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Abstract: Analysis of transverse momentum distributions is a useful tool to understand the dynamics
of relativistic particles produced in high-energy collisions. Finding a proper distribution function to
approximate the spectra is a vastly developing area of research in particle physics. In this work, we
have provided a detailed theoretical description of the unified statistical framework in high-energy
physics. We have tested the applicability of this framework on experimental data by analyzing
the transverse momentum spectra of pion produced in heavy-ion collision at RHIC and LHC. We
have also attempted to explain the transverse momentum spectra of charged hadrons formed in
pp collision at different energies using the unified statistical framework. This formalism has been
proved to nicely explain the spectra of particles produced in soft processes as well as hard scattering
processes in a consistent manner.

Keywords: non-extensive statistical (Tsallis) distributions; high-energy proton–proton and heavy-ion
collisions; system equilibration and thermalization; statistical thermal model; transverse momentum
spectra of particles

1. Introduction

The primary motivation behind theoretical and experimental studies in particle physics
is to enhance our knowledge about the fundamental constituents of matter that make up
the universe. One integral component that is elemental in our understanding of the
matter content of the universe is the state called Quark-Gluon Plasma (QGP) which was
created a few microseconds after the Big Bang. Theoretical calculations based on Lattice
Quantum Chromodynamics (LQCD) framework first predicted the existence of this new
state at sufficiently high temperatures or baryon densities, which were present at the very
early stage of Universe expansion. Later, heavy-ion collision experiments performed at
Relativistic Heavy Ion Collider (RHIC) [1] and Large Hadron Collider (LHC) [2] made it
possible to reach energy densities above critical values predicted by Lattice QCD, for the
formation of QGP [3–5]. Since the QGP droplet is being created for an extremely short
interval of time (10−22 s) so it is not possible, with present technologies, to directly probe this
state. Hence we rely on the kinematics observables such as rapidity, transverse momenta,
and energy of the final state particles to extract information of such initial state. One such
kinematics observable is the transverse momentum pT -spectra, which is the component of
momentum in the direction transverse to the beam direction.

In this paper, we focus on studying transverse momentum distributions, which have
proven to be a useful probe for understanding the thermodynamic properties and the evo-
lutionary dynamics of systems produced in relativistic heavy-ion collisions. Our objective
is to find a proper distribution function that approximates and explains the transverse
momentum spectra. We begin with a short review of developments that happened on this
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path of finding a distribution that can explain particle spectra with better accuracy. Later a
solution to the problem is proposed using Pearson distribution [6].

In Section 2, we discuss different statistical frameworks that have been used for
understanding thermal QGP systems, including Boltzmann (BG) and Tsallis frameworks.
These two models are chosen since these are the most fundamental statistical thermal
models; however, a comparison with other models, including flow effect, etc. is provided in
Ref. [7]. We introduce our proposal to the problem using a generalized distribution called
Pearson distribution. A detailed formulation of the generalized function is performed,
allowing us to write the unified function as an extended form of Tsallis distribution.
The validation, goodness of the fit parameter, and analyses are given in Section 3. Finally,
we conclude with a discussion in Section 4.

2. Statistical Approach to Thermal Qgp Systems

Transverse momentum spectra play a pivotal role in enhancing our knowledge of
the thermal and bulk properties of QCD matter produced during the heavy-ion collision.
However, to extract the parameter of interest, the theoretical model is required to ex-
plain the spectra consistently. Although QCD is the underlying theory to explain such a
strongly interacting system, it is a challenging task to apply QCD to explain the spectra
in a low-pT regime due to the asymptotic freedom at the perturbative order where the
coupling strength is very high. Hence, we resort to a statistical thermal approach to explain
the spectra.

A proposal to apply statistical models to explain particle production was given for
the first time in 1948 by Koppe [8,9]. Two years later, Fermi introduced a statistical frame-
work [10,11] to study the energy distribution of particles coming out from the small volume
where a large amount of energy is concentrated when two nucleons with a high center of
mass energy collide with each other. Although the Fermi model was a reliable description of
energy ranges comparable to that of cosmic rays, it breaks down at lower energies. The first
systematic description of the mass spectrum of strongly interacting particles based on the
asymptotic bootstrap principle was formulated by Hagedorn [12,13] in 1965. The Hagedorn
model introduces a limiting temperature T0, which is the highest possible temperature for
the strong interaction. Using this model, it was possible to accurately determine the total
multiplicity of hadronic particles produced in collisions.Even now, its modified version
is used to understand the hadronic phase in high-energy collisions. These works on the
statistical description of particle spectra in high-energy physics are followed by many
papers over the past several decades on the characterization of particle production using
statistical mechanics. A detailed review of the application of statistical thermal models can
be found in Ref. [14].

In standard thermodynamics, we characterize a macroscopic system using state vari-
ables like number density (n), energy density (ε), pressure (p), temperature (T), and
chemical potential (µ). The equilibrium thermodynamic properties of hadronic systems
obtained using statistical models can also be characterized by the thermodynamic param-
eters mentioned above. This will finally give insights into the dynamics of the systems
in terms of these state variables. Certain aspects of the relativistic kinetic theory are also
used in this statistical description. Considering a system of a large number of relativistic
particles, all the macroscopic quantities required for the thermodynamic description of the
system can be derived by using the partition function, which describes the distribution
of particles in a thermodynamics system in equilibrium. The definitions of parameters
like energy density, pressure, and momentum, in terms of the partition function, can be
found in Ref. [15]. In the next few subsections, we present the BG and Tsallis statistical
framework, which have been used to understand the system of relativistic particles.

2.1. Boltzmann–Gibbs Statistics

Considering the system produced in high energy collision to be of thermal ori-
gin, the most natural choice to describe the distribution of particles will be Maxwell-
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Boltzmann statistics [16,17]. Since the temperature of the system produced in a collision
is extremely high and Fermi–Dirac and Bose–Einstein statistical system tends toward
Maxwell–Boltzmann statistics at high temperatures, it will be justifiable to use Boltzmann
statistics to explain the particle production spectra in the collision.

In general, the expression for the average number of particles in the sth state of a
statistical system is given as:

ns =
1

eβ(εs−µ) ± 1
(1)

If the number of particles in the system is constant, the constraint determining µ will
be given in terms of the following equation.

∑
s

ns =
1

eβ(εs−µ) ± 1
= N (2)

where the upper and lower sign refers to the case of Bosons and Fermions, respectively.
When we look at the classical limit, which is defined by high temperature, the higher energy
states will be mostly occupied and the relation εs >> µ will be obeyed.

For keeping N fixed, the eβεs−µ >> 1 relation must be satisfied. When this is satis-
fied, the functional form for the number of particles will become exponential like or BG
distribution as follows:

ns = e−β(εs−µ) (3)

From the standard statistical thermodynamics, we know that the probability of each
microstate or the population of particles to occupy each state in a thermal system at
equilibrium is an exponential function of energy. For a system of particles following
Boltzmann distribution, the number density will be given as

n′ =
g

(2π)3

∫
d3 p exp

(
µ− E

T

)
(4)

which can be written in differential form as

d3N
dp3 =

gV
(2π)3 exp

(
µ− E

T

)
(5)

Here, g is the spin degeneracy factor and is equal to 1 for pseudoscalar mesons (pions,
kaons) and 2 for spin half particles (proton and anti-proton). Expanding the momentum
variable in three dimensions in polar coordinates will give

d3 p = 2πpT dpTdpz

where pT and pz are transverse and longitudinal momentum, respectively. Therefore,
upon equating right hand side of the Equation (5) we will get

E
d3N
dp3 =

d2N
dp2

Tdy
=

d2N
2πpTdpTdy

(6)

Here we used the relation dpz
E = dy where y is the rapidity variable. Using this we will

modify Equation (5) to the form

d2N
2πpTdpTdy

= E
gV

(2π)3 exp
(

µ− E
T

)
(7)
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We can replace E by mTcoshy where mT =
√

m2 + p2
T is transverse mass. Further, us-

ing the fact that at LHC energies µ is vanishing because of approximately equal production
of particle and anti-particles and in mid-rapidity region coshy ' 1 (y = 0), we can get

d2N
2πpTdpTdy

= mT
gV

(2π)3 exp
(
−mT

T

)
(8)

The above expression has been used extensively to fit the transverse momentum
spectra of different particles produced in the collision [17–19].

Although this formalism finds its application in many different fields, including high-
energy physics, there are several issues in explaining the data that need to be addressed.
The application of Maxwell–Boltzmann distribution is limited to the sample where the num-
ber of constituents in a system is of the order of Avogadro number (NA = 6.023× 1023).
However, in heavy-ion collision, only a few thousand particles are getting produced, lim-
iting the applicability of BG statistics to the collision data sample. This difference is also
reflected in the deviation of experimental data from the BG function, which fits the ex-
perimental data only in a narrow range of pT and deviates significantly at low as well as
high pT . Further, BG distribution only applies to the system where entropy is additive and
extensive. However, many physical systems involve long-range interactions and phase
space of complex microscopic dynamics that violate BG statistical mechanics and standard
thermodynamics. Hence a generalization of BG distribution was required to include the
non-extensive system. Tsallis [20] put forward this generalization in 1988, and since then, it
has been extensively used to study the thermodynamical properties of particles produced
in high energy collisions.

2.2. Tsallis Statistics

The generalization of the Boltzmann–Gibbs theory, known as non-extensive statistical
mechanics, was initially constructed based on an entropy proposed by Tsallis in 1988. This
entropy, called Tsallis entropy, has a form that converges to that of BG entropy in a specific
limit of its q-parameter. The ‘q’ works as a scaling factor to make standard statistical
mechanics applied to the systems where the number of constituents is considerably lower
than the Avogadro number. Thus, this parameter in the Tsallis distribution gives the extent
of non-extensivity in the thermodynamical system.

Since the Tsallis statistics has an intrinsic scaling factor in its construction, it is exten-
sively used to explain systems where temperature fluctuations are present around some
initial value T0. In such cases, the q parameter, which tells about non-extensivity in the
system, can be connected to the variance of temperature [21,22] as

q− 1 =
Var(T)

〈T〉2
(9)

One major modification in the algebra related to Tsallis statistics is the introduction of
q-exponential and q-logarithm given as

expq(x) = [1− (q− 1)x]−
1

q−1 (10)

and

lnq(pi) =


ln(pi), if pi ≥ 0, q = 1
p1−q

i −1
1−q , if pi ≥ 0, q 6= 1

unde f ined, if pi ≤ 0
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Non-extensive entropy as proposed by Tsallis [20] is defined as

Sq = −k ∑
i

pq
i lnq(pi) (11)

= −k ∑
i

pq
i

p1−q
i − 1
1− q

(12)

= −k ∑
i

pi − pq
i

1− q
(13)

= k
1−∑i pq

i
q− 1

(14)

which in the limit q −→ 1 gives standard Gibbs entropy

S = − k ∑
i

piln(pi) (15)

As we discussed earlier, the BG approximation to transverse momentum spectra fails
at lower and higher momentum ranges.In contrast, the Tsallis approximation works better,
and numerous studies have been performed using the same motivation of Tsallis statistics
to particle production spectra [21,23,24]. The thermodynamical aspects of this formalism
and its foundations and applications are discussed in [25,26]. In this context, we can easily
obtain Tsallis statistical distribution used for fitting transverse momentum data from BG
distribution by replacing the exponential in BG function with q-exponential. In addition,
the distribution function used for fitting to particle spectra can be derived accordingly
where mT , pT , T, g, and V have the same meaning as in BG distribution and y is the
rapidity variable.

1
2πpT

d2N
dpTdy

=
gVmT

(2π)3

[
1 + (q− 1)

mT − µ

T

]− q
q−1

(16)

The definition of Tsallis’s statistical version of Fermi–Dirac and Bose–Einstein distribu-
tions and corresponding entropy functionals are given in [23]. As we can define the number
density, energy density, pressure, etc. in BG formalism [15], similar can be done using
non-extensive relativistic kinetic theory. The only difference is that the Tsallis distribution
function will be raised to power q. In standard thermodynamics, we are familiar with the
constraints on the total number of particles, N, and energy, E, in the system. Given the
distribution function fi,

N = ∑
i

fi (17)

E = ∑
i

fiEi (18)

whereas in Tsallis’s case, the above constraints must be redefined in the following way with
the function raised to a power of q.

N = ∑
i

f q
i

E = ∑
i

f q
i Ei

(19)

The appropriate definition of entropy to accommodate positive entropy production
according to the second law of thermodynamics is given in [27]. Further, in the classical
limit, Tsallis entropy will have the following functional form as explained in [23].

ST = − g ∑
i
( f q

i lnq fi − fi) (20)
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Here, lnq(x) is the q-logarithm and is defined as

lnq(x) ≡ x1−q − 1
1− q

(21)

Therefore, by expanding the form of entropy, we will get

ST = g ∑
i

[
q fi

q− 1
−

f q
i

q− 1

]
(22)

By maximizing the above entropy under the constraints given in Equation (19) we will
get a variational equation:

δ

δ fi

[
ST + α

(
N −∑

i
f q
i

)
+ β

(
E−∑

i
f q
i Ei

)]
= 0 (23)

Here α and β are the Lagrange multipliers for the total number of particles and total
energy, respectively. Solving this equation, we will get distribution function ( fi).

fi =

[
1 + (q− 1)

Ei − µ

T

]− 1
q−1

(24)

It can be easily shown that the entropy defined above will give Tsallis distribution
function under its extremization. However, this distribution function must be thermo-
dynamically consistent, which can be shown by checking whether the relations among
thermodynamic parameters are indeed obeyed. In Ref. [23], the Tsallis function has been
proved to be consistent with respect to the laws of standard thermodynamics.

2.3. Hard Processes and Limitation in Tsallis Statistics

Tsallis statistics has been used extensively to describe high energy systems, particularly
for describing transverse momentum spectra. In Ref. [23], after proving the thermodynamic
consistency of the Tsallis distribution function, a modified form is proposed, and the fit
details are also presented. In another work [21,24], a review on implementing non-extensive
statistical mechanics for the description of heavy-ion collisions is given, together with new
interpretations for the non-extensivity parameter q. In [28,29], different power laws used
in explaining high-energy processes and the importance of non-extensive formalism are
discussed. Another work from literature is [30], where pT-spectra of negatively charged
pions are fitted with a standard function and its Tsallis form, and a comparison is made.
The non-extensive Tsallis approach provides better fits and explains heavy-ion collisions
more appropriately as compared to the standard Boltzmann and power-law approaches.
The plots of pT -spectra of π+ and π− particles fitted to Tsallis function is displayed in [31],
where satisfying agreement between the experimental data and function is established.
However, it is known that the exponential function or standard BG theory can only take care
of the soft pT region of the hadronic spectra where the particles produced will have small
transverse momenta. Whereas QCD calculations have shown that power-law functions can
explain spectra of particles produced in hard scattering processes [30,32].

For the low-pT part of the spectra (corresponding to the “soft sector”), the methods de-
scribed above and their variants have been used extensively to study the spectra. However,
particle production in a high pT regime is dominated by hard QCD scattering processes,
and corresponding spectra follow a power law. It is difficult to explain these two regions of
the spectra using a single probability distribution function. Hence, several two-component
models have been devised to explain the full range of the spectra. However, it is difficult
to determine the clear boundary between the two regions of the spectra [33]. Notably, we
intend to find a master distribution function that describes the whole region of pT -spectra
(both soft and hard parts) in a unified manner.



Universe 2023, 9, 111 7 of 22

Although the Tsallis approach takes care of the generalization upto some extent [31], it
has been shown in a recent paper [30,33] that the Tsallis distribution, in its purest form, can
describe only the low-pT range of the spectra, which belongs to the particles produced in soft
excitation process. In Ref. [34,35], compatibility of Tsallis statistics with pT -spectra at large
transverse momenta has been established in pp collision; however, apparent deviation from
the data is observed in the higher momentum range of the spectra of particles produced in
the heavy-ion collision as can be seen in the figures. Some efforts are being made to modify
Tsallis statistics to explain the hard part of the spectra [36,37]; however, the search for a
consistent framework to explain the spectra is still an open question.

Since perturbative QCD can be used to describe hard scattering processes, it is possible
to extract the form of pT -spectra at these regions. In addition, the calculations suggest that
the spectra will have the form of inverse power law, which is expressed as [30,32,38–41]:

f (pT) =
1
N

dN
dpT

= ApT

(
1 +

pT
p0

)−n
(25)

where p0 and n are fitting parameters and A is the normalization constant related to free
parameters. This QCD-inspired model was proposed by Hagedorn [42] to describe the data
of an invariant cross-section of hadrons as a function of pT . Our proposal to the question
above stated is to combine inverse power-law and Tsallis distribution using Pearson
distribution. This statistical approach is discussed in detail in the following sections.

2.4. A Generalization of Tsallis Statistics

A comprehensive approach is to look into the parent equation of the Tsallis family of
equations, which must have more parameters yet controllable mechanisms to hold ther-
modynamics laws. Following the same argument, we look upon the Pearson distribution,
which intrinsically deals with more parameters and is controlled by the first four fours
moments of the distribution, making a perfect choice for our case. The proposal for Pearson
distribution was first given by Karl Pearson in 1895 [43] and subsequently modified in
1901 and 1916. His main idea was to categorize any distribution function based on the
first four moments related to the mean, standard deviation, skewness, and kurtosis of
the distribution. Moments are defined for specifying the shape of any probability distri-
bution. The first moment or the mean locates at the center of the distribution, whereas
variance gives the spread or dispersion in the data about the mean. The other two are
called shape parameters, among which skewness provides the degree of asymmetry in
the distribution around the mean and kurtosis specifies the relative peakedness or flatness
of the distribution. Characterization of any statistical data involves the specification of
skewness and kurtosis.

Gaussian, Beta, Gamma, inverse-gamma, exponential, and Student’s T-distribution are
all special cases in the Pearson distribution and belong to the Pearson family of curves. Thus,
it is considered the most general distribution and has been used in many different fields like
geophysics, bio-statistics, and financial marketing. It is a family of continuous probability
distributions whose densities p(x) satisfy the following differential equation [44].

1
p(x)

dp(x)
dx

+
a + x

b0 + b1x + b2x2 = 0 (26)

where the parameters a, b0, b1, b2 can be related to the first four central moments as follows:

a = b1 =
m3(m4 + 3m2

2)

10m2m4 − 18m3
2 − 12m2

3
(27)

b0 =
m2(4m2m4 − 3m2

3)

10m2m4 − 18m3
2 − 12m2

3
(28)
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b2 =
2m2m4 − 6m3

2 − 3m2
3

10m2m4 − 18m3
2 − 12m2

3
(29)

Here, m1, m2, m3, and m4 are the first four central moments with m1 = 0. Pearson
curves are classified into 12 different types based on the root of the quadratic equation
in the denominator of the differential equation. Therefore, Pearson criteria which will
decide the type of distribution is the sign of discriminant of the quadratic equation, which
is expressed as,

k =
b2

1
4b0b2

(30)

A table including different types of Pearson distribution along with Pearson criteria
and conditions on parameters can be found in Refs. [45,46]. Further, solving the differential
Equation (26), we can find the Pearson density as follows:

p(x) = C
′
exp

∫
− P(x)

Q(x)
dx (31)

= C
′
exp

∫
− a0 + a1x

b0 + b1x + b2x2 dx (32)

We can express the quadratic equation in the following form,

b0 + b1x + b2x2 = b2(x + α)(x + β) (33)

p(x) =
C′

−b2
exp

∫ a0 + a1x
(x + α)(x + β)

dx (34)

= C exp
∫ ( v

x + α
+

w
x + β

)
dx (35)

where v and w have following definition:

v = − a0 − a1α

α− β
w =

a0 − a1β

α− β
(36)

After integration,

p(x) = C exp{ln(x + α)v + ln(x + β)w} (37)

= C(x + α)v(x + β)w (38)

A general solution can be written as in Equation (39) where C is a normalization
constant and e, f , g, and h are free parameters.

p(x) = C(e + x) f (g + x)h (39)

Pearson’s family of distributions give an advantage of extra free parameter yet pre-
serving all previous models. At this stage, going back to our initial argument, we can show
how the Pearson equation is reducible to Tsallis in the limiting case. The Pearson function
can be expressed as an extended version of the Tsallis distribution. It is easy to see that the
Pearson distribution converges to exponential when the numerator, P(x), and denominator,
Q(x) in Equation (31) becomes constant and unity, respectively. Similarly, we can derive
the limit of Pearson parameters at which it will reduce to Normal or Gaussian distribution.
For this, P(x) has to be of a linear form, and Q(x) has to be unity. Since Pearson density
reduces to exponential at some limit, it is possible to find a relation between Tsallis, which
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is a generalized Boltzmann, and the Pearson function. The Equation (39) can be rewritten
in the following form by doing simple algebra.

p(x) = B
(

1 +
x
e

) f
(

1 +
x
g

)h
(40)

Up to some normalization constant B = Ce f gh. Now if we replace g = T
q−1 ,

h = − q
q−1 , f = − n and e = p0 we will get:

p(x) = B
(

1 +
pT
p0

)−n(
1 + (q− 1)

pT
T

)− q
q−1 (41)

where,

B = C
1

(p0)n

(
T

q− 1

)− q
q−1

(42)

This makes it a perfect choice to fit the particle spectra with this function.

1
2πpT

d2N
dpTdy

= B′
(

1 +
pT
p0

)−n(
1 + (q− 1)

pT
T

)− q
q−1 (43)

where B′ = B× V
(2π)3 with the additional V

(2π)3 comes when we move from summation to
integration. Hence, it is inferred that the unified distribution is a generalized form of the
Tsallis distribution and can be shown to have two parts. In reference to Equation (25), the
inverse power law term in the above equation can be considered as the hard scattering part
in the extended Tsallis form of distribution.

At the same time, the backward compatibility of the distribution makes it a more
prominent and stable equation to be considered while proposing a generalization. In the
context of unified distribution, since it is proposed to be a generalization of Tsallis hence, it
should reduce to Tsallis distribution under some limit on parameters. We observed that
the unified distribution (43) is backward compatibility in the limit n = − 1 and p0 = 0.
This means that in the limitations discussed above, the unified distribution reduces to
the Tsallis distribution preserving all thermodynamic properties. Hence, we can describe
unified distribution as the generalization of Tsallis distribution with an additional part to
explain the higher-pT part of the spectra corresponding to the particles produced in hard
scattering processes.

2.5. Thermodynamical Consistency Check for Unified Distribution

The proposed equation must pass the thermal test, in this context, a procedure similar
to that used for the Tsallis framework is followed with a modified form of Tsallis entropy.
To show the thermodynamical consistency of the distribution, following relation [23] must
be satisfied:

T =
∂ε

∂s

∣∣∣∣
n

(44)

µ =
∂ε

∂n′

∣∣∣∣
s

(45)

n′ =
∂P
∂µ

∣∣∣∣
T

(46)

s =
∂P
∂T

∣∣∣∣
µ

(47)
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The constraint equation of the total number of particles and total energy remains the
same as in the Tsallis distribution:

N = ∑
i

f q
i

E = ∑
i

f q
i Ei

(48)

In the case of a unified distribution

E
d3N
dp3 = B′

(
1 +

E
p0

)−n(
1 + (q− 1)

(E− µ)

T

)− q
q−1

(49)

d3N
dp3 =

B′

E

(
1 +

E
p0

)−n(
1 + (q− 1)

(E− µ)

T

)− q
q−1

(50)

We can simplify the above equation to

d3N
dp3 = B′ fE f q

Ta (51)

where

fE =
1
E

(
1 +

E
p0

)−n
(52)

fTa =

(
1 + (q− 1)

(E− µ)

T

) −1
q−1

(53)

Hence, we have
d3N
dp3 =

V
(2π)3

{
(B fE)

1
q fTa

}q
(54)

or more generally,
d3N
dp3 =

V
(2π)3 f q

i (55)

where
fi =

(
B fEi

) 1
q fTai (56)

Entropy in the case of unified distribution is given as

Sp = ∑
i

 q fi

(q− 1)
(

B fEi

) 1
q−1
−

f q
i

q− 1

 (57)

With this form of entropy, we can solve Equation (23) to get the form of distribution
function Equation (56).

For consistency check, we have to prove the basic thermodynamic relations given in
Equations (44)–(47).

2.5.1. Relation 1

First of the relations above is the derivative of energy density with respect to entropy
density given as

T =
∂ε

∂s

∣∣∣∣
n′

(58)
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Solving the right-hand part of the equation

∂E
∂S

∣∣∣∣
n′

=

∂E
∂T dT + ∂E

∂µ dµ

∂S
∂T dT + ∂S

∂µ dµ
(59)

∂E
∂S

∣∣∣∣
n′

=

∂E
∂T + ∂E

∂µ
dµ
dT

∂S
∂T + ∂S

∂µ
dµ
dT

(60)

In this relation, n′ is constant, which add an additional constraint

dn′ =
∂n′

∂T
dT +

∂n′

∂µ
dµ = 0 (61)

dµ

dT
= −

∂n′
∂T
∂n′
∂µ

(62)

Solving for components of Equation (60)

∂E
∂T

= ∑
i

q f q−1
i Ei

∂ fi
∂T

(63)

∂E
∂µ

= ∑
i

q f q−1
i Ei

∂ fi
∂µ

(64)

∂S
∂T

= ∑
i

q

(q− 1)
(

B fEi

) 1
q−1

∂ fi
∂T
−

q f q−1
i

q− 1
∂ fi
∂T

(65)

∂S
∂µ

= ∑
i

q

(q− 1)
(

B fEi

) 1
q−1

∂ fi
∂µ
−

q f q−1
i

q− 1
∂ fi
∂µ

(66)

∂n′

∂T
=

1
V ∑

i
q f q−1

i
∂ fi
∂T

(67)

∂n′

∂µ
=

1
V ∑

i
q f q−1

i
∂ fi
∂µ

(68)

Simplifying the numerator of Equation (60)

∂E
∂T

+
∂E
∂µ

dµ

dT
= ∑

i
qEi f q−1

i
∂ fi
∂T
−

∑
i,j

q2Ei( fi f j)
q−1 ∂ fi

∂µ

∂ f j
∂T

∑
j

q f q−1
j

∂ f j
∂µ

(69)

This can be further reduced to

∂E
∂T

+
∂E
∂µ

dµ

dT
=

∑
i,j

qEi( fi f j)
q−1Cij

∑
j

f q−1
j

∂ f j
∂µ

(70)

where

Cij =

{
∂ fi
∂T

∂ f j

∂µ
− ∂ fi

∂µ

∂ f j

∂T

}
(71)
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Similarly solving for the denominator part of Equation (60)

∂S
∂T

+
∂S
∂µ

dµ

dT
=

∑
i,j

{
q f q−1

j

(q−1)(B fE)
1
q−1
− q( fi f j)

q−1

q−1

}
Cij

∑
j

f q−1
j

∂ f j
∂µ

(72)

From Equations (70) and (72), we get

∂E
∂S

∣∣∣∣
n′

=

∑
i,j

qEi( fi f j)
q−1Cij

∑
i,j

(
q

q−1

)[ f q−1
j

(B fEi
)

1
q−1
− ( fi f j)q−1

]
Cij

(73)

∂E
∂S

∣∣∣∣
n′

=

T ∑
i,j

Ei( fi f j)
q−1Cij

∑
i,j
[Ei( fi f j)q−1Cij − µ( fi f j)q−1Cij]

(74)

However, ∑
i,j

Cij = 0 and also ( fi f j)
q−1 = ( f j fi)

q−1. So the term with µ in the

denominator becomes zero, and hence we get

∂ε

∂s

∣∣∣∣
n′

= T (75)

which proves that the relation Equation (44) is satisfied for unified distribution.

2.5.2. Relation 2

The second thermodynamic relation is given as

∂ε

∂n′

∣∣∣∣
s
= µ (76)

∂E
∂N

∣∣∣∣
s
=

∂E
∂T dT + ∂E

∂µ dµ

∂N
∂T dT + ∂N

∂µ dµ
(77)

∂E
∂N

∣∣∣∣
s
=

∂E
∂T + ∂E

∂µ
dµ
dT

∂N
∂T + ∂N

∂µ
dµ
dT

(78)

Here s is constant so
ds =

∂s
∂T

dT +
∂s
∂µ

dµ = 0 (79)

dµ

dT
= −

∂s
∂T
∂s
∂µ

(80)

∂E
∂T

+
∂E
∂µ

dµ

dT
=

∑
i,j

 qEi f q−1
i(

B fEj

) 1
q−1
− qEi( fi f j)

q−1

Cij

∑
j

(
1(

B fEj

) 1
q−1

∂ f j
∂µ − f q−1

j
∂ f j
∂µ

) (81)
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Similarly, for the N part, we get

∂N
∂T

+
∂N
∂µ

dµ

dT
=

∑
i,j

 q f q−1
i(

B fEj

) 1
q−1
− q( fi f j)

q−1

Cij

∑
j

(
1(

B fEj

) 1
q−1

∂ f j
∂µ − f q−1

j
∂ f j
∂µ

) (82)

On dividing the above equations, we get

∂E
∂T + ∂E

∂µ
dµ
dT

∂N
∂T + ∂N

∂µ
dµ
dT

=

∑
i,j

 qEi f q−1
i(

B fEj

) 1
q−1
− qEi( fi f j)

q−1

Cij

∑
i,j

 q f q−1
i(

B fEj

) 1
q−1
− q( fi f j)q−1

Cij

(83)

The equation above reduces to

∂ε

∂n′

∣∣∣∣
s
= µ (84)

2.5.3. Relation 3

Now consider the third relation:

∂P
∂µ

∣∣∣∣
T

= n′ (85)

where n′ is the number density. From laws of thermodynamics, we get

P =
−E + TS + µN

V
(86)

∂P
∂µ

∣∣∣∣
T

=
1
V

[
−∂E
∂µ

+ T
∂S
∂µ

+ N + µ
∂N
∂µ

]
(87)

∂P
∂µ

∣∣∣∣
T

=
1
V ∑

i

[
f q
i −

T
q− 1

{
1 + (q− 1)

(Ei − µ)

T

}
∂ f q

i
∂µ

+
Tq

q− 1
1(

B fEi

) 1
q−1

∂ fi
∂µ

] (88)

fi =
(

B fEi

) 1
q fTai (89)

∂ fi
∂µ

=

(
B fEi

) 1
q

T
f q
Tai

(90)

∂ f q
i

∂µ
= Bq

fEi

T
f 2q−1
Tai

(91)

On substitution, we will get,

∂P
∂µ

∣∣∣∣
T

=
1
V ∑

i
f q
i =

N
V

(92)
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∂P
∂µ

∣∣∣∣
T

= n′ (93)

2.5.4. Relation 4

Last equation which relates the derivative of pressure to the entropy density is given as

∂P
∂T

∣∣∣∣
µ

= s (94)

∂P
∂T

=
1
V

[
− ∂E

∂T
+ S + T

∂S
∂T

+ µ
∂N
∂T

]
(95)

So to prove the above relation, we have to prove that basically

− ∂E
∂T

+ T
∂S
∂T

+ µ
∂N
∂T

= 0 (96)

Solving the equation above, we get

= ∑
i

[
− q f q−1

i Ei
∂ fi
∂T

+
Tq

(q− 1)(B fE)
1
q−1

∂ fi
∂T

−
Tq f q−1

i
q− 1

∂ fi
∂T

+ µq f q−1
i

∂ fi
∂T

] (97)

On solving the above equation, we get zero which satisfies Equation (96). Hence,

∂P
∂T

∣∣∣∣
µ

= s (98)

This proves that the unified distribution along with the form of entropy given in
Equation (57), is thermodynamically consistent. As shown above, the pass of the thermal
test makes the unified distribution thermodynamically relevant equations for a generaliza-
tion by fulfilling all required criteria.

As has been discussed earlier, the relevance of Tsallis distribution is only limited
to the low-pT region because of the dominance of hard processes in high-pT . Unified
distribution resolves this issue by generalizing the Tsallis distribution to include hard
processes as well. In the next section, we have performed a comparative study of different
distributions to prove that the unified distribution is indeed the best fit to explain transverse
momentum spectra.

3. Results

To test the applicability of unified distribution, we have performed a detailed analysis
of the invariant yield of π+ over different energy ranges. The results shown below present
the main body of validation obtained in this work, where, a comparison between BG,
Tsallis, and unified statistical approaches in describing the transverse momentum spectra is
demonstrated. It shows the degree of agreement between measured data and the results
attainable by the approaches based on statistical thermodynamics. In the plots, symbols
represent the experimentally measured data of transverse momentum, and solid lines
represent the results fitted by BG, Tsallis, and unified distribution functions. The ROOT [47]
data analysis framework has been used along with MINUIT [48] class for fitting.

The analysis was done for the transverse momentum data of π+ particles produced in
Au− Au and Pb− Pb collisions and the collision energies we selected for study included
19.6 GeV [49], 27 GeV [49], 39.0 GeV [49], 130 GeV [50], 200.0 GeV [51], and 2.76 TeV [52].
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The goodness of the unified function approach over other approaches is determined
by analyzing the chi-square values of each fit. We use the chi-square goodness of fit test to
determine how the observed value is different from the expected value and to compare the
observed sample distribution with the expected probability distribution. A table including
the Chi-square values of Boltzmann, Tsallis, and unified functions fitted to pT-spectra at
several energies is given in Table 1.

Table 1. The χ2/NDF values of transverse momentum data of π+ particles fitted to Boltzmann,
Tsallis, and unified functions at various collision energies.

√
sNN

χ2/NDF

Boltzmann Tsallis Unified

19.6 9.769 0.392 0.052
27 9.934 0.316 0.040
39 10.299 0.275 0.003
130 45.747 5.118 1.912
200 337.676 14.567 1.798
2760 23.980 2.314 0.064

It is clearly evident from the fits in Figures 1–6 that the unified fits are better compared
to Boltzmann and Tsallis fits. This can be confirmed from Table 1, where the χ2/NDF
values of all the fits are displayed. From Table 1, we observe that the χ2/NDF values are
minimum for unified fits at all the energies. As we expect, these are large for Boltzmann
fits, and that of Tsallis fits are intermediate.

Boltzmann distribution is parameterized by only one parameter, which is the tem-
perature (T). Tsallis framework includes another parameter called q-parameter apart from
the temperature, which gives the extent of non-extensivity in the distribution. The pro-
posed unified distribution approach comprises two more free parameters in addition to
the temperature and q-parameter. The relation of unified function parameters with the
higher-order moments could be a reason for its success over other distribution, most of
which depends primarily on mean and standard deviation as parameters. Further, we
observe that the Tsallis distribution deviates from data at the high-pT region, which forms
the tail part of the distribution. In addition, the tail part of a distribution is more sensitive
to higher-order moments. This could be a statistical reason for the success of unified
distribution, especially in high-pT regime.
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Figure 1. The transverse momentum spectra of π+ particles produced in most central 2.76 TeV
Pb − Pb collision measured by the ALICE experiment [52] fitted with Boltzmann Equation (8),
Tsallis Equation (16) and unified distribution function Equation (40). Data points are scaled for
better visibility.
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Figure 2. The transverse momentum data of π+ particles produced in most central 200 GeV
Au− Au collision measured by the PHENIX experiment [51] fitted with Boltzmann Equation (8),
Tsallis Equation (16) and unified distribution function Equation (40). Data points are scaled for
better visibility.
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Figure 3. The transverse momentum data of π+ particles produced in most central 130 GeV
Au− Au collision measured by the PHENIX experiment [50] fitted with Boltzmann Equation (8),
Tsallis Equation (16) and unified distribution function Equation (40). Data points are scaled for
better visibility.
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Figure 4. The transverse momentum data of π+ particles produced in most central 39 GeV
Au − Au collision measured by the STAR experiment [49] fitted with Boltzmann Equation (8),
Tsallis Equation (16) and unified distribution function Equation (40). Data points are scaled for
better visibility.
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Figure 5. The transverse momentum data of π+ particles produced in most central 27 GeV
Au − Au collision measured by the STAR experiment [49] fitted with Boltzmann Equation (8),
Tsallis Equation (16) and unified distribution function Equation (40). Data points are scaled for
better visibility.
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Figure 6. The transverse momentum data of π+ particles produced in most central 19.6 GeV
Au − Au collision measured by the STAR experiment [49] fitted with Boltzmann Equation (8),
Tsallis Equation (16) and unified distribution function Equation (40). Data points are scaled for
better visibility.

The presence of a quenching effect beyond a certain pT value in heavy-ion collision
limits the application of the statistical thermal models; however, the absence of such an
effect in pp collision makes it an ideal choice to test whether the developed formalism
covers a broader range of pT . Hence, to check the applicability of a unified statistical frame-
work over a broad pT range; we have considered the pp collision data, with pT up to a few
hundred GeV/c, and the yield spanning over several orders of magnitude. For this analysis,
we have used the data of transverse momentum spectra of charged hadron produced in
pp collision at four different energies (

√
sNN = 900 GeV [53], 2.76 TeV [54], 5.02 TeV [55]

and 7 TeV [53]) measured by CMS experiment over wide pT range upto 400 GeV/c. Fur-
ther, we have analyzed the recently released high multiplicity pp collision data at 7 TeV
measured by ALICE experiment in different V0M event multiplicity classes [56] with the
multiplicities corresponding to each class provided in Table 2. The pseudorapidity ranges
of data at 0.9 TeV and 7 TeV is |η| < 2.4 [53], 2.76 TeV [54] and 5.02 TeV [55] is |η| < 1.
At the same time, the corresponding range for the multiplicity class divided data measured
by ALICE experiment at 7 TeV [56] is |η| < 0.5.

Figure 7 represents the unified function fit to pT spectra for four different energies
with pT range up to 400 GeV. The corresponding fit to 7 TeV data divided into separate
multiplicity classes is given in Figure 8. From the plot of the ratio of experimental data
to the fit function, we observe a log-periodic oscillation over a broad range of transverse
momenta for the unified statistical framework. This form of oscillation has been discussed
for Tsallis distribution in Refs. [34,57,58]. Further, the oscillation observed in the 7 TeV
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ALICE experiment data shows an interesting pattern over different multiplicity classes.
Here we observe a clear reversal in the oscillation pattern as we go from the ALICE
multiplicity class V0M 1 to V0M 10. This strange behavior in data overfit needs to be
further explored, and it has the potential to give interesting physics information.

Table 2. VZERO multiplicity classes and the corresponding multiplicity values 〈dNch/dη〉.

Multiplicity Class 7 TeV pp Collision

V0M I 21.3± 0.6
V0M II 16.5± 0.5
V0M III 13.5± 0.4
V0M IV 11.5± 0.3
V0M V 10.1± 0.3
V0M VI 8.45± 0.25
V0M VII 6.72± 0.21
V0M VIII 5.4± 0.17
V0M IX 3.9± 0.14
V0M X 2.26± 0.12
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Figure 7. Top plot: The transverse momentum data of charged hadrons produced in pp collision at
0.9 TeV [53], 2.76 TeV [54], 5.02 TeV [55], and 7 TeV [53] measured by the CMS experiment fitted with
unified distribution Equation (43). Bottom plot: Ratio of the experimental data to the corresponding
value obtained from the fit function.
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Figure 8. Top plot: The transverse momentum data of charged hadrons divided into multiplicity
classes produced in pp collision at 7 TeV [56] measured by the ALICE experiment fitted with unified
distribution Equation (43). Bottom plot: Ratio of the experimental data to the corresponding value
obtained from the fit function.

In Table 3 and 4, we have provided the fitted value of temperature and q parameters
that appear in the unified function Equation (43) and the χ2/NDF values, which represent
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the goodness of the fit. Low χ2/NDF values in the tables suggest a good agreement
between the experimental data and the unified distribution function. Ratio plots of different
energies for unified function fit (Figures 7 and 8) also compliments the observation of
goodness of fit to the experimental data.

Table 3. Best fit value of the parameters T (GeV) & q and the χ2/NDF value obtained by fitting the
charged hadron spectra produced in pp collision at 0.9 TeV [53], 2.76 TeV [54], 5.02 TeV [55], and
7 TeV [53] measured by the CMS experiment with the unified distribution function Equation (43).

Energy T q χ2/NDF

0.9 TeV 0.078 1.032 1.790±0.009 ±0.003

2.76 TeV 0.132 1.070 0.996±0.006 ±0.002

5.02 TeV 0.146 1.122 3.119±0.007 ±0.001

7 TeV 0.125 1.147 4.559±0.001 ±0.001

Table 4. Best fit value of the parameters T (GeV), q and the χ2/NDF value obtained by fitting the
multiplicity class divided charged hadron spectra produced in pp collision at 7 TeV measured by the
ALICE experiment [56] with the unified distribution function Equation (43).

Mult. Class T q χ2/NDF

V0M I 0.221 1.146 0.996±0.011 ±0.004

V0M II 0.211 1.145 0.787±0.010 ±0.004

V0M III 0.202 1.142 0.639±0.011 ±0.005

V0M IV 0.194 1.132 0.518±0.010 ±0.005

V0M V 0.190 1.136 0.518±0.017 ±0.009

V0M VI 0.182 1.129 0.321±0.017 ±0.009

V0M VII 0.166 1.114 0.337±0.003 ±0.001

V0M VIII 0.167 1.121 0.107±0.005 ±0.002

V0M IX 0.156 1.135 0.377±0.005 ±0.003

V0M X 0.126 1.077 0.726±0.005 ±0.002

4. Discussion

The unified statistical framework is a more generalized approach to statistically explain
the system created in ultra-high energy collisions. What distinguishes unified formalism
from a simple polynomial fit is the richness of physics it incorporates. It is a thermodynam-
ically consistent formalism following the laws of thermodynamics. The non-extensivity
properties of the unified statistics evolved similarly to that of Tsallis statistics; however,
one of the important distinctions between the two is the presence of additional parameters
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p0 and n in the former case whose connection with the physics observable needs to be
explored to get the ultimate benefit of this formalism. One such effort has been made
in Ref. [6], where the unified function parameter is shown to describe the second-order
flow parameter v2 nicely. A linear relationship has been established between the v2 and
the unified function parameter n using the charged hadron spectra produced in Pb− Pb
collision at 2.76 TeV.

The presence of more free parameters in unified formalism gives an extra advantage
in terms of obtaining better-fit results as compared to Tsallis statistics. This can be verified
from the result obtained in the previous section, where we observe an improvement in
the quality of fit using unified formalism than the Tsallis statistics. This improvement can
also be attributed to the unique approach where the physics of soft and hard processes are
considered in a unified manner. We have also tested the applicability of unified formalism
in small collision systems, and we have shown that the unified formalism provides a better
fit to the pp collision data up to a few hundred GeV/c and over different energies and
multiplicities.

One can also argue that a higher-order polynomial may do a better fitting; however,
the richness of physics that unified formalism incorporates to make it a better choice being
thermodynamically consistent. Moreover, unified formalism is backward compatible with
Tsallis distribution under the limiting condition of the parameters. From the statistical
perspective, the relation of unified distribution with higher-order moments such as skew-
ness and kurtosis also makes it a suitable choice to fit a skewed dataset. This further
strengthens the need for exploration of the unified statistical framework in other areas of
high energy physics.

5. Conclusions

In this work, we have presented a comprehensive study of the theoretical framework to
analyze transverse momentum spectra. Further, we have provided a detailed mathematical
description of the unified distribution, which was first proposed in Ref. [6] and is proved
to describe both soft and hard scattering regions of particle spectra in a unified manner.
We have also demonstrated the applicability of unified distribution in the study of the
pT -spectra of different particles produced in a heavy-ion collision as well as the pp collision
over a broad energy range. Further, we have also explored the thermodynamical consistency
of unified distribution and proved that this distribution consistently follows the laws
of thermodynamics.

This formalism has very wide applications in high-energy physics. We can utilize this
formalism to extract several thermodynamic quantities such as the isothermal compress-
ibility, speed of sound [59], chemical potential, and specific heat of the system created in
the heavy-ion collision. This formalism can also be modified to study the pseudorapidity
distribution [60] and the particle multiplicity.

In conclusion, we would like to point out that we have proposed a generalization
to the Tsallis-like distribution function with a significant improvement in the goodness
of fit to the spectra. We would also like to stress that although several theoretical and
phenomenological works are proposed to study particle production in the high-energy
collision, more novel ideas are required to tap into the full potential of the data obtained in
mega collider experiments.

This paper provides a detailed theoretical description of the unified statistical frame-
work and has the potential for wider applicability in other areas of physics.
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