~xg : g−1ñ~x = ñ~xn−1a−1m−1. (27)

Based on these correspondences and the definition of the representation (22), in ~x−space
realization, the representations Tχ : G → R3, are homomorphisms that act on functions
f ∈ Cχ as (

Tχ
g f
)
(~x) = |a|−

3
2−cDl(m) f (~xg); (28)

this relation is explicitly worked out in [2]. To summarize so far, we have functions
over group elements and functions over position space where the two are related by (26).
Moreover, there is a unique correspondence between group elements and elements of the
maximally compact subgroup as well as a unique correspondence between group elements
and elements of ~x-space.

The Inner Product

The function space Cχ can be completed into a Hilbert spaceHχ by further equipping
it with a well-defined inner product, denoted by (, ), which inherits the properties of the
rotation invariant inner product, denoted by 〈 | 〉. In position space, for functions f1, f2 ∈ Cχ

this inner product is

( f1, f2) =
∫

d3x〈 f1(~x)| f2(~x)〉. (29)

The definition of a unitary representation is that it preserves this inner product. Meaning,
given (29), the unitary representation should satisfy

(
Tχ

g f1, Tχ
g f2
)
=
∫

d3xg〈 f1(~xg)| f2(~xg)〉. (30)

Working out the left hand side of this equation gives [2]∫
d3xg〈 f1(xg), f2(xg)〉|a|−(c

∗+c) !
=
∫

d3xg〈 f1(~xg)| f2(~xg)〉 (31)

where c∗ is the complex conjugate of c. Here, due to (27) the volume element transforms as
|a|−3d3x = d3xg.

Notice that if the scaling weight is purely imaginary, c = iρ, ρ ∈ R, then this relation is
automatically satisfied. The case of a purely imaginary scaling weight captures the category
of the unitary principal series representations. Looking at (11) scalar fields of mass 3H

2 < m on
dS4 belong to the principal series category. We will refer to these fields as heavy.

The fact that complex scaling dimensions can host unitary irreducible representations
is counterintuitive if intuition is based on the case of a negative cosmological constant.
This difference between the two signs of the cosmological constant is due to the fact that
the positive cosmological constant case lacks global time translation invariance while it is
present in the negative cosmological constant case, bringing along further conditions.

The inner product (29), defined in ~x−space, can also be written in momentum space
via Fourier transformation

( f1, f2) =
∫ d3k

(2π)3 〈 f1(~k)| f2(~k)〉. (32)

In the momentum space, the scaling weight determines the overall momentum depen-
dence [2]. The late-time operatorO(~k) corresponds to the unitary irreducible representation
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(Tχg f )(~k). These representations are built from annihilation and creation operators. Over-
all they have the following form

O(~k) = f (a~k, a†
~k
)kc (33)

where acting on the vacuum state |0〉,

a~k|0〉 = 0. (34)

The function f (a~k, a†
~k
) is a linear combination of annihilation and creation operators with

c-dependent coefficients. We can build states by acting on the vacuum with the representa-
tion O(~k),

|O(~k)〉 ≡ O(~k)|0〉 = N (c)kc| −~k〉, (35)

where N (c) is a c-dependent coefficient. Ideally, these states should be normalizable up to
an overall Dirac delta function coming from the normalization of single particle states |~k〉
which are normalized as

〈~k′|~k〉 = (2π)3δ3(~k′ −~k). (36)

That is, defining Ω ≡
∫ d3k

(2π)3 〈−~k| −~k〉, we expect to find states normalized as

(O,O) = 1
Ω

∫ d3k
(2π)3 〈O(~k)|O(~k)〉 = 1. (37)

For late-time operators with purely imaginary scaling weight c = iρ, which we will
label by H for heavy, since

|OH(~k)〉 = N (iρ)kiρ| −~k〉, (38)

〈OH(~k)| = N ∗(iρ)k−iρ〈−~k|, (39)

the expected normalization condition (37) is automatically normalized.
One case where real scaling weight c = µ occurs is for scalars with mass m < 3H

2 .
These we will refer to as light fields and denote with label L. Here, with

|OL(~k)〉 = N (µ)kµ| −~k〉, (40)

〈OL(~k)|OL(~k′)〉 = |N (µ)|2k2µ〈−~k| −~k′〉 (41)

the factor k2µ corresponds to the factor |a|−(c∗+c), that becomes problematic for real scaling
weight in (31).

All is not lost on the real scaling weight front. We arrived at Equation (31) by assuming
that the ket and bra states are associated to each other via the straight forward complex
adjoint. This holds true for the principal series representations. For unitary representations
with a real scaling weight c ∈ R, the question of a well-defined inner product boils down
to the question of what will be the well-defined adjoint? If the adjoint operation for c ∈ R
involves a map that will cancel out the factor of |a|−(c∗+c), then we have a well-defined
inner product and unitary irreducible representations with respect to that adjoint.

Luckily, an invertible map that does this job exists and has been well-established in
mathematics literature. There is a map that assigns a representation Õ with c̃ = −c for
each representation O with c. This is called the intertwining map [11]. It is a map between a
function space Cχ with functions of dimension ∆ and a function space Cχ̃ with functions of
dimension ∆̃, such that

∆ + ∆̃ = 3. (42)
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In general dimensions, the relation is ∆ + ∆̃ = d. This transformation is also called the
shadow transformation in conformal field theory literature and the representations with
dimensions ∆̃ are referred to as shadow transformations. While χ = {l, c}, the shadow
representations1 have χ̃ = {l, c̃ = −c}.

In making use of any map, one needs to pay attention to the domain of the map.
The normalized intertwining map and its inverse, which we will collectively denote by G,
are well defined at different ranges of c and act on the following function spaces [11]

Gχ : Cχ̃ → Cχ such that Re(c) < 0 (43)

Gχ̃ : Cχ → Cχ̃ such that Re(c) > 0, (44)

such that

GχGχ̃ = Gχ̃Gχ = 1. (45)

In ~x−space the operator Gχ is related to the two-point function. We refer the reader to any
one of the references [2,11,13] for the ~x−space expression. In momentum space

Gχ(k) = n(χ)
Γ(−c)

( 3
2 + l + c− 1)Γ( 3

2 + c− 1)

(
k2

2

)c l

∑
s=0

Kls(c)Πls(k). (46)

The factors γχ and n(χ) are normalization factors related to each other as

γχ =
(−1)l

(2π)3/2 2
3
2+cn(χ), (47)

Πls(k) are projection operators for whose details we refer to [2,11]. Here, we want to
pay attention to the normalization of the intertwining operators. The explicit form of the
coefficient Kls(c) works into the normalizability properties of the intertwining operators

Kls(c) = (−1)l−s Γ( 3
2 + c + s− 1)Γ(c + 2− 3

2 − s)
Γ( 3

2 + c + l − 1)Γ(c + 2− 3
2 − l)

. (48)

Note all the factors of Gamma functions involved in the definition of the intertwining
operator. Gamma functions have poles whenever their argument is zero or takes on
a negative integer value, that is, for Γ(z), the poles are at z = 0,−1,−2, . . . The intertwining
operator involves a bunch of Gamma functions that depend on the scaling weight and spin
of the representation as well as the number of spatial dimensions. At certain combinations
we will reach the poles of the Gamma function. Hence, in picking the normalization of the
intertwining operator one needs to pay attention to these poles.

This means a different choice of normalization is appropriate for different values of c.
This also ties into having different categories of representations when c is real. The case of
real scaling weight hosts three different categories of unitary irreducible representations,
each of which have a different range of c. The range of c affects the normalization of the
intertwining operator and, hence, each category is equipped with a different intertwining
operator, where the difference comes from the normalization. In general dimensions and
for integer values of spin, these categories are [11]
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l = 0 : − d
2 < c < d

2 , d ≥ 2
complementary series: χ

l = 1, 2, 3, . . . : 1− d
2 < c < d

2 − 1, d > 2

χ−lσ
χ+

lσ
l :

c = 1− d
2 − l − σ

c = d
2 + l + σ− 1

exceptional series: d > 2
(l = 0, 1, 2, . . .)
(σ = 1, 2, . . .)

χ′−lσ
χ′+lσ

l + σ :
c = 1− d

2 − l
c = d

2 + l − 1

discrete series: χ l ∆ = d
2 + c ∈ Z d = 2, 4

(49)

As we already mentioned in four spacetime dimensions, the exceptional series repre-
sentations correspond to discrete series. For complementary series representations, the
intertwining operator sets a similarity map. Under this operation, the two operators have
the same trace, also referred to as the character, and therefore produce equivalent represen-
tations. In the case of discrete series, the two representations related by the intertwining
map are not equivalent. The full list of intertwining operators for each category is provided
in [11,13]. Here, we will only mention the ones as we make use of them, so as to be able to
demonstrate their use without diverting the discussion too much.

For the complementary series representations in four spacetime dimensions, the range
of the scaling weight for scalars and integer values of spin is [11]

l = 0 : − 3
2
< c <

3
2

, (50)

l = 1, 2, 3, . . . : − 1
2
< c <

1
2

, (51)

and the appropriate choice of normalization is

n+(χ) =

(
3
2
+ l + c− 1

)
Γ
( 3

2 + c− 1
)

Γ(−c)
(52)

For scalars, K00 = Π00 = 1 and with the normalization (52) we have

G+
χ={0,c} =

(
k2

2

)c

where G+
χ : Cχ̃ → Cχ. (53)

This intertwining operator works in the case of operators with a negative scaling weight,
which we will denote by αL(~k), where αL(~k) ∈ Cχ as follows

αL(~k) = G+
χ (k)α̃L(~k). (54)

The inverse intertwining operator is

G+
χ̃={0,c̃} =

(
k2

2

)c̃

where G+
χ̃ : Cχ → Cχ̃ (55)

and this is well-defined for positive scaling weight. It acts on operators with positive
scaling weight which we will denote by βL(~k), such that βL(~k) ∈ Cχ, as

β̃L(~k) = G+
χ̃ βL(~k). (56)

In four spacetime dimensions, whenever the normalization (52) becomes ill defined,
we reach discrete series representations. We refer to [30] for a very quick summary of
discrete series representations and [13] for a more detailed review. The massless scalar
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field in four spacetime dimensions has c = ± 3
2 and hence is categorized to host two rep-

resentations from the category of discrete series representations with ∆ = 0, 3 which we
will, respectively, denote as αM(~k) and βM(~k). The intertwining operator normalized, as in
the case of the complementary series category, becomes problematic for the representation
with c = − 3

2 , ∆ = 0. This representation is identified to belong to χ−01 with values l = 0,
σ = 1. It lives in the function space C−01, where the domain of the intertwining operator
G+

χ+
01

lies. In momentum space, this intertwining operator is given by [11]

G+
χ+

01
(k) =

(
k2

2

) 3
2

, with G+
χ+

01
: C−01 → C

+
01, (57)

and normalizes the massless late-time operator αM as follows

α̃M(~k) = G+
χ+

01
(k)αM(~k). (58)

In general dimensions, this intertwining operator has the following expression [11]

G+
χ+

lσ
(k) =

(
k2

2

)l+σ+ d
2−1 l

∑
s=0

(d + l + s + σ− 3)!(σ + l − s)!
(d + 2l + σ− 3)!σ!

(−1)l−sΠls(k) (59)

from which one can confirm that there are no poles in (57). The intertwining operator (55)
can still be used in the normalization of the operator with c = 3

2 , ∆ = 3.
Note that it is not just the functional form of the intertwining operators G+

χ , G+
χ̃ , G+

χ+
01

that matter. One must pay attention to which function space they can act on.
The late-time operators O(~x), obtained in free scalar theory, correspond to the unitary

irreducible representations (Tχ
g f )(~x) because they have scaling weights as expected from

the scaling weights of the unitary irreducible representations of SO(4, 1) and they are
normalizable with respect to the well-defined inner product, with the appropriate definition
of the adjoint in each category recognized with respect to the scaling weight, as explicitly
shown in [2].

To summarize, the unitary irreducible representations of SO(4, 1) fall into the following
categories equipped with a different definition of the adjoint shown in Table 1.

Table 1. Categories of the representations of SO(4, 1) and the appropriate intertwining operators
mentioned in the discussion.

c = iρ (O,O) ρ ∈ R+ Principal

c ∈ R
(
O, Õ

) − 3
2 < c < 3

2
for c > 0: Õ = G+

χ̃ O Complementary
for c < 0: O = G+

χ Õ
3
2 + c ∈ Z for c = − 3

2 : Õ = G+
χ+

01
O Discrete

In using the intertwining operators, one needs to take care of the sign of scaling weight
for each late-time operator and the domains of the intertwining operators Gχ and Gχ̃ to
decide how to perform the shadow transformation in obtaining the adjoint operator Õ.
This is emphasized with explicit examples from the complementary series case in [2].

The inner product (29) for the function space on which the representations live does
not contradict the Klein–Gordon inner product,

(
F~k, F~k′

)
KG ≡ −i

∫
d3x
√
|detg|g0µ

(
F∗~k ∂µF~k′ − F~k′∂µF∗~k

)
. (60)

It is the mode functions that are normalized with respect to the Klein–Gordon inner product
and it is straightforward to see that this remains true in the late time limit. Information
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about the annihilation and creation operators do not work into the mode functions but they
do work into the late-time operators and, hence, the representations they realize. The inner
product for the representations is one that can work with the structure arising from the
annihilation and creation operators and momentum or position dependence, while the
Klein–Gordon inner product focuses on the time dependence. Readers interested in the
connection between Klein–Gordon inner product and unitarity of the representations can
also consider reference [25].

4. At the Late-Time Boundary

In this section, we give an example to each one of the categories of unitary irreducible
representations we discussed in Section 3. Our examples are based on recognizing operators
that realize these representations for free scalar fields at the late-time boundary. We refer to
these operators as late-time operators. Following [2,3] we introduce these late-time operators
and discuss their contribution to the late-time limit of two-point functions. Here, we work
in terms of momentum modes and all the properties of the representations mentioned
in 3 are encoded in the normalization of these operators. In a complementary way, it is
possible to construct local operators that realize the unitary irreducible representations as
well. Examples of this are [31,32], where the different properties of the different categories
of unitary representations are encoded in the definition of the annihilation and creation
operators (for instance, in [32], see the appearance of the intertwining operator in the
commutation relation for complementary series annihilation and creation operators).

4.1. The Massive Scalar Field and Principal and Complementary Series Representations

Consider a free scalar field of various mass, on a fixed de Sitter metric

S = −1
2

∫
dtd3x

√
−g
[

gµν∂µφ∂νφ + m2φ2
]
, (61)

in the Poincaré patch with conformal time coordinate

ds2 =
−dη2 + d~x2

H2|η|2 . (62)

In momentum space, the solution to mode functions that satisfy Bunch–Davies initial con-
ditions, that is, the solutions that behave as if they were on Minkowski at very early times,
involve Hankel functions.2 These are Hankel functions of real order for light fields and of
imaginary order for heavy fields, where lightness or heaviness of the field is determined
in comparison to 3H

2 in four spacetime dimensions. Therefore heavy and light scalars on
frozen de Sitter, respectively, behave as follows

m >
3
2

H : φH(~x, η) =
∫ d3k

(2π)3

[
|η|

3
2 H̃(1)

ρ (k|η|)a~k + |η|
3
2

(
H̃(1)

ρ (k|η|)
)∗

a†
−~k

]
ei~k·~x, (63)

m <
3
2

H : φL(~x, η) =
∫ d3k

(2π)3

[
|η|

3
2 H(1)

ν (k|η|)a~k + |η|
3
2

(
H(1)

ν (k|η|)
)∗

a†
−~k

]
ei~k·~x, (64)

where H̃(1)
ρ (z) = e−ρπ/2H(1)

iρ (z). In a wavefunction calculation for heavy fields, the dif-

ference between H̃(1)
µ (u) and H(1)

iµ (u) due to the numerical factor is not relevant but
shortly we will talk about normalized late-time operators where this factor will work
into the normalization.

The annihilation and creation operators a~k, a†
~k

above satisfy the following commutation
relations in our conventions [

a~k, a†
~k′

]
= (2π)3δ(3)(~k−~k′). (65)
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Denoting the vacuum by |0〉 and a single particle state with momentum~k by |~k〉, we work
with states that are orthonormal

〈~k|~k′〉 = (2π)3δ(3)(~k−~k′). (66)

The annihilation and creation operators act on these states as follows

a~k|0〉 = 0, a†
~k
|0〉 = |~k〉 for ∀~k. (67)

In our notation, ρ and ν are positive real parameters that carry information about the mass
of the field

ρ2 =
m2

H2 −
9
4

, ν2 =
9
4
− m2

H2 . (68)

Notice that at a finite time η 6= 0, the time and momentum dependence of the scalar
field behavior in (63) and (64) is interwoven. Yet in the late-time limit, as η → 0, the time
and momentum dependence factorizes and this involves two separate pieces that transform
differently under a rescaling of coordinates. For the purpose of having a compact notation,
defining the following labels for light and heavy fields

p = {L, H}, and µp =

{
µL = ν
µH = iρ

(69)

the late-limit of the scalar field takes the form

lim
η→0

φp(~x, η) =
∫ d3k

(2π)3

[
|η|

3
2−µp αp(~k) + |η|

3
2+µP βp(~k)

]
ei~k·~x. (70)

We call αp and βp the late-time operators. Note that so far we have not mentioned anything
about normalization. Shortly we will discuss the connection between a field that is normal-
ized with respect to Klein–Gordon normalization and late-time operators normalized with
respect to appropriate inner products of the representation category they correspond to as
we discussed in Section 3.

The late-time operators are composed of annihilation and creation operators and have
momentum dependence as k±µp , where the plus sign applies for βp and minus sign for αp.
These operators can be recognized as unitary irreducible representations of SO(4, 1) and
they exist in other dimensions as well. One can confirm that they are unitary irreducible
representations by checking their scaling dimensions and normalization properties, as was
explicitly discussed in [2]. In the case of heavy scalars, the scaling dimensions ∆O are

m >
3
2

H :
∆αH = 3

2 − iρ

∆βH = 3
2 + iρ.

(71)

Notice that these scaling dimensions have purely imaginary scaling weights c = ±iρ. This
is a defining property of the principal series representations. Moreover, the operators
αH , βH are normalizable with respect to the principal series inner product, Equation (37)
of Section 3. As such αH and βH furnish an example to principal series representations.
With appropriate normalization these operators are

αH
N(
~k) =

√
ρπsinh(ρπ)

[
− i

π
Γ(iρ)e−ρπa~k +

1
sinh(ρπ)Γ(1− iρ)

a†
−~k

](
k
2

)−iρ
(72)

βH
N(
~k) =

√
ρπsinh(ρπ)

[
eρπ

sinh(ρπ)Γ(1 + iρ)
a~k +

i
π

Γ(−iρ)a†
−~k

](
k
2

)iρ
(73)
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where we follow the conventions of [3]. Similarly for light fields the scaling dimensions are

m <
3
2

H :
∆αL = 3

2 − ν

∆βL = 3
2 + ν.

(74)

These scaling dimensions have real scaling weights c = ±ν and for masses that fall in the
range − 3

2 < c < 3
2 the late-time operators are normalizable with respect to the complemen-

tary series inner product as reviewed in Section 3 which involves shadow transformations.
This range of real scaling weights only excludes the massless case. The appropriately
normalized complementary series late-time operators are [3]

0 < m <
3
2

H :
αL

N(
~k) = −i2ν/2

[
a~k − a†

−~k

]
k−v

βL
N(
~k) = 2−ν/2

[
1+icot(πν)
1−icot(πν)

a~k + a†
−~k

]
kν.

(75)

The complementary series case also involves the shadow operators that are obtained via the
transformations in Equations (54) and (56) of Section 3. The normalized shadow operators
and their scaling dimensions are [3]

α̃L
N(
~k) = −i2−ν/2

[
a~k − a†

−~k

]
kν, ∆̃α =

3
2
+ ν (76)

β̃L
N(
~k) = 2ν/2

[
1 + i cot(πν)

1− i cot(πν)
a~k + a†

−~k

]
k−ν, ∆̃β =

3
2
− ν (77)

Note that the operators α̃L
N and βL

N have the same value of the scaling dimension, the same
observation holds for β̃L

N and αL
N . However, comparing the terms in the square parenthesis

of Equations (75) and (76) shows that βL
N is not the same operator as α̃L

N , similarly αL
N is not

the same as β̃L
N . This is why we do not refer to αL

N and βL
N as shadows of each other.

In inflationary calculations on the correlation functions of scalars, a useful convention
is to calculate the correlation functions of the Fourier modes of the canonically quantized
field operator, the ϕ~k(η) defined via

φKG(~x, η) =
∫ d3k

(2π)3 ei~k·~x ϕ~k(η) (78)

where the mode functions F~k(~x, η) = ϕ~k(η)e
i~k·~x, have been normalized with respect to the

Klein–Gordon norm (60). If we take a step back, the full set of canonically conjugate pair of
variables involve a conjugate momentum operator as well,

πKG(~x, η) =
∫ d3k

(2π)3 ei~k·~xπ~k(η). (79)

This pair of conjugate operators have the nontrivial commutation relation[
ϕ~k(η), π~k′(η)

]
= i(2π)3δ(3)(~k +~k′). (80)

We can also write the late-time operators {αN , βN} in terms of canonical field and momen-
tum modes, {ϕ~k, π~k}. Denoting η0 ≡ 0 and defining

lim
η→η0=0

φ
p
KG(~x, η) =

∫ d3k
(2π)3 ei~k·~x ϕ

p,lt
~k

(η0), (81)

lim
η→η0=0

π
p
KG(~x, η) =

∫ d3k
(2π)3 ei~k·~xπ

p,lt
~k

(η0) (82)
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from (70), we have

ϕ
p,lt
~k

(η0) = |η0|
3
2−µp αp(~k) + |η|

3
2+µp βp(~k), (83)

π
p,lt
~k

(η0) = −
(

3
2
− µp

)
|η0|−

3
2−µp

H2 αp(~k)−
(

3
2
+ µp

)
|η0|−

3
2+µp

H2 βp(~k). (84)

So far, everything looks in unison for the light and heavy fields. However, reconsider-
ing these expressions in terms of the normalized late-time operators highlights differences
in the coefficients [3]. For light fields we have

ϕL,lt
~k

(η0) =

√
π

2
H

[
|η0|

3
2−ν Γ(ν)

π
2ν/2αL

N(
~k) + |η0|

3
2+ν 1− i cot(πν)

2ν/2Γ(ν + 1)
βL

N(
~k)

]
, (85a)

πL,lt
~k

(η0) = −
√

π

2H

[
|η0|−

3
2−ν

(
3
2
− ν

)
Γ(ν)

π
2ν/2αL

N(
~k)

+ |η0|−
3
2+ν

(
3
2
+ ν

)
1− i cot(πν)

2ν/2Γ(ν + 1)
βL

N(
~k)

]
; (85b)

whereas for heavy fields, the relation is

ϕH,lt
~k

(η0) =
H

2
√

ρ sinh(ρπ)

[
|η0|

3
2−iρeπρ/2αH

N(
~k) + |η0|

3
2+iρe−πρ/2βH

N(
~k)

]
, (86a)

πH,lt
~k

(η0) = −
1

2H
√

ρ sinh(ρπ)

[
|η0|−

3
2−iρ

(
3
2
− iρ

)
eπρ/2αH

N(
~k)

+ |η0|−
3
2+iρ

(
3
2
+ iρ

)
e−πρ/2βH

N(
~k)

]
. (86b)

In observations, the physical measurements probe ϕ
p,lt
~k

(η0) and π
p,lt
~k

(η0) as opposed

to the late-time operators. The above relations can be inverted to express α
p
N(
~k) and β

p
N(
~k)

in terms of ϕ
p,lt
~k

(η0), π
p,lt
~k

(η0). For example, the heavy late-time operators can be written in
terms of the heavy field momentum modes as

αH
N(
~k) = −i

√
sinh(ρπ)

ρ

[
ϕH,lt
~k
H
|η0|−

3
2+iρ

(
3
2
+ iρ

)
e−πρ/2 + HπH,lt

~k
|η0|

3
2+iρe−πρ/2

]
, (87)

βH
N(
~k) = i

√
sinh(ρπ)

ρ

[
ϕH,lt
~k
H
|η0|−

3
2−iρ

(
3
2
− iρ

)
eπρ/3 + HπH,lt

~k
|η0|

3
2−iρeπρ/2

]
. (88)

where we suppressed the η0 dependence of ϕ
p,lt
~k

(η0), π
p,lt
~k

(η0) for ease of notation.
Since the late-time operators are built out of annihilation and creation operators, they

inherit a nontrivial commutation relation coming from the commutation properties of
annihilation and creation operators. This differs in terms of the coefficients in the case of
principal and complementary series[

βH
N(
~k), αH

N(
~k′)
]
= −2sinh(ρπ)(2π)3δ(3)

(
~k +~k′

)
, (89)[

αL
N(
~k), βL

N(
~k′)
]
=

−2i
1− icot(νπ)

(2π)3δ(3)
(
~k +~k′

)
. (90)

This resembles the commutation of field and conjugate momentum operators.
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Note that we can also invert Equations (72), (73) and (75) to write the annihilation
and creation operators in terms of the late-time operators. In the case of light fields, this
relation is

a~k =
icot(νπ)− 1

2cot(νπ)

[
kν

2ν/2 αL
N(
~k) + i

2ν/2

kν
βL

N(
~k)

]
(91)

a†
−~k =

1 + icot(νπ)

i21+ν/2 kναL
N(
~k) +

1− icot(νπ)

21−ν/2 k−νβL
N(
~k) (92)

whereas in the case of heavy fields, it is

a~k =
1
2

[ √
ρπsinh(ρπ)

sinh2(ρπ)Γ(1− iρ)

(
k
2

)−iρ
βH

N(
~k)− i

π
Γ(−iρ)

√
ρπ

sinhρπ

(
k
2

)iρ
αH

N(
~k)

]
(93)

a†
−~k =

1
2

[
i
π

√
ρπ

sinh(ρπ)
Γ(iρ)e−ρπ

(
k
2

)−iρ
βH

N(
~k) +

√
ρπsinh(ρπ)

sinh2(ρπ)Γ(1 + iρ)
eρπ

(
k
2

)iρ
αH

N(
~k)

]
. (94)

By acting on the SO(4, 1) invariant vacuum state that is annihilated by annihilation opera-
tors with these late-time operators, we can build single particle states

|αp
N(
~k)〉 ≡ α

p
N(
~k)|0〉, (95)

|βp
N(
~k)〉 ≡ β

p
N(
~k)|0〉. (96)

We noted the difference between αL
N and βL

N , even though their dimensions resemble the
dimensions of operators related by shadow transformations. At the level of states, the states
built from βL

N do match the states built from α̃L
N up to an overall factor of i. This is also true

in comparing the states built from αL
N and β̃L

N ,

αL
N(
~k)|0〉 = iβ̃L

N |0〉 = i2ν/2k−ν| −~k〉, (97)

βL
N(
~k)|0〉 = −iα̃L

N(
~k)|0〉 = 2−ν/2kν| −~k〉. (98)

While at the level of operators αL
N and βL

N are not shadows of each other, at the level of
states they do give rise to states that can be recognized as shadows of each other.

Two Point Functions of Principal and Complementary Series Late-Time Operators

Now let us consider the two-point functions. Our notation will be such that

〈O(~k)O(~k′)〉 = 〈0|O(~k)O(~k′)|0〉. (99)

The two-point functions of the late-time operators themselves have the following momentum
dependence [3], as also summarized in [33]. For the case of principal series representations

〈αH
N(
~k)αH

N(
~k′)〉 = −Γ(1 + iρ)

Γ(1− iρ)
e−ρπ(2π)3δ(3)(~k +~k′)

(
k
2

)−2iρ
,

= −e2iγρ−ρπ(2π)3δ(3)(~k +~k′)
(

k
2

)−2iρ
(100a)

〈βH
N(
~k)βH

N(
~k′)〉 = iρ

Γ(−iρ)
Γ(1 + iρ)

eρπ(2π)dδ(d)(~k +~k′)
(

k
2

)2iρ
(100b)

= −e−2iγρ+ρπ(2π)3δ(3)(~k +~k′)
(

k
2

)2iρ

〈αH
N(
~k)βH

N(
~k′)〉 = e−ρπ(2π)3δ(3)(~k +~k′), (100c)

〈βH
N(
~k)αH

N(
~k′)〉 = eρπ(2π)3δ(3)(~k +~k′). (100d)
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In the case of complementary series representations, the list is as follows

〈αL
N(
~k)αL

N(
~k′)〉 = 2νk−2ν(2π)3δ(3)(~k +~k′), (101a)

〈βL
N(
~k)βL

N(
~k′)〉 = k2ν

2ν

1 + i cot(πν)

1− i cot(πν)
(2π)3δ(3)(~k +~k′), (101b)

〈αL
N(
~k)βL

N(
~k′)〉 = −i(2π)3δ(3)(~k +~k′) (101c)

〈βL
N(
~k)αL

N(
~k′)〉 = i

1 + i cot(πν)

1− i cot(πν)
(2π)3δ(3)(~k +~k′). (101d)

Lastly, we would like to discuss how these late-time operators contribute to the late-
time two-point functions. The relations in Equations (83) and (84) we introduced in the
canonical quantization picture make the comparison easy. As also checked by wavefunction
calculations [3], the two-point functions at late-time are related as follows for the principal
series representations

〈ϕH,lt
~k

ϕH,lt
~k′
〉 = H2|η0|3

4ρ sinh(ρπ)

[
|η0|−2iρeρπ〈αH

N(
~k)αH

N(
~k′)〉+ |η0|2iρe−ρπ〈βH

N(
~k)βH

N(
~k′)〉

+ 〈αH
N(
~k)βH

N(
~k′)〉+ 〈βH

N(
~k)αH

N(
~k′)〉

]
(102)

〈πH,lt
~k

πH,lt
~k′
〉 = |η0|−3

4ρ sinh(ρπ)H2

{(
3
2
+ iρ

)2
|η0|2iρe−ρπ〈βH

N(
~k)βH

N(
~k′)〉 (103)

+

(
3
2
− iρ

)2
|η0|−2iρeρπ〈αH

N(
~k)αH

N(
~k′)〉

+

(
9
4
+ ρ2

)[
〈αH

N(
~k)βH

N(
~k′)〉+ 〈βH

N(
~k)αH

N(
~k′)〉

]}
. (104)

The explicit momentum dependence of these two-point functions are

〈ϕH,lt
~k

ϕH,lt
~k′
〉 =(2π)3H2|η0|3

4ρ sinh(ρπ)
δ(3)(~k +~k′)×[

2 cosh(ρπ)− e−2iγρ

(
k|η0|

2

)2iρ
− e2iγρ

(
k|η0|

2

)−2iρ
]

(105)

〈πH,lt
~k

πH,lt
~k′
〉 = (2π)3

4ρ sinh(ρπ)|η0|3H2 δ(3)(~k +~k′)

[(
9
4
+ ρ2

)
2 cosh(ρπ)

−
(

3
2
+ iρ

)2
e−2iγρ

(
k|η0|

2

)2iρ
−
(

3
2
− iρ

)2
e2iγρ

(
k|η0|

2

)−2iρ
]

. (106)

For the complementary series representations, the two-point functions of the canonically
quantized field and momenta are related to the two-point functions of the late-time opera-
tors as
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〈ϕL,lt
~k

ϕL,lt
~k′
〉 =π

4
H2|η0|3

{
2νΓ2(ν)

π2|η0|2ν
〈αL

N(
~k)αL

N(
~k′)〉

+
(1− i cot(νπ))2

2νΓ2(1 + ν)
|η0|2ν〈βL

N(
~k)βL

N(
~k′)〉

+
1− i cot(νπ)

νπ

[
〈βL

N(
~k)αL

N(
~k′)〉+ 〈αL

N(
~k)βL

N(
~k′)〉

]}
, (107)

〈πL,lt
~k

πL,lt
~k′
〉 =π

4
1

|η0|3H2

{
1− i cot(νπ)

νπ

(
3
2
+ ν

)(
3
2
− ν

)[
〈βL

N(
~k)αL

N(
~k′)〉

+ 〈αL
N(
~k)βL

N(
~k′)〉

]
+

2νΓ2(ν)

π2|η0|2ν

(
3
2
− ν

)2
〈αL

N(
~k)αL

N(
~k′)〉

+
(1− i cot(νπ))2|η0|2ν

2νΓ2(ν + 1)

(
3
2
+ ν

)2
〈βL

N(
~k)βL

N(
~k′)〉

}
; (108)

where the explicit momentum dependence is

〈ϕL,lt
~k

ϕL,lt
~k′
〉 = π(2π)3

4
H2|η0|3δ(3)(~k +~k′)×{

Γ2(ν)

π2

(
k|η0|

2

)−2ν

+
(1 + cot2(νπ))

Γ2(1 + ν)

(
k|η0|

2

)2ν

− 2
νπ

cot(πν)

}
, (109)

〈πL,lt
~k

πL,lt
~k′
〉 = π

4
(2π)3

|η0|3H2 δ(3)(~k +~k′)

[
Γ2(ν)

π2

(
3
2
− ν

)2( k|η0|
2

)−2ν

+
1 + cot2(νπ)

Γ2(ν + 1)

(
3
2
+ ν

)2( k|η0|
2

)2ν

− 2 cot(νπ)

νπ

(
3
2
+ ν

)(
3
2
− ν

)]
. (110)

4.2. Massless Scalar and the Discrete Series Representations

The massless scalar solution

m = 0 : φL(~x, η) =
∫ d3k

(2π)3

[
|η|

3
2 H(1)

3
2
(k|η|)a~k + |η|

3
2

(
H(1)

3
2
(k|η|)

)∗
a†
−~k

]
ei~k·~x, (111)

is the solution which accommodates two late-time operators with weights c = ± 3
2 . This

puts the massless scalar exactly at the values that fall just out of the category of comple-
mentary series. The late-time operator with scaling weight cα = − 3

2 , scaling dimension
∆α = 0 is

αM(~k) = − i
π

Γ
(

3
2

)
NM

α

[
a~k − a†

−~k

]( k
2

)− 3
2
. (112)

Notice that for this operator, the normalization of the intertwining operator G+
χ=0,− 3

2
of

Section 3, Equation (53) corresponds to

n+(χ = 0,−3
2
) = −1

Γ(−1)
Γ( 3

2 )
. (113)

The Gamma function Γ(−1) has a pole and so we cannot normalize this operator with the
complementary series inner product. The inner product that applies here is the one with
the intertwining operator (57) of Section 3
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G+
χ+

01
(k) =

(
k2

2

) 3
2

, (114)

and thus the normalized late-time operator of dimension ∆ = 0 is

αM
N (~k) = −i23/4

[
a~k − a†

−~k

]
k−3/2. (115)

The second late-time operator has dimension ∆ = 3 and prior to normalization is of
the form

βM(~k) =
NM

β

Γ( 3
2 + 1)

[
a~k + a†

−~k

]( k
2

) 3
2
. (116)

The intertwining operation in equation (56) is applicable to this operator

β̃M(~k) = G+
χ̃={0,− 3

2 }
(~k)βM(~k), (117)

and its normalized form is

βM
N (~k) = 2−

3
4

[
a~k + a†

−~k

]
k

3
2 . (118)

The commutation relation between the massless late-time operators is[
βM

N (~k), αM
N (~k′)

]
= 2i(2π)3δ(3)

(
~k +~k′

)
. (119)

In this case, the relation between the late-time field and conjugate momentum modes
and the late-time operators are as follows

ϕM,lt
~k

(η0) =H

[
21/4

3
|η0|3βM

N (~k) +
1

25/4 αM
N (~k)

]
(120a)

πM,lt
~k

(η0) =− H−121/4βM
N (~k). (120b)

Note that a special feature of this case is that conjugate momentum modes track solely
βM

N (~k) among the late-time operators.
As the scaling weight depends on the dimension, in general dimensions, some of

the massless scalar solutions can be recognized as part of the exceptional series category.
Following [13], in four dimensions the exceptional series category is considered equivalent
to a discrete series category and we recognize αM

N and βM
N to belong to discrete series

representations, which also agrees with [32]. Other examples in this category are the non-
zero spin fields in Higher Spin theory on de Sitter [34] and the spin− 3

2 and 5
2 fermions [35].

Another example of identifying discrete series representations comes from modified gravity
literature [36], where the tensor degrees f freedom at a perturbative level are recognized to
belong to discrete series representations of the de Sitter group.

Two Point Functions of Discrete Series Late-Time Operators

The two-point functions of the scalar discrete series late-time operators are
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〈αM
N (~k)αM

N (~k′)〉 = 23/2

k3 (2π)3δ(3)
(
~k +~k′

)
(121a)

〈αM
N (~k)βM

N (~k′)〉 = −i(2π)3δ(3)
(
~k +~k′

)
(121b)

〈βM
N (~k)αM

N (~k′)〉 = i(2π)3δ(3)
(
~k +~k′

)
(121c)

〈βM
N (~k)βM

N (~k′)〉 = k3

23/2 (2π)3δ(3)
(
~k +~k′

)
(121d)

Once again, we note how these late-time operator correlation functions contribute to the
two-point functions of field and conjugate momenta operators at the late-time

〈ϕM,lt
~k

ϕM,lt
~k′
〉 = H2|η0|3

{
|η0|−3

25/2 〈α
M,lt
N αM,lt

N 〉+
√

2
9
|η0|3〈βM,lt

N βM,lt
N 〉

+
1
6

[
〈βM

N αM
N 〉+ 〈αM

N βM
N 〉
]}

(122a)

〈πM,lt
~k

πM,lt
~k′
〉 =
√

2
H2 〈β

M
N βM

N 〉. (122b)

It is interesting to note that in this case the βM
N two-point function alone completely deter-

mines the conjugate momentum two-point function, as expected from the relation between
the modes and late-time operators. The momentum dependence of these two-point func-
tions is

〈ϕM,lt
~k

ϕM,lt
~k′
〉 = (2π)3H2

[
|η0|6k3

18
+

k−3

2

]
δ(3)
(
~k +~k′

)
, (123a)

〈πM,lt
~k

πM,lt
~k′
〉 = k3

2H2 (2π)3δ(3)
(
~k +~k′

)
. (123b)

5. Wavefunction Discussions

Wavefunction techniques were initially introduced to address questions related to
quantum gravity and quantum cosmology [37]. Recently, early universe studies have
started consulting this technique more often then before. One example is in adressing
inflationary perturbations in the regime where non-Gaussianities become important on the
tail of the probability distribution and in–in methods fail [38]. Another similar example
is its use in studying the infrared effects in presence of a quartic self interaction of a light
scalar field on de Sitter [39]. Wavefunction methods also come in handy when discussing
properties of interactions, especially for comparing the conditions on allowed interactions
between the cases of a zero and positive cosmological constant. Each of the non-exhaustive
list of references [40–43], has initiated a different direction in addressing the unitarity of
interactions and bulk time evolution by studying the properties of the de Sitter wavefunc-
tion and its more general version for Friedmann Le Maitre Robertson Walker spacetime.
Ref. [44] provides a short review of the recent progresses on this direction in terms of
comparing restrictions on flat space physics, due to Lorentz invariance, locality, unitarity
and causality that manifest themselves as properties of the S-matrix, and their counterpart
in the case of a positive cosmological constant in terms of how the properties of the de Sitter
wavefunction become restricted. We find reference [45] to be a pedagogical introduction
to this technique and we will follow it in our summary below. Reference [46] is another
pedagogical summary of the subject.

Earlier advances towards reaching this level of rigour and usefulness of the wavefunc-
tion technique in the case of a positive cosmological constant were established by studying
the case of the massless scalar field [47] and the late-time behaviour of the wavefunction in
the case of interacting light fields of various spin (namely scalars and gauge fields) on a de
Sitter background [48].



Universe 2023, 9, 59 24 of 37

Perhaps what motivated the study of the wavefunction in the case of a positive cosmo-
logical constant was the interpretation of [49] for holography with a positive cosmological
constant in terms of a wavefunction description. This work and earlier works that followed
its lead saw this holographic description as a complementary means to address inflationary
calculations [50], which could eventually lead to a better interpretation of inflationary ob-
servations [51], such as the observed suppression of tensor degrees of freedom over scalars
and the tilt in the power spectrum. Along the way, the wavefunction techniques have
been employed in deriving consistency conditions on inflationary correlation functions [52].
These techniques also gave rise to discussions on studying the deviations from scale in-
variance exhibited in the inflationary power spectra in terms of renormalization group
flows [53–56]. This discussion has led to classifying inflationary potentials into universality
classes [57]. In a different direction, today, renormalization group techniques are even used
to investigate interactions that lead to divergences with time within perturbative quantum
field theory on de Sitter [58]. With this insight, let us now review the de Sitter wavefunction.

The wavefunction is a complex valued functional of the field eigenvalues φ(~x, η)
and time

Ψ[φ(~x, η), η]; (124)

where the eigenstates {|φ(~x, η)〉} of the field operator φ̂(~x, η),

φ̂(~x, η)|φ(~x, η)〉 = φ(~x, η)|φ(~x, η)〉, (125)

form a complete basis at any fixed time η. The wavefunctional is defined as

Ψ[φ(~x, η), η] ≡ 〈φ(~x, η)|Ψ(η)〉, (126)

An arbitary quantum mechanical state |Ψ(η)〉 at any given time can be expressed in terms
of the basis {|φ(~x, η)〉} as follows

|Ψ(η)〉 =
∫
Dφ(~x, η)|φ(~x, η)〉〈φ(~x, η)|Ψ(η)〉. (127)

As such, the wavefunctional provides a representation for an arbitrary quantum mechanical
state |Ψ(η)〉.

This sets a functional Schrödinger formulation for studying interactions where the
time evolution of the state |Ψ(t)〉 is governed by the Schrödinger equation. The measure
Dφ(~x, η) takes the reality conditions of the field into account. In working with Fourier
modes φ~k, defined by

φ(~x, t) =
∫ d3k

(2π)3 ei~k·~xφ~k(η) (128)

the reality of the field then implies
(
φ~k
)∗

= φ−~k. In this case, the measure is to include both
φ~k and φ∗~k

as well as the reality condition. We will make use of this in our discussion below.
Since the late-time boundary of de Sitter is a convenient place to recognize the unitary

irreducible representations of the de Sitter group, we will focus on the late-time behaviour of
the wavefunction. We will consider the Bunch–Davies wavefunction which is a functional
of some given late-time profile which we will denote by Φ and the late-time η0 itself,
ΨBD[Φ, η0]. We can also talk about the Fourier modes Φ~k, of the late-time profile which we
will make use of below.

This specification of the wavefunction is partly to do with the boundary conditions.
The Bunch–Davies wavefunction is obtained as a pathintegral over all field configurations
that satisfy Bunch–Davies boundary conditions [59]

Ψ[Φ, η0] =
∫
C
DφeiS[φ]. (129)
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These boundary conditions require the field to be well behaved at early times and to
approach the given profile Φ at late-times. The early-time limit η → −∞ requires the
inclusion of a factor of ±iε to be well defined. The choice of the sign here defines two
different contours

C− : η ∈ (−(1 + iε)∞, η0], (130)

C+ : η ∈ (−(1− iε)∞, η0]. (131)

The mode solutions that satisfy these boundary conditions involve Hankel functions and
the choice of the contour determines whether to pick Hankel functions of the first or second
kind. We will work with the contour C− only and therefore use Hankel functions of the
first kind. Reference [60] works with the other contour as well.

In practice, it is generally difficult to perform the full integral in (130) and one consults
to a semiclassical approximation in which the onshell action Sonshell gives the dominant
contribution to the path integral [37]. With our choice of the contour

Ψ[Φ, η0] =
∫ φ(η0)=Φ

φ(η)→0
as η→−(1+iε)∞

DφeiS[φ] ∼ Nc(η0)eiSonshell [Φ,η0], (132)

where Nc(η0) denotes a time dependent normalization, the onshell action in k−space is
given by

Sonshell = −
1
2

∫ d3k
(2π)3

∫
C−

dη
∂

∂η

[
a(η)2φ′~k(η)φ−~k(η)

]
, (133)

with a(η0) =
1

H|η0|
. The late-time profile can also be decomposed in terms of Fourier modes

Φ~k and the solution that satisfies the boundary conditions can be written as

φ~k = Φ~k
vk(η)

vk(η0)
(134)

with vk(η) = |η| 32H(k|η|) where H(k|η|) stands for the appropriate Hankel function
depending on the mass, that is H(1)

ν (k|η|) for light fields and H̃(1)
ρ (k|η|) for heavy fields.

The ratio vk(η)
vk(η0)

is called the bulk-to-boundary propagator. With all these considerations,
the wavefunction in the late-time limit for a free field is a Gaussian of the late-time profile
Φ~k, and accommodates k and η0 dependence as determined by the mode functions

ΨBD[Φ, η0] = Nc(η0)e
− 1

2
∫ d3k

(2π)3
P(k,η0)Φ~kΦ−~k . (135)

The specific momentum and time dependence of P(k, η0) differs for principal and comple-
mentary series representations. The momentum and time dependence of P determines the
momentum and time dependence of the late-time correlation functions.

Paying attention to the behaviour of the Hankel functions in the late-time limit the prin-
cipal and complementary series wavefunctions at late-times have the following forms [3]

Ψprincip
BD = Np(η0) exp

 |η0|−3

2H2

∫ d3k
(2π)3

i
3
2
+ ρ

1 + e−ρπ−2iγρ

(
k|η0|

2

)2iρ

1− e−ρπ−2iγρ

(
k|η0|

2

)2iρ

|Φ~k|
2

, (136)

Ψcompl
BD [Φ; η0] = Nc(η0) exp

 |η0|−3

2H2

∫ d3k
(2π)3

i
3
2
+ iν

1+i cot(πν)
Γ(ν+1)

(
k|η0|

2

)2ν
+ i Γ(ν)

π

1+i cot(πν)
Γ(ν+1)

(
k|η0|

2

)2ν
− iΓ(ν)

π

|Φ~k|
2

. (137)
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The late-time correlation functions can be obtained from the wavefunction by

〈O(1)
~k1

. . .O(n)
~kn
〉 = 1
N (η0)

∫
configurations

where Φ∗~k=Φ−~k

[
DΦ~k

]
Ψ∗BD

[
Φ~k

]
O(1)
~k1

. . .O(n)
~kn

ΨBD
[
Φ~k

]
. (138)

For the operators O~k, we will be interested in correlators of both field Φ~k and its canonical
conjugate momenta Π~k,

O~k =
{

Φ~k, Π~k

}
. (139)

In momentum space the canonical conjugate momentum operator is represented by [61]

Π~k =
1
i
(2π)3 δ

δΦ−~k
. (140)

These two operators have the following nontrivial commutation relation[
Φ~k, Π~k′

]
= i(2π)3δ(3)(~k +~k′). (141)

With this formalism, one can obtain the momentum dependence of the late-time correlators
explicitly. However, in the wavefunction picture it is not clear how the late-time operators
contribute. The canonical quantization calculations help to establish the relation with the
unitary irreducible representations [3].

In the initial discussion of wavefunction methods for de Sitter Holography and the
computation of inflationary correlators as an application, in [49] the form of the wave-
function in terms of the boundary operators were given as part of the dictionary. In this
discussion the contribution of the boundary operators to the wavefunction is fixed based on
intuition from AdS/CFT Holography. In otherwords it is based on intuition from the case
of a negative cosmological constant. Recent investigations of [3,60] show that operators that
live at the late-time boundary of de Sitter and that can be recognized as unitary irreducible
representations of the de Sitter group contribute in a different form to the wavefunction
then was considered in [49]. Initially reference [60] pointed out that there is a significant
difference when discussing principal series fields while the complementary series fields can
still be captured by a form of the wavefunction that is similar to what arises in AdS/CFT.
Looking at (136) and (137) the two wavefunctions have a similar structure of momentum
dependence, where the terms in the numerator and denominator capture contributions
from both of the normalized late-time opertors αN and βN . The resemblance between
the complementary series wavefunction and the AdS/CFT partition function arises when
in the late-time limit one starts neglecting contributions with a positive exponent of η0,
that come with |η0|ν next to contributions with |η0|−ν. This is possible only in the com-
plementary series case because the exponent there is real. Reference [60] carries on this
simplification at the level of the wavefunction while reference [3] keeps these terms so as to
set a better comparison.

As we said, the contribution of the boundary operators is not explicit in the wave-
function itself. The wavefunction makes the k−dependence explicit. Hints about the
contribution of the boundary operators are better established through the two-point func-
tions. This connection becomes possible by noting the relation between the two-point
functions computed in canonical quantization and wavefunction methods individually
since canonical quantization can keep explicit track of the boundary operators as demon-
strated for the late-time operators in [3]. With this insight the late-time operators contribute
to the two-point function and hence the wavefunction as follows. In the case of principal
series representations we obtain
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〈ΦH
~k

ΦH
~k′
〉 =(2π|η0|)3H2

4ρ sinh(ρπ)
δ(3)(~k +~k′)×[
2 cosh(ρπ)− e2iγρ

(
k|η0|

2

)−2iρ
− e−2iγρ

(
k|η0|

2

)2iρ
]

(142)

〈ΠH
~k

ΠH
~k′
〉 =(2π)3δ(3)(~k +~k′)

|η0|3H2
1

4ρ sinh(ρπ)
×
[(

3
2
− iρ

)(
3
2
+ iρ

)
2 cosh(ρπ)

−
(

3
2
− iρ

)2
e2iγρ

(
k|η0|

2

)−2iρ
−
(

3
2
+ iρ

)2
e−2iγρ

(
k|η0|

2

)2iρ
]

, (143)

where γρ is defined via [62]

Γ(1 + iρ) =
√

πρ

sinh(πρ)
eiγρ . (144)

In the case of complementary series representations, we have

〈ΦL
~k

ΦL
~k′
〉 = π

4
(2π|η0|)3H2δ(3)(~k +~k′)×

×
[

1 + cot2(νπ)

Γ2(ν + 1)

(
k|η0|

2

)2ν

+
Γ2(ν)

π2

(
k|η0|

2

)−2ν

− 2 cot(νπ)

νπ

]
(145)

〈ΠL
~k

ΠL
~k′
〉 = π

4
(2π)3δ(3)(~k +~k′)
|η0|3H2 ×

[
− 2 cot(νπ)

νπ

(
3
2
+ ν

)(
3
2
− ν

)

+
1 + cot2(νπ)

Γ2(ν + 1)

(
3
2
+ ν

)2( k|η0|
2

)2ν

+
Γ2(ν)

π2

(
3
2
− ν

)2( k|η0|
2

)−2ν
]

. (146)

What we call the complementary series wavefunction also captures the massless scalar
wavefunction which we now know to belong to the discrete series representations. In this case

〈ΦL
~k

ΦL
~k′
〉 = π

4
(2π|η0|)3H2δ(3)(~k +~k′)

[
1

Γ2(5/2)

(
k|η0|

2

)3

+
Γ2(3/2)

π2

(
k|η0|

2

)−3
]

(147a)

〈ΠL
~k

ΠL
~k′
〉 = (2π)3δ(3)

(
~k +~k′

) k3

2H2 . (147b)

The two-point functions above match our results for the canonically quantized mode
functions. Emphasizing the massless case separately within our labeling convention from
Section 4.1 with

p = {L, H, M}, µp =

{ µL = ν
µH = iρ
µM = 3

2

(148)

everything can be written collectively as

〈Φ~kΦ~k′〉 = 〈ϕ
lt
~k

ϕlt
~k′
〉 (149)

= H2|η0|3
{

cp
1 |η0|−2µp〈αNαN〉+ cp

2 |η0|2µp〈βN βN〉+ cp
3 [〈αN βN〉+ 〈βNαN〉]

}
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〈Π~kΠ~k′〉 = 〈π
lt
~k

πlt
~k′
〉

=
1

|η0|3H2

{
cp

1 |η0|−2µp

(
3
2
− µp

)2
〈αNαN〉+ cp

2 |η0|2µp

(
3
2
+ µp

)2
〈βN βN〉 (150)

+ cp
3

(
3
2
− µp

)(
3
2
+ µp

)
[〈αN βN〉+ 〈βNαN〉]

}

where we have suppressed the label p for Φ~k, Π~k, ϕlt
~k

, πlt
~k

, αN , βN in the interest of space

and cp
i implies that the coefficients differ depending on the category. In the massless

scalar case, the conjugate momentum two-point function depends only on the late-time
operator βM

N , and this is not due to any simplifications. At the late-time boundary we find
two noncommuting operators with different dimensions {αN , βN}. Canonically we also
have two noncommuting operators the field and its conjugate momenta. Additionally,
although we are interested in the late-time limit, we are aware of the bulk behaviour of
field and conjugate momentum operators as well. Addressing the conjugate momentum
correlators as well as the field correlators helps establish the full picture and interpret both
of the late-time operators better.

The simplification that makes the complementary series wavefunction look similar to
the AdS/CFT partition function implies neglecting the contributions coming from the βL

N
operators with the higher scaling dimension ∆ = 3

2 + ν next to the operator with the lower
scaling dimension αL

N with ∆ = 3
2 − ν.

Wavefunction techniques provide one of the valuable tools towards de Sitter holog-
raphy. So let us end this section with a small review on de Sitter Holography. Earlier
hints towards approaching de Sitter physics within holography come from calculations of
entropy for asymptotically dS3 spacetimes and identifying central charges in the asymp-
totic algebras involved [63–65]. A key point in this line of research is the equivalence
between Einstein gravity in three dimensions with a positive cosmological constant and
the Chern Simons theory. This line of research hints that the idea of Holography, initially
introduced through a specific construction that involves a gravitational theory on Anti de
Sitter spacetime, which corresponds to negative cosmological constant, and a conformal
field theory (CFT) [66], might be a tool applicable within a more general context. An early
work along this line for the case of the positive cosmological constant is the proposal of
Chern− Simons3+1/CFT correspondence [67]. Today holography is indeed a tool whose
general properties for all values of the cosmological constant are being explored from
various angles. Further hints towards holography in the case of the positive cosmological
constant came from studies at the early-time boundary of de Sitter [68], on the construction
of a quantum Hilbert space [69], and on correlation functions that can have observable
signatures in terms of inflationary correlation functions [49]. Each of these directions
emphasize a different feature: features of the boundary, features of the Hilbert space and
features of the wavefunction. Today the hints from the equivalence with Chern-Simons
theory can be used to compute specific contributions to the de Sitter horizon entropy
in three dimensions due to massless scalar fields in static patch [70]. The hints on the
features of the Hilbert space have reached a stage of both providing insight on possible
realizations of the dS/CFT proposal [34] as well as on having a BRST interpretation of de
Sitter observables [71]. This later BRST interpretion can also help in addressing how to
handle dynamical gravity within de Sitter Holography. The hints on correlation functions
are developing into a means of interpreting why inflationary spectra may be the way it is
observed [51] and how it can be further dissected in terms of what degrees of freedom can
contribute to it [40].

Lastly, one may want to compare the recent advances on holography in the case of
a negative cosmological constant with its positive cosmological constant counterpart. In the
case of a negative cosmological constant, recent attention have been pointed towards new
saddles to the gravitational path integral via the method of replica wormholes, that bring
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new insight on issues related with unitarity in black hole thermodynamics [72]. The closest
equivalent to this development that we are aware of from the positive cosmological side is
the work of [73], where contributions of compact manifolds to the Euclidean gravitational
path integral in the case of a positive cosmological constant are considered and, in addition,
a Lorentzian perspective is studied. A second example is reference [74], that addresses
horizon entropy in the case of a positive cosmological constant. In this review, we have
focused on correlation functions; effects of these recent developments would be seen in
higher order correlation functions rather then the two-point functions we have considered.

6. Discussion

The late-time operators we used for the purpose of highlighting the features of unitary
irreducible representations of the de Sitter group, which in Wigner’s classification of
particles would be the particles of a de Sitter universe, provide a contribution to the recent
developments in quantum field theory and holography in the case of a positive cosmological
constant. Even the consideration of scalar fields alone, which are the observable degrees of
freedom that are easiest to access in cosmological surveys, have enough variety to give an
example to each one of the categories except for exceptional series. This is a contribution
from the late-time boundary. To place what we have already said within the bigger picture,
let us summarize some of the other recent contributions to the discussion.

Discussions focusing on the late-time boundary include the structure of the Bunch–
Davies wavefunction [48], and its organization for more general FLRW spacetimes [75],
as well as introduction of weight-shifting operators towards implementing bootstrap
methods that are well developed mainly for conformal field theories other then those that
arise for a de Sitter setting [76]. Other advances along the application of non-perturbative
bootstrap methods in the case of a positive cosmological constant involve [77] as well as
the perturbative treatment of [78] both of which emphasize the role of the principal series
unitary irreducible representations of the de Sitter group, with focus on Källén–Lehmann
decomposition for correlators in the case of two dimensions. Considering interactions from
the point of view of tensor product states, ref. [30] starts a discussion of the tensor product
of the late-time operators we discussed in this review, by considering the case of principal
series representations, following [11].

Principal series representations have also made an appearance in holographic con-
structions with a positive cosmological constant. Some examples on this front are [79],
which considers the case of three dimensions with remarks on the cluster decomposition
properties of CFTs that would host these kind of operators where the bulk operators are ob-
tained from operators at the early-time boundary. Another example is the correspondence
of principal series representations in two dimensional de Sitter with a specific quantum
mechanical model given in [29]. In two dimensions, studies of flow geometries [80,81],
and matrix models [82] have also brought new insight on aspects of de Sitter holography
and its features that set it apart from holography with a negative cosmological constant.

The shadow late-time operators we came across in our discussion of complementary
series representations are representations that are equivalent to their nonshadow counter
parts. This equivalence is understood by comparing the trace of the two representations.
The trace is called the character of the representation. The intertwining maps we discussed
set a similarity transformation, leaving the trace invariant. We have not provided any
explicit character calculations in this review; however, significant progress has been made in
this front recently, in the static patch of de Sitter, where the characters of the representations
have been shown to encode information on the static patch horizon entropy [74]. It would be
an interesting objective to understand to what physical quantity at the late-time boundary
the characters would contribute to.

Other recent developments in the static patch which we have not yet mentioned
include [83] on Markovian dynamics through considerations of light scalars, ref. [84] on
construction of higher spin quasi normal modes and their categorization in terms of de
Sitter representations, ref. [85] on scattering of a conformally massless scalar with a cubic
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interaction, ref. [86] on the consideration of Källén–Lehmann decomposition. As this is
the patch relevant for a physical observer living in de Sitter, further analysis from the
group theory frontier on this patch will let us understand better the particles at the disposal
of an observer living in the de Sitter universe, such as ourselves in today’s Dark Energy
dominated epoch of cosmology.

A full list of particles is nowhere complete without fermions and gauge fields. The aim
of this review was to point towards the categories of unitary irreducible representations of
the de Sitter group and since the late-time behaviour of free scalars provided an example to
each category we have framed our discussion around scalars. Reference [87] is the earliest
work we are aware of that adresses fermions by considering spin− 1

2 wave equation on de
Sitter. Since then, gauge fields and fermions of other spin have also been brought into the
discussion. This discussion has reached a point where today their Wightman propagators
can conveniently be considered within embedding space formalism [28]. One can also
check [28] for a further list of studies of spinors on de Sitter spacetime.

In our discussion of late-time operators, we paid particular attention to their nor-
malization. Normalization of states that can arise from fields on de Sitter have also been
a guiding property in obtaining ranges of masses for gauge fields [88] or dimensionality
for fermions [35]. Reference [88] studies allowed mass ranges for scalar, vector and spin
two fields on de Sitter by considering equal-time commutations in Poincaré patch and
analysing the norm of the states these fields give rise to. As a result, for the mass M in
terms of the value of the cosmological constant Λ, the range 0 < M2 < 2

3 Λ is forbidden for
spin−2 as it gives rise to negative norm states. Reference [35] analysis covers spin− 3

2 and
spin− 5

2 in terms of the unitary irreducible representations of Spin(d + 1, 1), and the double
cover of de Sitter group in general dimensions using analytic continuation methods from
the sphere to de Sitter. To be more precise, it is the strictly massless spin− 3

2 , strictly and
partially massless spin− 5

2 fields that are studied. A key point in the discussion also relies
on the normalizability properties of these fields. The result is that only in four spacetime
dimensions one can have these degrees of freedom be unitary. In other dimensions they
give rise to negative norm states. The analysis also suggests that these spin− 3

2 and spin− 5
2

fields belong to the discrete series representations. On one hand, the categorization of
unitary irreducible representations of de Sitter recognize these fields as fermionic gauge
fields. On the other hand, the massless spin− 3

2 field is the gravitino field, known to be
a fermionic gauge field in supersymmetry literature. From this perspective the results
of [35] supported by representation theory of the de Sitter group, connect supersymmetry
with four spacetime dimensions in the presence of the cosmological constant. We leave it
to future studies to extend our list of late-time operators to include cases of nonzero spin.
The efforts towards enlarging the list of late-time operators with this perspective involves
understanding how to address dynamical gravity as well.

All in all, it seems there is a lot of new insight we can gain on the presence of a positive
cosmological constant by exploring further the merits of the unitary irreducible representa-
tions it can accommodate.
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Appendix A. Killing Vectors of de Sitter in Different Coordinates

Appendix A.1. The Absence of a Global Time-Like Killing Vector

The Killing equations for de Sitter in global coordinates are

∂TξT = 0 (A1a)

∂θ1 ξT + ∂Tξθ1 − 2Htanh(HT)ξθ1 = 0 (A1b)

∂θ2 ξT + ∂Tξθ2 − 2Htanh(HT)ξθ2 = 0 (A1c)

∂θ3 ξT + ∂Tξθ3 − 2Htanh(HT)ξθ3 = 0 (A1d)

∂θ1 ξθ1 −
1
H

cosh(HT)sinh(HT)ξT = 0 (A1e)

∂θ2 ξθ1 + ∂θ1 ξθ2 − 2cotθ1ξθ2 = 0 (A1f)

∂θ3 ξθ1 + ∂θ1 ξθ3 − 2cotθ1ξθ3 = 0 (A1g)

2∂θ2 ξθ2 + sin2θ1ξθ1 −
1
H

sin2θ1sinh(2HT)ξT = 0 (A1h)

∂θ3 ξθ2 + ∂θ2 ξθ3 − 2cotθ2ξθ3 = 0 (A1i)

∂θ3 ξθ3 + sinθ2

(
cosθ2ξθ2 +

1
H

sinθ1sinθ2

[
−1

2
sinθ1sinh(2HT)ξT + Hcosθ1ξθ1

])
= 0 (A1j)

These equations determine the components ξµ of the Killing vector. A time-like Killing
vector, that would generate time translations will be of the form ξT∂T , with components
ξµ = {ξT = constant, 0, 0, 0}. Since the de Sitter metric in global coordinates is diago-
nal, ξT = gTTξT and we can just check if ξµ = {1, 0, 0, 0} is a solution to (A1a)–(A1j).
From Equations (A1e), (A1h) and (A1j) we immediately see that this is not one of the
solutions. In addition, using the metric compatibility one can rewrite the Killing equations
for components ξµ. Either way, one cannot find a time-like Killing vector for de Sitter in
global coordinates.

On the other hand, the dilatation and special conformal transformation Killing vectors
which we listed in Section 2 in Poincaré patch have timelike components which carry time
and spatial dependence. We will explore these Killing vectors further in the next section
in the embedding space formalism where XA are embedding space coordinates, and for
instance χ0(XA) for these. However, the dilatation and special conformal transformation
Killing vectors also have nontrivial components along spatial directions. In Appendix A.2,
we write explicit expressions in the Poincaré patch coordinates but one can find the expres-
sions of embedding space coordinates in terms of global patch coordinates in the references
we give.

Appendix A.2. Killing Vectors in Poincaré Patch and a Review of Embedding Space Formalism

Constant curvature spacetimes can be embedded into a flat spacetime of one higher
dimension. This applies both to dS and AdS. This is why the isometries of these spacetimes
are Lorentz groups that we are familiar with from flat spacetime quantum field theory.
However, whether the higher dimension is spacelike or timelike depends on the sign of
the curvature. For positive constant curvature, the embedding is achieved by adding
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a spacelike dimension. This is why the symmetry group of d + 1 dimensional de Sitter is
SO(d + 1, 1). In the case of negative constant curvature the embedding requires an extra
timelike dimension. In this case, the isometry group is SO(d, 2). This approach is called
the embedding space or ambient space approach. It is an approach that offers technical ease
especially when considering a coordinate free formalism or general spin. Being coordinates
of a flat spacetime, the embedding space coordinates are raised and lowered by the flatspace
metric ηAB = diag(−1, 1, 1, 1, 1). If we denote embedding space coordinates by XA and the
spacetime coordinates by xµ, the two set of coordinates are related to each other XA(xµ)
such that

XAXA = −(X0)2 + (Xi)2 + (X4)2 =
1

H2 , (A2)

for de Sitter, where i = 1, 2, 3. Some reviews on the embedding space formalism for de
Sitter in general dimensions are [28,77,78,89]. Here, we will follow the conventions of [28].
The embedding space formalism for AdS is reviewed in [90,91].

For each coordinate patch, the relation XA(xµ) differs. For the Poincaré Patch, the
coordinates of the embedding space and the de Sitter coordinates are related as

X0 =
1 + x2 − η2

2Hη
, Xi =

xi

Hη
, X4 =

1− x2 + η2

2Hη
(A3a)

η =
1

H(X4 + X0)
, xi =

Xi

X4 + X0 (A3b)

where x2 = ηijxixj. If we denote generators in embedding space by LAB and generators on
de Sitter slice by Lµν, the antiHermitian generators in the embedding space are defined as

LAB = (XA∂B − XB∂A). (A4)

Objects on the de Sitter slice with coordinates xµ, µ = 0, 1, 2, 3 and objects on the higher
dimensional embedding space with coordinates XA, A = 0, 1, 2, 3, 4 are related to each
other via

eµ
A ≡ ∂XA

∂xµ , (A5)

which pushes forward the embedding space fields to the de Sitter slice. Note that not
all embedding space fields need to correspond to physical fields on the de Sitter slice.
Necessary conditions such as transversality need to be taken into account when constructing
de Sitter fields from ambient space fields. For our purposes, the push-forward is enough for
us to access the isometry generators. The generators on the de Sitter slice L can be obtained
from the generators on the embedding space LAB as follows

Lµν = eµ
Aeν

BLAB. (A6)

Let us do this explicitly to demonstrate the link between L04 and the dilatation Killing
vector. In terms of embedding space coordinates we have

L04 = (X0∂4 − X4∂0). (A7)

The partial derivatives in embedding space coordinates are evaluated as follows in terms
of de Sitter coordinates
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∂

∂X0 =
∂xµ

∂X0
∂

∂xµ = −Hη2∂η − Hηxj∂j (A8a)

∂

∂X4 =
∂xµ

∂X4
∂

∂xµ = −Hη2∂η − Hηxj∂j (A8b)

∂

∂Xi =
∂xµ

∂Xi
∂

∂xµ = Hη∂i (A8c)

Since the de Sitter coordinates {η, xi} have a similar dependence on the embedding coordi-
nates {X0, X4} the expressions above equal one another. Now, using (A3a), (A3b) and (A8)
we can rewrite (A7) in terms of coordinates on the de Sitter slice as

D ≡ L04 =
(

η∂η + xi∂i

)
= ξ(D) (A9)

which is the Dilatation Killing vector in Poincaré coordinates. Note that L40 = −ξ(D), which
is the way we introduced the relation between the generators L(B) and Killing vectors ξ(B)

in Section 2.
Following through similar arguments, the special conformal transformations corre-

spond to

Ci ≡ L0i + L4i =
(
(η2 − x2)∂i + 2xi(η∂η + xj∂j)

)
= −ξ(SCT), (A10)

translations correspond to

Pi ≡ L0i − L4i = −∂i = −ξ(tr) (A11)

and rotations correspond to

Mij = Lij = i
(

xi∂j − xj∂i
)
= iξ(rot−î× ĵ). (A12)

The quadratic Casimir in terms of the antiHermitian generators is

C = −1
2

LABLAB (A13)

=
1
2
[
CxPx + PxCx + CyPy + PyCy + CzPz + PzCz

]
+ D2 − 1

2
M2

ij (A14)

= CiPi + 3D + D2 − 1
2

M2
ij (A15)

where we made use of the commutation that [Ci, Pi] = 2D. Then the Casimir eigenvalue
for SO(4, 1) is [11]

C = l(l + 1) + c2 − 9
4

. (A16)

In addition to the subgroups we listed, there is also the maximally compact subgroup
SO(d + 1) in general dimensions, SO(4) for four spacetime dimensions. The generators
of SO(4) are LAB with A, B = 1, 2, 3, 4. Notice that the maximally compact subgroup is
a collection of the rotation subgroup generators and linear combinations of translation
and special conformal transformation generators. Among the maximally compact sub-
group generators, the generators L12, L13, L23, are also the SO(3) generators we denoted
by Mij in Equation (A12). From Equations (A10) and (A11), we see that the generators
L41, L42, L43, are the following linear combination of translation and special conformal
transformation generators

L4i =
Ci − Pi

2
. (A17)

Let us end this appendix by briefly mentioning that in considering physical fields in
terms of embedding space fields, there are two ways to make the connection. Written as
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tensors, the physical fields, which are symmetric traceless tensors, correspond to symmetric
traceless tensors in embedding space that are transverse to the surface that defines the
physical spacetime of interest. If we denote ambient space field by A, the transversality
condition is expressed as

X · A(X) = 0. (A18)

In addition, one can use an index free formalism, by encoding the ambient space tensors
into homogeneous polynomials of some degree.

The link between embedding space objects and physical fields are established via
projection operators. Physical tensors are retrieved from the embedding space tensors via
contraction with the projection operator GAB. This is a symmetric transverse tensor whose
defining property is

XAGAB = GABXB = 0. (A19)

The projection operator is given by the following expression

GAB = ηAB − H2XAXB. (A20)

In the index free formalism, ambient space tensors are retrieved by acting with a deriva-
tive operator KA on the homogeneous polynomial for the further details of which we refer
the reader to [28]. An important property of the projection operators GAB and KA is that
they ensure the resulting objects are transverse to the de Sitter slice in the embedding space.

Notes
1 To be more precise, this map involves mirror images and χ̃ = {l̃, c̃} where l̃ is the mirror image of l. For further details of this

map we refer the reader to [2] and references within. Scalar representations automatically satisfy l̃ = l = 0. This is not the
only case where the mirror image of a representation is equivalent to itself. Denoting the rank by ν, the mirror image of any
irreducible representation l of SO(2ν + 1) is also equivalent to itself (see [11] Section 2.A for further details of this). In the case
of four spacetime dimensions, the rotation subgroup SO(3) falls into this category. The maximally compact subgroup SO(4)
does not. The discrete series representations are induced by the maximally compact subgroup SO(4) and correspond to gauge
fields which have spin higher then spin zero. One needs to be more careful about the equivalence of representations in the case of
higher spin. Based on this while the intertwining map relates two equivalent representations in the case of complementary series,
the representation and its shadow are inequivalent in the case of discrete series [11]. The equivalence of the representations
depends on their trace, two equivalent representations have the same trace. We leave it for future studies to check what happens
to the late-time operators for the massless scalar under mirror image, to be fully certain that they correspond to discrete series.

2 We take the early-time limit as η → −∞(1 + iε) and accordingly pick out Hankel functions of first kind. Another limit to consider
would be η → −∞(1− iε), in which case one would pick up Hankel functions of second kind.
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