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Abstract: We consider a cosmological model in the framework of Einstein–Cartan theory with a
single scalar torsion φ = φ(t) and reconstruct the torsion model corresponding to the holographic
dark energy (HDE) density. By studying the corresponding relation between the effective energy
density of torsion field ρφ and holographic dark energy density ρHDE, we naturally obtain a kind of
torsion field from the interacting holographic dark energy with interaction term Q = −2φρm and ρm

is the energy density of matter. We analyze the reconstructed torsion model and find that the torsion
field behaves like the quintessence (w > −1) or quintom (exhibiting a transition from w > −1 to
w < −1) dark energy, depending on the value of the model parameter c. We then perform a stability
analysis according to the squared sound speed. It is shown that the model is classically stable in the
current epoch for the case of c < 1. We also investigate the model from the viewpoint of statefinder
parameters and it turns out that the statefinder trajectories in the r− s plane behave differently for the
three cases of c and also quite distinct from those of other cosmological models. From the trajectories
of the statefinder pair {q, r}, we find that, for all the three cases of c, the universe has a phase transition
from deceleration to acceleration, consistently with cosmological observations. In addition, we fit the
reconstructed torsion model with the recent Type Ia supernovae (SNe Ia) samples, i.e., the Pantheon
sample containing 1048 SNe Ia with the redshift in the range 0.01 < z < 2.3 and the Pantheon+
sample with 1701 light curves of 1550 distinct SNe Ia in the range 0.001 < z < 2.26. The analysis
results show that the limits on the present fractional energy density of matter Ωm0 are completely
compatible with those of the ΛCDM model obtained from the latest Planck mission observations at
68% confidence level. The mean value of c constrained from the Pantheon sample corresponds to
the quintom-like scenario (i.e., c < 1) and its mean value from the Pantheon+ sample corresponds to
the quintessence-like scenario (i.e., c ≥ 1). However, both of the Pantheon and Pantheon+ samples
cannot distinguish the quintom-like and quintessence-like scenarios at 68% confidence level.

Keywords: torsion field; holographic dark energy; universe

1. Introduction

Current observations suggest that our universe is undergoing a period of accelerated
expansion [1,2]. Within the framework of general relativity (GR), the cosmic speed-up is
attributed to the contribution of a spatially homogeneous and gravitationally repulsive
energy component (roughly 70 percent), called dark energy. The flat ΛCDM model, with
the constant equation of state, seems to be the simplest explanation for the phenomenon
and predicts quite well during the overall evolution of the universe. Furthermore, recent
analysis indicates that there exist some specific observational discrepancies at both small
scales and large scales [3–6]. Moreover, in recent decades, the dynamical scenarios of dark
energy have been widely tried out. Nevertheless, none of these attempts stemming from
comparatively poor theoretical motivation turn out to be problem-free and the nature of
dark energy still remains a mystery.
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In view of the challenge and the fact that gravity is the only dominant long-range
interaction insofar as we know, it is reasonable to consider the possibility that we have
not fully understood the character of gravity on a cosmological scale. Therefore, the
exploration of alternative theories of gravity are proposed and the explanation of the
accelerated expansion of the universe from fundamental physics is now a great challenge.
These categories are known as modified gravity theories, based on the introduction of
either geometric terms or extra degrees of freedom in the Einstein–Hilbert action [7–9].

As a natural extension of Einstein’s theory of general relativity, the Einstein–Cartan
(EC) theory of gravity [10–14] based on a new connection which allows the former to have a
symmetric (the standard Christoffel part) and a new anti-symmetric part called contortion,
is purely geometrical modifying of the Einstein equations, unlike extensions which invoke
new fields from the metric. It is a physically consistent theory, unlike some theories with
non-symmetric metric which do have deficiencies. The EC theory takes into account the spin
properties of matter and describes their influence on the geometrical structure of spacetime
called Riemann–Cartan spacetime, which is characterized by non-trivial curvature and
torsion. However, background torsion breaks the weak equivalence principle [15,16] and
violates local Lorentz invariance [17]. Moreover, there is no experimental or observational
evidence to support the distinctive predictions of the EC theory or the existence of torsion.
The main reason is that the theory only deviates from classical general relativity at extremely
high energy densities. Nevertheless, the EC theory has been neither confirmed nor denied
so far. Its appeal lies in the cosmological aspects. The EC theory could provide some
answers to the unresolved questions of modern theoretical physics and astrophysics, such
as dark energy effects, the recently discovered universal acceleration [18–20], inflationary
models [21,22], torsion as an alternative to dark matter [23,24] and so on.

In this paper, we study the torsion effects in a Friedmann cosmology as a candidate
to dark energy in the universe. As mentioned in [25], the spatially homogeneous and
isotropic Friedmann–Lemaître–Robertson–Walker (FLRW) universe can only accommodate
specific forms of torsion. In the work of [26], which focused on finding exact solutions for
torsional Friedmann-like models, the torsion fields, determined by a single scalar function
of time φ = φ(t), are generally compatible with the FLRW symmetries. Here, we adopt the
same named torsion field φ(t) as [26] and reconstruct a torsion model corresponding to
the holographic dark energy (HDE) density. The HDE model is based on the holographic
principle with Bekenstein–Hawking entropy and the Hubble horizon as its IR cutoff [27].
However, when the Hubble horizon is chosen as the IR cut-off, a non-accelerated expansion
universe can be achieved. Its shortcomings in describing the history of a flat FLRW universe
have motivated some tentative changes in this model. For instance, in the literature [28], the
vacuum energy is viewed as dark energy and is related to the event horizon of the universe
when we require that the zero-point energy of the system should not exceed the mass of
a black hole with the same size. In this way, the HDE model can derive an accelerated
expansion universe. Moreover, it has been constrained with different observational data
and is consistent with the data [29,30]. In the reconstructed torsion model, we analyze
the behavior of the torsion field, the matter density, the effective torsion equation of state
parameter, as well as the classical stability of our model. Additionally, we apply the
statefinder parameters to the model to reveal differential feature in contrast with other
cosmological models. Finally, we prove that the reconstructed torsion model is consistent
with recent observations and thus provides a good candidate for the description of an
expansional universe.

The rest of the paper is organized as follows: In Section 2, we present the main
equations of Friedmann cosmology with torsion, based on [26]. In Section 3, we reconstruct
a torsion model from the interacting HDE and study the dynamical behavior of the
torsion field in a spatially flat FLRW universe. In Section 4, constraints from the updated
observational data are obtained for the torsion model. In the end, the conclusions are
summarized in Section 5. Throughout the entire manuscript, we assume today’s scale
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factor a0 = 1, so the redshift z = a−1 − 1; the subscript “0” always indicates the present
value of the corresponding quantity and the unit with c = h̄ = 1 is used.

2. FLRW Cosmology with Torsion

The affine connection and the curvature tensor in the Riemann–Cartan spacetime are
defined as

Γλ
µν = Γ̃λ

µν + Kλ
µν, (1)

Rµνσ
ρ = R̃µνσ

ρ − ∂µKρ
νσ + ∂νKρ

µσ + Γ̃ρ
νλKλ

µσ

+Γ̃λ
µσKρ

νλ + Kρ
νλKλ

µσ − Γ̃ρ
µλKλ

νσ

−Γ̃λ
νσKρ

µλ − Kρ
µλKλ

νσ, (2)

where Γ̃λ
µν is the Levi–Civita connection, R̃µνσ

ρ is the Riemann curvature tensor, Kλ
µν =

Tλ
µν + Tµν

λ + Tνµ
λ is the contorsion and Tλ

µν = Γλ
[µν] represents Cartan’s torsion tensor.

Starting from the action of the Einstein–Cartan theory

SEC =
∫

d4x
√
−g
(
−R(Γ)

2κ2 + Lm

)
, (3)

where κ2 = 8πG, g is the determinant of the spacetime metric tensor gµν, R is the Ricci–
Cartan curvature scalar and Lm represents the Lagrangian of matter fields, the field equa-
tions are given by

Rµν −
1
2

Rgµν = κ2τµν, (4)

with Rµν and τµν representing the Ricci–Cartan tensor and the energy-momentum tensor
of the matter, respectively, and

Tαµν = −1
4

κ2(2σµνα + gνασµ − gαµσν

)
, (5)

where σµνα = σ[µν]α and σµ = σα
µα are, respectively, the spin tensor and the spin vector

of the matter. The first Einstein–Cartan equation maintaining the same form of standard
general relativity relates the curvature of spacetime to the energy-momentum density of
matter, but without having the symmetry of both the Ricci–Cartan and energy-momentum
tensors (i.e., R[µν] 6= 0 and τ[µν] 6= 0) due to the presence of torsion. Equation (4) exhibits
extra contributions to both energy density and pressure of matter, through the products of
the spin density [31]. The energy-momentum density of matter is typically coupled to the
spin of the matter via the second Cartan field Equation (5) [12]. The common assumption
is that the spacetime torsion is induced by the spin of the matter, just like the curvature is
generated by the matter’s energy-density contribution.

Following [26], in a homogeneous and isotropic Friedmann background, the torsion
tensor takes the form

Tαµν = 2φhα[µuν], (6)

and then the associated torsion vector is given by

Tα = Tµ
αµ = −3φuα, (7)

where φ = φ(t) is a scalar function that depends only on time, uα is a timelike four-velocity
vector (i.e., uαuα = −1) and the projection tensor hµν = gµν + uµuν is a symmetric spacelike
tensor orthogonal to uµ (i.e., hµν = hνµ, hµνuν = 0, hµ

µ = 3). Considering the Cartan field
Equation (5), one can recast relations (6) and (7) into the expressions κ2σαµν = 8φhν[αuµ] and
κ2σα = 12φuα for the spin tensor and the spin vector, respectively [26]. Combining with
relations (6) and (7), the above expressions in turn lead to the relations Tαµν = − 1

4 κ2σνµα
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and Tα = − 1
4 κ2σα between the torsion and the spin fields. Given that the two fields are

simply proportional to each other and both fully determined by the scalar function φ, we
will focus on torsion rather than spin in the following.

Considering a spatially flat Friedmann–Lemaître–Robertson–Walker (FLRW) universe
with the metric:

ds2 = −dt2 + a2(t)[dr2 + r2(dθ2 + sin2 θdϕ2)], (8)

where t is the cosmic time, a(t) is the scale factor and r, θ, ϕ are the comoving coordinates,
relation (6) leads to the non-zero components of the torsion tensor: Ti

0i = −Ti
i0 = φ (with

i = 1, 2, 3). Together with (1) and (2), the Ricci scalar of an FLRW-like spacetime with
non-zero torsion reads (see [26] for details):

R = 6
(

Ḣ + 2H2 + 2φ̇ + 6Hφ + 4φ2
)

, (9)

where H = ȧ/a is the Hubble parameter. Then, from Equation (4), by introducing the
energy-momentum tensor of a perfect fluid, the Friedmann equations including a general
matter density ρm and pressure of matter pm are written in the equivalent forms of those in
general relativity as

H2 =
κ2

3
(ρm + ρφ), (10)

2Ḣ + 3H2 = −κ2(pm + pφ), (11)

where ρφ and pφ satisfying

ρφ = −12
κ2 (φ + H)φ (12)

and
pφ =

4
κ2 (φ̇ + 2Hφ + φ2) (13)

stand for the torsion contribution to the energy density and pressure, respectively. There-
fore, the corresponding effective torsion equation of state (EoS) is given by

wφ ≡
pφ

ρφ
= −1 +

2φ2 + Hφ− φ̇

3φ(H + φ)
. (14)

We can remark that φ̇/H2 > 2(φ/H)2 + φ/H exhibits a phantom-like dark energy
(wφ < −1) and φ̇/H2 < 2(φ/H)2 + φ/H is for a quintessence-like one (wφ > −1) when
φ/H > 0 or φ/H < −1 and vice versa for the case of −1 < φ/H < 0.

Following Equation (10), the torsional analogue of the Friedmann equation recasts as

Ωm + Ωφ = 1, (15)

where Ωm = ρm/ρcr and Ωφ = ρφ/ρcr, with ρcr = 3H2/κ2 representing the critical density
of the universe. The dimensionless parameter Ωφ = −4[1 + (φ/H)](φ/H) monitors the
torsion contribution to the total energy density of the universe and the dimensionless
variable φ/H measures the contribution of the torsion field relative to that of the Hubble
expansion. We note that the torsion contribution Ωφ can be either positive or negative,
depending on the sign of φ/H. It can be easily seen that Ωφ = 0 when φ/H = 0,−1 and
torsion dominates completely when φ/H = −1/2, which translates into Ωφ = 1.

For barotropic matter satisfying an EoS of the form pm = wρm, the continuity equation
reads:

ρ̇m + 3(1 + w)Hρm + 2(1 + 3w)φρm = 0, (16)
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which can be integrated to

ρm(z) = ρm0(1 + z)3(1+w) exp
[

2(1 + 3w)
∫ z

0

(
φ

H

)
dz

1 + z

]
, (17)

when w = constant. Accordingly, we can depict the effect of torsion on the energy-density
evolution via the exponential term on the right-hand side of the above. Obviously, it
depends on the EoS of the matter. The torsion contribution to the energy density vanishes
in the special case of a medium with w = −1/3. On the other hand, the energy-density
evolution becomes essentially torsion dominated in the case of a vacuum stress with
w = −1.

Substituting Equation (16) into Equatins (10) and (11), we obtain

ρ̇m + 3(1 + w)Hρm = Q, (18)

ρ̇φ + 3(1 + wφ)Hρφ = −Q, (19)

with the interaction term Q = −2(1 + 3w)φρm representing the energy exchange between
the torsion field and matter. Q should be positive as the energy is transferred to the usual
fluid and vice versa for a negative Q. Therefore, the non-zero interaction generally exists
due to the presence of torsion and the effect of interaction on the energy-density evolution
is characterized in Equation (17). Combining Equations (18) and (19), we obtain a derivative
equation of Ḣ and Ω̇φ

2(Ωφ − 1)
Ḣ
H

+ Ω̇φ + 3H(1 + w)(Ωφ − 1) = −HΩI , (20)

where the effective dimensionless quantity ΩI ≡ Q/(Hρcr) = −2(1 + 3w)(1−Ωφ)φ/H is
defined for interaction.

Integrating (16) and then the Friedmann Equation (10) can be recast into

E2(z) =
1−Ωφ0

1−Ωφ
exp

[
3
∫ z

0
(1 + w +

2
3

φ

H
)

dz
1 + z

]
, (21)

where E(z) = H(z)/H0 is the dimensionless Hubble parameter.
In order to better understand the influence of torsion field to the recent acceler-

ated phase of expansion of the universe, we pay attention to the deceleration parameter
q = −äa/ȧ2, which can be written as

q =
1
2
(1 + 3w)(1−Ωφ) + 2

φ̇

H2 + 2
φ

H
. (22)

We notice that the torsion field can either assist or inhibit accelerated expansion (q < 0).
For instance, the presence of torsion tends to accelerate the expansion when φ is constant
and negative [26].

3. Torsion Reconstruction from Interacting HDE Model

In view of the absence of experimental or observational evidence to support the
distinctive predictions of the existence of torsion and the EC theory as an alternative theory
of mystery candidate, it is necessary to investigate how this theory can describe the HDE
model, even though the holography principle is conjectured in the framework of the semi-
classical Einstein gravity without torsion and is independent of details of the quantum
state of matter, such as its spin. In the literature [32], the reconstruction scheme via HDE
model in the modified theory of gravity with torsion is developed and it is found that the
reconstructed model may cross the phantom line in the future. The reconstructed torsion
models from the entropy-corrected holographic and new agegraphic dark energy can
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also be found in [33,34]. In this paper, we make an attempt to consider a correspondence
between torsion field and the holographic dark energy (HDE) [28] with the density given by

ρHDE =
3c2

κ2Rh
2 , (23)

where c is a dimensionless model parameter, which can only be determined by observation. It
should be noted that a positive constant c is favored by the latest observational data [29,30].
The future event horizon of the universe, Rh, is defined as

Rh = a
∫ ∞

t

dt
a

= a
∫ ∞

a

da
Ha2 . (24)

The HDE model has been proved to be a competitive and promising dark energy
candidate. Combining (23) and (24), we obtain

Ω̇HDE
2ΩHDE

+ H +
Ḣ
H

= H

√
ΩHDE

c2 , (25)

where ΩHDE = ρHDE/ρcr is the fractional energy density of HDE. Replacing Equation (23)
in relation (12), i.e., ρφ = ρHDE, yields the following equation(

φ

H

)2
+

φ

H
+

1
4

ΩHDE = 0. (26)

Solving the equation, we obtain φ/H =
(
−1±

√
1−ΩHDE

)
/2. For a dust-like matter

(w = 0), the deceleration parameter q > 0 when ΩHDE → 0 (i.e., z → ∞) is satisfied by a
solution of the form

φ

H
=

1
2
(−1 +

√
1−ΩHDE), (27)

which is the torsion field corresponding to the interacting HDE model. Clearly, the sign of
φ/H is negative and its value is in the interval −1/2 < φ/H < 0.

Combining (20) and (25), we obtain the following differential equation

dΩHDE
dz

= −2ΩHDE(1−ΩHDE)

1 + z

[√
ΩHDE

c2 +
1
2
− ΩI

2(1−ΩHDE)

]
, (28)

which can be solved numerically and will be used in the data analysis procedure.
Taking into account the expression (27), we can numerically extract the evolution

of the dimensionless ratio φ/H versus redshift. In order to compare with the current
observational data, we consider the cases of c = 0.8, 1 and 1.2, as examples respectively,
and adopt Ωm0 = 0.27 in the detailed numerical analyses. The results are listed in Figure 1.
It is evident that φ/H has a negative relationship with redshift. The ratio φ/H decreasing
monotonically from zero at early times, i.e., at large z, to−1/2 in the far future (i.e., z→ −1),
indicates an evolution towards a completely dark energy dominated epoch predicted via
this model.

From Equation (17), the behavior of the dimensionless ratio ρm/ρm0 in terms of redshift
is shown in Figure 2. We observe that the energy density of matter is an increasing function
of redshift z and remains positive as the universe expands for all the three values of c.
Although the three cases of c deviate slightly at early times, they gradually decrease to
zero at late time, as expected. This means that the universe exhibits the usual thermal
history, with the successive sequence of matter and torsion epochs and with the transition
to acceleration in agreement with the observational results. On the other hand, Figure 2
describes the effect of interaction Q on the energy density of matter. It is clear through the
figure that the evolutionary trajectory of ρm/ρm0 departs from the one of the non-interacting
model, i.e., ρm/ρm0 = (1 + z)3, at early times. The torsion model gradually closes to the
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non-interacting model, converges to it at the present time (i.e., z = 0) and then slightly
deviates from it at the late time, independent of c.

z

/H

c=0.8

c=1

c=1.2

Figure 1. The evolution of the dimensionless ratio φ/H versus redshift z.

Figure 2. The evolution of the dimensionless ratio ρm/ρm0 versus redshift z. The dashed line denotes
the absence of Q, i.e., ρm/ρm0 = (1 + z)3.

Additionally, according to Equations (21) and (28), from the expression (27), we obtain

φ̇

H2 =
φ′
H

=
1
4

[
(1−

√
1−ΩHDE)(3−ΩI) + ΩHDE

(
ΩI√

1−ΩHDE
− 1− 2

√
ΩHDE

c2

)]
, (29)

where the prime denotes the derivative with respect to ln a. Figure 3 depicts the dimen-
sionless ratio φ′/H as a function of φ/H. The behavior of the torsion field can be either
quintessence-like (wφ > −1) or phantom-like (wφ < −1), depending on the positivity of
the function φ′/H − 2(φ/H)2 − φ/H. From Figure 3, we see that the evolution of φ′/H is
from decreasing to increasing with decrease in φ/H. We also find that, for the case of c < 1,
the torsion field evolves from the quintessence regime to the phantom regime, which can
cross the phantom line wφ = −1 and thus the torsion field is quintom-like. However, the
cases of c ≥ 1 correspond to the torsion field always lying in the quintessence regime. In
particular, the case of c = 1 indicates that the torsion field finally tends to the cosmological
constant (wφ = −1).
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/H

/H

c=0.8

c=1

c=1.2

Quintessence-like

'/H=2( /H)
2
+ /H

Phantom-like

Figure 3. The dimensionless ratio φ′/H as a function of φ/H.

The same profile is exhibited by the dynamics of the effective torsion EoS wφ. Substi-
tuting Equations (27) and (29) into Equation (14), we find

wφ = −2
3

(
ΩI − 3
2ΩHDE

+
1
2
+

√
ΩHDE

c2

)
− 1

ΩHDE
. (30)

The behavior of the effective torsion EoS wφ(z) in Figure 4 indicates that the torsion
field lies in the quintessence regime during the evolution of the universe for c ≥ 1, without
crossing behavior, while the field lies in the phantom regime at present for c < 1. This
means that the universe for the case of c < 1 evolves from a quintessence-like phase into
a phantom-like phase with smooth crossing behavior, similar to a quintom dark energy.
It is interesting to notice that the universe corresponding to c = 1 would asymptotically
approach a de Sitter phase with w = −1 in the far future, which indicates that a final
de Sitter stage might be a stable solution. We also note that, for all the three cases of
c, the evolution curve with a rapidly increased slope exists in the interval 0 < z < 1,
which seems too fast to be consistent with observations. On the other hand, we analyze
the behavior of crossing from thermodynamical consideration. At the phase transition
point from quintessence to phantom, Ḣ = 0 in the de Sitter spacetime case indicates that
the time derivative of the temperature is Ṫh = 0 for the reconstructed torsion model in
the de Sitter stage, from the definition of Hawking temperature on the event horizon
Th = H2Rh/2π [35].

z

w

c=0.8

c=1

c=1.2

Figure 4. The evolution of the effective torsion EoS wφ versus redshift z.
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In order to understand the classical stability of the torsion model reconstructed from
the interacting HDE, we now focus on the squared sound speed parameter, which is
given by

v2
s =

ṗφ

ρ̇φ
= wφ + ẇφ

ρφ

ρ̇φ
. (31)

This parameter can be used to discuss how the stability of cosmological models is
affected by its sign. If v2

s has a positive signature, the model is stable, while, for v2
s < 0,

the model is unstable. Utilizing Equations (21), (28) and (30), we can obtain the expression
of v2

s for the reconstructed torsion model. Since the analytic expression of v2
s is rather

cumbersome to exhibit, we shall limit ourselves to plotting it as in Figure 5. It is shown that,
for the cases of c ≥ 1, v2

s < 0 for all epoch and thus the torsion model is unstable against
small perturbations during the cosmic evolution. Moreover, the evolutionary trajectories
of v2

s change slowly and almost overlap. On the other hand, for the case of c < 1, it is
clear that v2

s > 0 transiently occurs at −0.039 . z . 0.034, which shows that the model is
classically stable at the current epoch. This means that the case of c < 1 provides a more
reasonable scenario to trace the cosmological evolution in the reconstructed torsion model.

z

v
s2

c=0.8

c=1

c=1.2

Figure 5. Square speed sound parameter v2
s versus redshift z.

Obviously, the accelerating mechanism of the torsion model reconstructed from
the interacting HDE is bound to exhibit an essential distinction in contrast with vari-
ous cosmological models. Therefore, the statefinder diagnostic for the torsion model in
our scenario is sure to reveal differential features. The dimensionless statefinder pair,{

r ≡...
a /(aH3), s ≡ (r− 1)/3(q− 1/2)

}
, introduced by Sahni et al. [36], is a natural next

step beyond the Hubble parameter H and the deceleration parameter q, which cannot
distinguish various accelerating mechanisms uniquely, for the reason that some mod-
els may just correspond to the same current values. It has been shown in the literature
studies [37–40] that a series of cosmological models exhibit qualitatively different evolu-
tionary trajectories in the r − s plane and thus the statefinder diagnostic is a good tool
to differentiate cosmological models. It is well known that the statefinder parameters
for the spatially flat ΛCDM model correspond to a fixed point {r, s} = {1, 0}. We can
clearly identify the “distance” from a given cosmological model to the ΛCDM model in
the r− s plane. Furthermore, the statefinder parameters can be expressed in terms of the
deceleration parameter q as

r = 2q2 + q− q̇
H

, s =
r− 1

3(q− 1
2 )

. (32)
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According to Equations (21), (22) and (28), we can obtain the concrete expressions of
the statefinder parameters for the reconstructed torsion model. Figure 6 depicts the graph of
the statefinder parameters in r− s plane. The arrows indicate the evolutionary directions of
the model. We also compare the model with the quintessence, phantom models and ΛCDM
model. We see that the case of c < 1 behaves like quintessence model (r > 1, s < 0) at early
times, then makes transition from quintessence to ΛCDM fixed point and finally gets into
the phantom region (r < 1, s > 0), while, for the cases of c ≥ 1, the evolution trajectories lie
in the quintessence region throughout the expansion of the universe and the crossing of the
fixed point is impossible for these two cases. It is worth noting that the trajectory for the
case of c = 1 reaches the ΛCDM fixed point in the far future. Clearly, the distance from the
torsion model to the ΛCDM can be easily identified in this diagram. We also list the current
values of statefinder parameters in Table 1. Thus, the model for different values of c can be
distinguished from each other and from ΛCDM, quintessence, phantom models by using
the statefinder diagnostic method. These results are also confirmed via the r(q) analysis
given in Figure 7. In the figure, a crossing of phantom line is also represented by a crossing
of the dark solid line (ΛCDM). Therefore, we find that, for the case of c < 1, the trajectory
similar to the quintom dark energy model crosses the ΛCDM line. While the cases of c ≥ 1
correspond to a quintessence-like dark energy model (r < 1) and the universe approaches
an exact de Sitter expansion for the case of c = 1. Additionally, Figure 7 indicates that
the universe has a phase transition from deceleration to acceleration, consistently with
cosmological observations, independent of c. Moreover, the deceleration parameter q seems
to converge to around 0.5 at the higher z, which characterize a matter dominated universe,
as expected from the standard model. We can also estimate the current values of q as listed
in Table 1. It is shown that q0 is different for the three cases of c and decreases with a
decreasing parameter c. Clearly, the current value q0 is compatible with the observational
result q0 = −0.64± 0.22 found in [41] from Union2 SNIa data.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

r

c=0.8

c=1

c=1.2

CDM

Today

Today

Today

Figure 6. Evolving trajectories of the statefinder in the r− s plane. The arrows denote the evolution
directions of s(r). The stars on the curves indicate current states of the model, and the dot symbol is
related to the location of the standard ΛCDM model in the r− s plane.
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q

0.4

0.8

1.2

1.6

2

r

c=0.8

c=1

c=1.2

CDM

SS

Today

Today

Today

Figure 7. The parameter r(q) as a function of the deceleration parameter q. The arrows denote the
evolution directions of r(q) and the dark line shows the time evolution of the ΛCDM model. The
stars on the curves indicate current states of the model for different values of c, and the point of
(−1, 1) corresponds to the steady state model (SS)—the de Sitter expansion.

Table 1. Values of statefinder paramters at z = 0 for the three cases of the parameter c.

Statefinder
Parameters c = 0.8 c = 1 c = 1.2

r 1.3398 0.7934 0.5131

s −0.0936 0.0654 0.1709

q −0.7095 −0.5536 −0.4496

4. Constraints from Observational Data

The above analysis preliminarily displays that the reconstructed torsion model could
be consistent with the cosmological observations. However, it is important to quantitatively
judge how well the torsion model can fit with the observational data. Thus, we would like
to investigate the observational constraints on the model parameters, i.e., the parameter
c and the present fractional energy density of all forms of matter Ωm0. In practice, the
adopted samples consist of the Pantheon sample of Type Ia supernova (SNe Ia) including
1048 SNe Ia with 0.01 < z < 2.3 [42] and the Pantheon+ sample including 1701 light curves
of 1550 distinct SNe Ia with 0.001 < z < 2.26 [43].

The likelihood is assumed to be Gaussian and thus we have the total likelihood function

L ∝ e−χ2/2, (33)

where χ2 is constructed as
χ2 = χ2

SNe. (34)

We employ an affine-invariant Markov chain Monte Carlo (MCMC) ensemble sampler
(emcee) [44] to generate the posterior probability distributions for the parameters.

The two-dimensional (2D) posterior distributions of the parameters (Ωm0, c) are
displayed in Figures 8 and 9, corresponding to the constraints from the Pantheon and
Pantheon+ samples, respectively. The mean values with 68% confidence limits for the
parameters are Ωm0 = 0.305+0.062

−0.075 and c = 0.979+0.432
−0.293 from the Pantheon sample and

Ωm0 = 0.299+0.063
−0.068 and c = 1.412+0.614

−0.521 from the Pantheon+ sample. One can see that
the limits on Ωm0 are compatible with that of the ΛCDM model obtained from the latest
Planck mission observations at 68% confidence level [45]. In addition, the mean value of



Universe 2023, 9, 100 12 of 15

c from the Pantheon sample corresponds to the quintom-like scenario (i.e., c < 1) and its
mean value from the Pantheon+ sample corresponds to the quintessence-like scenario (i.e.,
c ≥ 1). However, both of the Pantheon and Pantheon+ samples cannot distinguish the
quintom-like and quintessence-like scenarios at 68% confidence level.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
m0

0.0

0.8

1.6

2.4

3.2

4.0
c

Pantheon sample with 1048 SNe Ia

Figure 8. Confidence intervals at 68% ,95% and 99% in the (Ωm0, c) plane constrained from the
Pantheon SNe Ia sample including 1048 SNe Ia with 0.01 < z < 2.3.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
m0

0.0

0.8

1.6

2.4

3.2

4.0

c

Pantheon+ sample with 1550 SNe Ia

Figure 9. Confidence intervals at 68% ,95% and 99% in the (Ωm0, c) plane constrained from the
Pantheon+ SNe Ia sample including 1701 light curves of 1550 distinct SNe Ia with 0.001 < z < 2.26.
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5. Conclusions

In this paper, a Friedmann cosmological model in the Einstein–Cartan framework
with torsion is studied. The spatially homogeneous and isotropic FLRW universe can
only accommodate specific forms of torsion and therefore we consider a single scalar
function of time φ = φ(t), which is generally compatible with the FLRW symmetries, as
mentioned in [26]. We reconstruct a torsion model corresponding to the holographic dark
energy (HDE) density. By studying the corresponding relation between the effective energy
density of torsion field ρφ and holographic dark energy density ρHDE, we naturally get a
kind of torsion field from the interacting holographic dark energy with interaction term
Q = −2φρm.

The evolution of the dimensionless ratio φ/H versus redshift z indicates that it is
negative during the overall evolution of the universe. Moreover, the ratio φ/H decreasing
monotonically from zero at early times to −1/2 in the far future, indicates an evolution
towards a completely dark energy dominated epoch. The behavior of the dimensionless
ratio ρm/ρm0 in terms of redshift shows that the model predicts the sequence of an early
matter dominated era with a decelerated expansion and a late-time torsion field dominated
era with an accelerated phase, for all the three cases of c. On the other hand, the behavior of
the dimensionless ratio ρm/ρm0 describes the effect of interaction Q on the energy density
of matter. We find that the evolutionary trajectories of ρm/ρm0 gradually close to the one of
the non-interacting model, converge to it at the present time and then slightly deviate from
it at the late time, independent of c.

The graph of the dimensionless ratio φ′/H as a function of φ/H shows that the
evolution of φ′/H is from decreasing to increasing with decrease in φ/H. We find that, for
the case of c < 1, the torsion field corresponds to a quintom-like dark energy. However, the
cases of c ≥ 1 correspond to the torsion field always lying in the quintessence regime. In
particular, the case of c = 1 indicates that the torsion field finally tends to the cosmological
constant. From the dynamics of the effective torsion EoS, we understand that, different
from the case of c ≥ 1 corresponding to the quintessence-like dark energy, the universe for
the case of c < 1 evolves from a quintessence-like phase into a phantom-like phase with
smooth crossing behavior, similar to quintom dark energy and it mimics phantom-like dark
energy at present.

Additionally, the model is unstable against small perturbations during the cosmic
evolution for c ≥ 1. However, the model is classically stable at the current epoch for
c < 1, which means that the case of c < 1 provides a more reasonable scenario to trace the
cosmological evolution in the model.

We also compare the model with ΛCDM, quintessence and phantom models by
using the statefinder diagnostic method. As a result, the model for different values of c
can be distinguished from each other and from ΛCDM, quintessence, phantom models.
These results are also confirmed by the r(q) analysis. Additionally, the trajectory in q− r
plane indicates that the universe has a phase transition from deceleration to acceleration,
consistently with cosmological observations, independent of c. However, the current value
q0 is different for the three cases of c and decreases with a decreasing parameter c. Moreover,
q0 is compatible with the observational result.

Finally, we constrain the model with the updated cosmological data from SNe Ia.
As a consequence, the limits on the energy density parameter of matter Ωm0 are com-
pletely compatible with that of ΛCDM model obtained from the latest Planck mission
observations at 68% confidence level. In addition, the mean value of c from the Pantheon
sample corresponds to the quintom-like scenario and its mean value from the Pantheon+
sample corresponds to the quintessence-like scenario . However, both the Pantheon and
Pantheon+ samples cannot distinguish the quintom-like and quintessence-like scenarios at
68% confidence level.
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