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Abstract: Magnetars form a special class of neutron stars possessing superstrong magnetic fields and
demonstrating power flares triggered by these fields. Observations of such flares reveal the presence
of quasi-periodic oscillations (QPOs) at certain frequencies; they are thought to be excited in the
flares. QPOs carry potentially important information on magnetar structure, magnetic field, and
mechanisms of magnetar activity. We calculate frequencies of torsional (magneto-elastic) oscillations
of the magnetar crust treating the magnetic field effects in the first order of perturbation theory. The
theory predicts the splitting of non-magnetic oscillation frequencies into Zeeman components. Zee-
man splitting of the torsional oscillation spectrum of magnetars was suggested, clearly described and
estimated by Shaisultanov and Eichler (2009), but their work has not been given considerable atten-
tion. To extend it, we suggest the technique of calculating oscillation frequencies, including Zeeman
splitting at not too strong magnetic fields for arbitrary magnetic field configuration. Zeeman splitting
enriches the oscillation spectrum and simplifies the theoretical interpretation of observations. We
calculate several low-frequency oscillations of magnetars with a pure dipole magnetic field in the
crust. The results qualitatively agree with the low-frequency QPOs detected in the hyperflare of SGR
1806–20 and in the giant flare of SGR 1900+14.

Keywords: stars: neutron; dense matter; stars: oscillations

1. Introduction

It is well known that neutron stars are the most compact stars and contain superdense
matter in their interiors (e.g., [1]). These stars have massive liquid cores and thin envelopes.
The core contains matter of a supranuclear density; its equation of state (EOS) and other
properties are still not certain and remain the fundamental problem of physics and astro-
physics. The envelope above the core is also important; its thickness is ∼1 km, and its mass
is ∼0.01 M�. The envelope consists mostly of electrons and atomic nuclei. In addition,
at densities, ρ, larger than the neutron drip density, ρdrip ≈ 4.3× 1011 g cm−3, quasi-free
neutrons appear. The atomic nuclei in the envelope form Coulomb crystals (e.g., [2]), which
melt near the very surface layers of the star. The solidified envelope is called the crust; one
distinguishes the outer (ρ < ρdrip) and inner (ρ > ρdrip) crust. The density of matter at the
crust–core interface is ρcc ∼ 1.4× 1014 g cm−3.

This paper studies torsional oscillations of the star due to the elasticity of the crystalline
lattice. In a non-magnetic star, such pure torsion oscillations are confined in the crust. The
foundation of the theory was laid by Hansen and Chioffi [3], Schumaker and Thorne [4],
and McDermott et al. [5] in the 1980s. Later, the theory was developed in numerous
publications (see, e.g., [6–15] and the references therein).

The theory attracted great attention after the discovery of quasi-periodic oscillations
(QPOs) in spectra of soft-gamma repeaters (SGRs) (see [16–21]). SGRs belong to a class
of magnetars. They are neutron stars possessing very strong magnetic fields B ∼ 1015 G
(e.g., [22–24]) and demonstrating flaring activity that was probably triggered by these fields.
The activity is accompanied by the processes of enormous energy release in the form of
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hyperflares, superflares and ordinary flares. The QPOs have been discovered at the fading
stages of such flares. Seismic activity of SGRs was predicted by Duncan [25] in 1998.

The detected QPO frequencies range from a few tens of Hz to several kHz. This is the
range typical for theoretical torsion frequencies of non-magnetic neutron stars. Magnetar QPOs
are separated into low-frequency (. a few hundred Hz) and high-frequency ones. The discovery
of magnetar QPOs gave hope to developing reliable methods of exploring magnetar structure
and evolution by comparing observations with elaborated seismological models.

The seismology of magnetars has been studied by many authors (e.g., Levin [26,27],
Glampedakis et al. [28], Sotani et al. [29], Cerdá-Durán et al. [30], Colaiuda et al. [31],
Colaiuda and Kokkotas [32,33], van Hoven and Levin [34,35], Gabler et al. [36–41], Passa-
monti and Lander [42], Link and van Eysden [43]). They considered different possibilities.
The first idea was treating magnetar QPOs by ordinary torsion oscillations of neutron star
crust nearly unaffected by magnetar fields (e.g., [8–12,14,15,29] ). Other models were based
on magneto-elastic oscillations of the crust, where the elasticity of a crystalline lattice was
combined with the elasticity of magnetic fields lines; such oscillations can spread outside
the crust in the form of Alfvén waves (e.g., [26–44]). In some cases, the presence of the
lattice becomes fully unimportant; then, the oscillations are of purely Alfvénic type and
can easily spread outside the crust.

Let us emphasize the remarkable paper by Shaisultanov and Eichler [45], who pre-
dicted the effect of Zeeman splitting of torsional oscillations in magnetar magnetic fields.
Although the effect is clear and the paper is physically transparent, it has not been given
much attention. It is our aim here to fill this gap, emphasize the importance of the effect,
and extend the consideration of Shaisultanov and Eichler [45] (although our technique will
be somewhat different, as we discuss later). Here, we focus on low-frequency magneto-
elastic oscillations confined mainly to the crust, including Zeeman splitting. The paper is
organized as follows.

In Section 2, we suggest calculating magneto-elastic oscillation frequencies using the
first-order perturbation theory with respect to the magnetic terms. The basic equations
are presented in Section 2, neglecting relativistic effects (for simplicity). Pure torsional
oscillations are outlined in Section 3. The first-order perturbation approach is described in
Section 4 for any B-field geometry. It demonstrates Zeeman splitting [45] of pure torsional
oscillation frequencies into Zeeman components, greatly enriching the oscillation spectrum.
In Section 5, we use the perturbation approach in the case of fundamental low-frequency
torsional oscillations in a poloidal and axially symmetric B-field. In Section 6, we modify
the equations by including relativistic effects. In Section 7, we consider the pure dipole
B-field configuration in a neutron star crust. In Section 8, these results are used to sketch
possible interpretations of detected low-frequency QPOs in afterglows of the hyperflare of
SGR 1806–20 as well of the giant flare of SGR 1900+14. Finally, in Section 9, we summarize
the results and compare our approach with those available in the literature.

2. The Approach

Consider elastic oscillations of a neutron star crust containing a magnetic field B. At B = 0,
these oscillations are pure torsional and occur due to elastic properties of Coulomb crystals
of atomic nuclei in the crust. In a magnetic field, Alfvén waves, owing to the elasticity of
magnetic field lines, modify the elastic properties of matter and lead to combined magneto-
elastic oscillations where both elasticities contribute. We will restrict ourselves to the case of not
too strong field B so that the magnetic effects can be treated as a perturbation. In this case, we
retain the term ‘torsional oscillation’ for brevity.

We start with a simplified problem in which we describe the star, neglecting relativistic
effects; we include them later. Otherwise, we adopt standard assumptions for studying
magneto-elastic oscillations based on the linearization procedure. All the quantities in-
volved are divided into unperturbed ones and small perturbations. The non-perturbed star
is taken as stationary and spherically symmetric; ordinary spherical coordinates (r, θ, and
φ) are most convenient for specifying position vectors r. Unperturbed quantities, like mass
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density ρ, depend only on r. The magnetic field B is assumed to be not too high and treated
as a perturbation. It is split further as B = B + B1, where B is the static (given) magnetic
field of the star, while B1 is a smaller field induced by the oscillations. The field B leads to
small stationary perturbations, which do not interfere with oscillatory perturbations in the
adopted linear approximation. Here, we focus on oscillatory perturbations.

Let v(r, t) be a velocity of a matter element, and u(r, t) be a shift of its position with
respect to equilibrium position r in a non-perturbed star; t is time. For an oscillation mode
with frequency ω in the linear approximation one has

v(r, t) = eiωtv(r), u(r, t) = eiωtu(r), v = i u̇, B1(r, t) = eiωtB1(r), (1)

where italic vectors v, u and B1 are (generally complex and stationary) amplitudes of
perturbations; dot denotes the time derivative.

It is well known (e.g., [28]) that the torsional (magneto-elastic) oscillations can be
treated as incompressionable (∇ · v = 0; ∇ · u = 0). Then, matter elements oscillate
along spheres with fixed radius r and density ρ(r), with vr = 0 and ur = 0. The density
perturbations are negligible. The equation of motion for a matter element reduces to the
stationary equation

ρω2u = Tµ + TB, (2)

where the force terms Tµ and TB (minus elastic forces per unit volume) come from the
elasticity of the crystalline lattice and magnetic field lines, respectively. Elastic deformations
of the lattice are determined by the shear modulus µ(r) taken in the approximation of an
isotropic solid. Any i-th Cartesian component of Tµ is given by

Tµi = −
∂σik
∂xk

, (3)

where σik = µ (∂ui/∂xk + ∂uk/∂xi) is the shear stress tensor.
The magnetic force term TB is obtained in the standard manner. From the Maxwell

induction equation (without dissipation), in our case, one has B1 = curl(u×B) and

TB =
1

4π
B×curl [curl(u×B)]. (4)

Equation (2), supplemented with (3) and (4), allows one to find oscillation eigenfre-
quencies ω and eigenvectors u(r), which we discuss later in more detail. It is important
that the Tµ and TB terms are linear in the same shift vector u. This couples the lattice
and B-field elasticities. The vector u (with ur = 0) plays the role of the wave function of
the problem.

Let us mention one feature of Eq. (2). Namely, let us multiply (2) by the complex
conjugated shift vector u∗ and integrate it over the star. In this way, we obtain the equality

ω2 = ω2
µ + ω2

B, (5)

where

ω2
µ =

∫
dV u∗Tµ∫
dV ρ|u2| , ω2

B =

∫
dV u∗TB∫
dV ρ|u2| . (6)

Therefore, the true oscillation frequency ω is formally expressed via two auxiliary
frequencies, ωµ and ωB. In the absence of the magnetic field, one has ω = ωµ, which
refers to a pure torsional oscillation due to the elasticity of the lattice. In the absence of the
lattice, one gets ω = ωB, which describes oscillations due to Alfv́en waves. If the lattice
and the magnetic field are present at once, both auxiliary frequencies depend generally on
crystal and magnetic elasticities. Both integrals in the expression for ω2

µ contain positive
definite self-conjugated operators and bilinear combinations of u and u∗, which guarantees
that ω2

µ > 0. It may be not true for the integral in the nominator of ω2
B; in principle, ω2

B
may be a complex number.
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The decomposition of frequencies ω, similar to (5), was studied earlier by Schu-
maker and Thorne [4] (also see, e.g., [46,47]) for pure torsional oscillations at B = 0 with the
aim to separate contributions of elastic shear forces and centrifugal forces in ω2

µ. It is not a
surprise that similar decomposition appears in the case of magneto-elastic oscillations.

3. Pure Torsional Oscillations

This case has been studied in many publications starting from [3–5] and developed
further (e.g., [6–15] and references therein).

Here, we present a brief summary of these results, which we will need later. Oscil-
lation modes are characterized by three numbers. They are: (i) multipolarity ` =2, 3, . . . ;
(ii) azimuthal number m (which is an integer varying from m = −` to m = `); and (iii) the
number n = 0,1, 2, . . . of radial nodes of wave functions u(r, θ, φ).

The functions un`m and eigenfrequencies ωµn` can be found from Equation (2) with
TB = 0. In view of the spherical symmetry of our non-perturbed star, the quantization
axis z can be arbitrary. Accordingly, the eigenfrequencies do not depend on m, meaning
that any frequency is degenerate; it is one and the same for (2` + 1) different state vectors
u with fixed n and ` but different m. The consequences of this fact will be important for
our analysis.

In the given formulation, the solution for u can be presented as

uφ(r, θ, φ) = rYn`(r) exp(imφ)
d Pm

`

dθ
, (7)

uθ(r, θ, φ) = rYn`(r) exp(imφ)
iPm

`

sin θ
, (8)

where Pm
` (cos θ) is an associated Legendre polynomial, and Yn`(r) is a convenient dimen-

sionless radial wave function, which satisfies the equation

Y′′n` +
(

4
r
+

µ′

µ

)
Y′n` +

[
ρ

µ
ω2

µn` −
(`+ 2)(`− 1)

r2

]
Yn` = 0. (9)

Here, the primes mean derivatives with respect to r. Since pure torsional oscillations are
localized in the crystalline matter (r1 ≤ r ≤ r2), Equation (9) is solved with the boundary
conditions Y′(r1) = Y′(r2) = 0 (of zero traction). The solution gives the eigenfrequencies
ωµn`. It is Equation (9) which contains information on the microphysics of neutron star
matter. The angular dependence of the wave vectors u is standard (universal for all stars).

4. The Simplest Iterative Solution

Now we suggest the simplest iterative procedure to include the effects of stellar
magnetic field B. We treat the shift vector un`m, given by (7) and (8), as the zero-order
solution of (2), and we treat the term containing TB, as a perturbation. Let us restrict
ourselves by the first-order perturbation. The problem is similar to finding a first-order
correction to a non-perturbed degenerate energy level of a quantum-mechanical system in
case the perturbation removes degeneracy and splits the energy into a series of sublevels
(e.g., [48]).

In this case, it is sufficient to use only (2`+ 1) zero-order wave functions corresponding
to a fixed non-perturbed oscillation frequency ωn`m. Such functions are often called the initial
zero-order wave functions. The set of these functions is not unique: any linear superposition

ũ =
+`

∑
m=−`

αmun`m (10)

with constant transformation coefficients αm also describes an oscillatory state with the
same ωn`m.
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The iteration procedure prescribes to calculate the perturbation matrix Tmm′ (of dimen-
sion (2`+ 1)× (2`+ 1)) on the basis of the initial wavefunctions. In our case, such matrix
elements are given by

Tm′m =
∫

crust
dV u∗n`m′ TB(un`m). (11)

Since we deal with zero-order wave functions, which are localized in the crust, the
integration domain has to be restricted by the crust alone.

At the next stage, one should use Equation (10) and introduce the basis of ‘true’ zero-
order wave functions ũν (labeled by an index ν), which diagonalize Tm′m. Let us denote
the diagonal values by T̃ν. Their number is (2` + 1); some of them can be equal if the
perturbation does not completely remove degeneracy. Then, the oscillation frequency for
the ‘true’ state ν is

ω2
n`ν = ω2

µn` +
T̃ν∫

crust dV ρ|u2| . (12)

This means the splitting of ωµn` by the magnetic field that is traditionally treated as
the Zeeman effect. This equation is in accord with the more general Equation (6) in which
ω2

B has to be identified with the last term in (12).
This procedure of studying the magnetic splitting of torsional oscillation frequencies

is computationally simple for any static magnetic field B(r) configuration, being mostly
reduced to calculating and diagonalizing the matrix (11). The procedure gives a much
richer spectrum of eigenfrequencies than the theory of non-magnetic torsional oscillations.

The disadvantage of the procedure is evident. It is certainly restricted by the not-too-
high magnetic fields—the magnetic splitting of oscillation frequencies has to be smaller
than the zero-order torsion oscillation frequencies ωµn` themselves. The suggested proce-
dure needs only the magnetic field B located in the crust; only zero-order wavefunctions
are involved. Undoubtedly, sufficiently high B breaks down this approximation; then,
penetration of Alfvén perturbations to the neutron star core and possibly to the magneto-
sphere may become essential. At large B, the theory should be modified, but the imprints
of the degeneracy problem need to be studied anyway. Another disadvantage of the it-
erative scheme is that, although its first step is feasible, higher-order iterations seem too
complicated to be useful.

5. Fundamental Torsional Oscillations in Poloidal Axially Symmetric Magnetic Fields

By way of illustration, we apply the formalism of Section 4 to the case of fundamen-
tal torsional oscillations in the presence of a poloidal axially symmetric magnetic field
configuration. In this case

Br = Br(r, θ), Bθ = Bθ(r, θ), Bφ = 0, (13)

where z is the magnetic axis. Since∇ · B = 0, the field components Br and Bθ are related by

1
r2

∂

∂r
(r2Br) +

1
r sin θ

∂

∂θ
(Bθ sin θ) = 0. (14)

The main problem is to calculate the matrix elements Tmm′ from Equation (11) with
the wavefunctions (8) and (7), and to diagonalize the matrix. Luckily, a careful inspection
of the integral in (11) shows that for the magnetic field (13), the matrix Tmm′ is diagonal on
the basis of the initial zero-order wavefunctions because the integration over φ reduces to∫ 2π

0
dφ exp(im− im′) = 2π δmm′ , (15)

where δmm′ is the Kronecker delta. Accordingly, the initial zero-order functions are identical
to the true zero-order functions. Then, the magnetically split eigenfrequencies can be
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labeled by ν = m and readily given by Equation (12) with T̃ν = Tmm. This solution can be
rewritten in the form

ω2
n`m = ω2

µn` + ω2
Bn`m, ω2

Bn`m =
Tmm∫

crust dV ρ|u2| . (16)

In addition, due to the symmetry with respect to the equatorial plane (θ = π/2), one
has Tmm =T−m−m. Accordingly, the splitting of Zeeman states with azimuthal numbers,
m and −m, is equal, so that the magnetic sublevels can be labeled by m = 0, 1,. . . ` (with
`+ 1 different sublevels in total). The sublevel m = 0 is nondegenerate, while those with
m > 0 are still degenerate twice. The latter degeneracy can be further removed by a more
complicated B-field geometry.

Moreover, we restrict ourselves by considering fundamental torsional oscillations;
they are those with no radial nodes. Then, we always have n = 0, so we drop this index
for simplicity. Therefore, our zero-order oscillation frequencies ωµ = ωµ` depend only
on `. At low `, these frequencies are known to be small enough to explain the lowest
frequencies of QPOs observed in the afterglow of magnetar flares (see Section 8 for more
details). For fundamental torsional oscillations with very good accuracy, the radial wave
function Y in Equations (7) and (8) is independent of r: Y`(r) ≈ Y0, see [46,47]. Since the
numerators and denominators in Equation (6) are proportional to Y2

0 , this quantity just
drops out of consideration.

Then, ω2
B`m in Equation (16) can be rewritten as

ω2
B`m =

1
4π

∫
crust dV IB∫

crust dV ρr2
(

P′2 + m2

sin2 θ
P2
) , (17)

where P = Pm
` (θ), and

IB = −(B2
θ − Bθ B′θ cot θ − BrBθ cot θ − rBrBθ,r cot θ) P′2

−(Bθ B′θ + BrBθ + rBrBθ,r)P′P′′ − B2
θ P′P′′′

+
[

B2
θ P′2 − (Bθ B′θ + B2

θ cot θ + 2BrB′r + BrBθ + rBrBθ,r)PP′

+Br(B′θ + Bθ cot θ + rB′θ,r + rBθ,r cot θ − B′′r + B′r cot θ) P2
] m2

sin2 θ
. (18)

Here the primes denote derivatives with respect to θ. The subscript r after the comma de-
notes the derivative with respect to r. Equation (18) is obtained from (11) by substituting (7)
and (8), taking Y(r) = Y0, and integrating over φ using (15). We have also used (14) to
rearrange some terms. The denominator of (17) can be further simplified using the well
known (e.g., [49]) property of associated Legendre polynomials Pm

` (cos θ):

∫ π

0
sin θ dθ

(
P′2 +

m2

sin2 θ
P2
)
≡ Ξ(`, m) =

2`(`+ 1)(`+ m)!
(2`+ 1)(`−m)!

. (19)

Then, we can rewrite (17) as

ω2
B`m =

1
4π

∫ r2
r1

dr r2
∫ π

0 sin θ dθ IB

Ξ(`, m)
∫ r2

r1
dr ρr4

=
1

4π

∫
crust dV IB

Ξ(`, m)
∫

crust dV ρr2 . (20)

The integral in the denominator is exactly the same as for pure torsional oscillations
at B = 0. Thus, the problem of calculating Zeeman splitting of the zero-order oscillation
frequency reduces to the integration of the known function IB over r and θ in the nominator.
This integral is determined by the magnetic field configuration (13) and can be taken for
any assumed poloidal axially symmetric Br and Bθ . Otherwise, the integration is insensitive



Universe 2023, 9, 504 7 of 15

to microphysics in the neutron star crust. Although we have studied fundamental torsional
modes (n = 0), the results are easily generalized to modes with radial nodes (n > 0).

According to the above expressions, ω2
B`m is quadratic in B. Then, the true oscillation

frequency has the form ω(B) =
√

ω2(0) + αB2, where B is a characteristic B-field value,
and α is some constant. Since our consideration is strictly valid at ω2(0) � αB2, one
gets ω(B) ≈ ω(0) + 1

2 αB2/ω(0), meaning a small correction to ω(0) quadratic in B in
the guaranteed applicability range. However, taking into account the generic rule (5),
we will often retain the square root, which can formally exceed the applicability limit; at
ω2(0)� αB2, one would get ω(B) ∝ B although the validity of this expression is unclear.

Similar square-root expression for ω(B) has been used in various calculations of
magneto-elastic oscillation frequencies (e.g., [29,50]), which neglected Zeeman splitting (note
that in some cases, the dependence αB2 was declared to be inaccurate at large B, e.g., [38]).
The factor α has often been used as a convenient parameter to fit the calculated ω(B). Our ap-
proach gives an exact prescription on how to determine α, including (m 6= 0) or disregarding
(m = 0) Zeeman splitting at not too high B.

Let us mention that in the pioneering work on the Zeeman effect in magnetars, Shaisul-
tanov and Eichler [45] used an elegant formalism of spherical vectors (e.g., [51]) to calculate
(in our notations) Tmm. They assumed a constant B directed along the z-axis and a constant
µ(r)/ρ(r) in the magnetar crust, and demonstrated the main features of Zeeman splitting
in magnetars. In the case of more sophisticated magnetic field configurations, using the
formalism of spherical vectors would be more complicated.

6. Relativistic Effects

So far, we have neglected relativistic effects (to make our theoretical sketch physically
transparent), but for neutron stars, these effects are quantitatively important.

The first effect is due to the Special Theory of Relativity. Since the neutron star matter
is essentially relativistic, one should replace (e.g., [4]) the mass density ρ in the equations of
motion by the inertial mass density ρ + P/c2, where P is the pressure.

Other effects are those due to general relativity (GR). The spacetime in and around a
neutron star is curved. For our problem, it would be sufficient to use the relativistic Cowling
approximation and the standard metric for a non-perturbed spherically symmetric star

ds2 = − exp(2Φ(r))dt2 + exp(2Λ(r))dr2 + r2(dθ2 + sin2 θ dφ2). (21)

Here, t is a Schwarzschild time (for a distant observer); r is a radial coordinate that
has the meaning of circumferential radius; θ and φ are ordinary spherical angles which are
not affected by GR here; Φ(r) and Λ(r) are the two metric functions to be determined from
the Tolman–Oppenheimer–Volkoff equations (e.g., [2,4]).

Let M be the gravitational mass of the star and R be its circumferential radius. Outside
the star (r > R), the metric (21) reduces to the Schwarzschild metric with Φ(r) = −Λ(r) =
1
2 ln(1 − rg/r). Here, rg = 2GM/c2 is the Schwarzschild radius of the star, G is the
gravitational constant, and c is the speed of light.

The space–time in a relatively thin and low-massive neutron star crust can be substan-
tially curved, but the curvature is nearly constant there. Therefore, the expressions for the
oscillation frequencies, obtained in previous sections, are expected to be rather accurate in
a reference frame co-moving the crust.

As demonstrated in [47], while calculating the pure torsional vibration frequencies
detected by a distant observer, it is quite accurate to use the metric functions constant
through the crust,

Φ = −Λ = 1
2 ln(1− xg∗), (22)

where xg∗ = 2GM∗/(c2r∗), r∗ is any fiducial radial coordinate within the crust and M∗ is
the gravitational mass within a sphere of radius r∗.
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One can easily show that this approximation, being applied to the redshifted fre-
quency ωµ` of a pure torsional fundamental mode, reduces to

ω2
µ` = (1− xg∗)

∫
crust dV µ∫

crust dV (ρ + P/c2) r2 , (23)

where the volume element dV = r2 dr sin θ dθ dφ. The factor (1− xg∗) can be naturally
interpreted as due to the gravitational redshift. According to [47], the maximum deviation
of the approximate frequencies (23) from the values of ωµ` calculated in full GR does
not exceed a few percent for any choice of r∗ (although choosing r∗ near the crust–core
interface is slightly more accurate). We do not pretend to be very accurate here and accept
this accuracy.

Moreover, we introduce similar relativistic corrections to the redshfited quantity ω2
B`m.

Then, instead of (20), we will use

ω2
B`m = (1− xg∗)

1
4π

∫
crust dV IB

Ξ(`, m)
∫

crust dV (ρ + P/c2) r2 . (24)

In numerical calculations, we take r∗ at the crust–core interface. In any case, (24) is an
approximation, which seems to be sufficient for a semi-quantitative analysis, although the
exact derivation of ω2

B`m in the full GR would be desirable.

7. The Dipole Magnetic Field

Let us apply the above formalism to a pure dipole magnetic field in the neutron
star crust,

Br = B0

(
R
r

)3
cos θ, Bθ =

B0

2

(
R
r

)3
sin θ, (25)

where B0 is the field at the magnetic pole on the surface in the local reference frame.
In this case, Equation (18) reduces to

IB = −B2
θ

[
P′2(1 + 3 cot2 θ)− 3P′P′′ cot θ + P′P′′′

+
m2

sin2 θ

(
−P′2 − 10 PP′ cot θ + 8P2 cot2 θ

)]
. (26)

Let us substitute this expression into (24). The integral over r in the nominator is taken
analytically, and we obtain

ω2
B`m =

B2
0r3

2 [(r2/r1)
3 − 1]

12π
∫ r2

r1
dr (ρ + P/c2) r4

ζ`m, ζ`m =
1

Ξ(`, m)

∫ π

0
sin θ dθ IB. (27)

Note that r1 = Rcc is the radius at the crust–core interface, and r2 is taken slightly
lower than R for the convenience of calculations; shifting r2 → R in the final expression
would not affect the result; see, e.g., [46].

The Zeeman splitting is seen to be governed by the integrals over θ in ζ`m. We have
calculated them for ` = 2, 3, 4, and 5. In all these cases, ζ`m is virtually exactly described by
the expression

ζ`m = c0(`) + c2(`)m2, (28)

where the coefficients c0(`) and c2(`) are listed in Table 1.
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Table 1. Coefficients c0(`) and c2(`), which describe ζ`m in Equation (28).

` 2 3 4 5

c0 0 2.6667 6.5455 11.487
c2 0.66667 0.13333 –0.08182 –0.252

In this approximation, ω2
B`m is proportional to B2

0 . In the range of strict validity of our
approach, ωB`m is also quadratic in B0, as already stated in Section 5.

At m = 0, the presented expressions should be valid for describing previous results, where
Zeeman splitting was neglected. Then, the lowest frequency ω`0 with ` = 2 is not affected by the
magnetic field at all (c0(2) = 0 in our approximation, which seems true only for the dipole field),
while other frequencies with ` > 2 increase as B2

0. It would be instructive to check that c0(2) = 0
for the dipole magnetic field from previous calculations of ω20(B) but they are controversial. For
instance, compare Figure 4 in [29] with Figures 1 and 2 in [44].

The number of oscillation frequencies with m = 0 is much lower than the total number
of frequencies with different m. If we fix ` and vary m, the true oscillation frequency ω`m
acquires the term behaving as m2B2

0. For ` < 4, this term is positive, but for ` ≥ 4, it
becomes negative.

The presented expressions allow one to calculate (evaluate) ωB`m and, hence, total
eigenfrequencies ω`m of fundamental torsional (magneto-elastic) oscillations in the crust of
any neutron star, whose model is given and the magnetic field is not too strong. If several
oscillation frequencies are measured from one and the same star, one can try to choose a
value of B0 and a stellar model to explain a set of observed oscillations at once. This gives a
method to constrain B0 and the neutron star model.

For illustration, let us outline the main properties of cyclic fundamental oscillation
frequencies ν`m = ω`m/(2π) (expressed in Hz) at ` =2,. . . 5 and m =0,. . . ` as functions of
B0. For this aim, we take neutron star models composed of matter with the BSk21 equation
of state (EOS). This is a typical EOS; its basic properties, as well as the properties of corre-
sponding stellar models, are nicely described by analytic expressions by Potekhin et al. [52].
The crust of these stars consists of spherical atomic nuclei and electrons; the inner crust also
contains quasi-free neutrons, and there are quasi-free protons near the crust–core interface
(ρcc = 1.34× 1014 g cm−3). The cores of such stars are nucleonic, also containing electrons
and muons. The crust and core are described by the same energy–density functional of the
nuclear interaction. The maximum mass of the star of this type is M = 2.27 M�. For in-
stance, the stellar model with M = 1.4 M� has radius R = 12.60 km, and the radius of its
crust–core interface is Rcc = 11.55 km. More information on neutron star models with the
BSk21 EOS and on pure torsional (B = 0) oscillations of these stars can be found in [47].

The behavior of the oscillation frequencies ν`m with increasing B0 is shown in Figure 1.
The four panels (a), (b), (c) and (d) correspond to the four neutron-star masses 1.0 M�,
1.4 M�, 1.8 M� and 2.2 M�, respectively. The field B0 ≤ 4× 1014 G is insufficiently strong
to produce a noticeable Zeeman splitting with respect to m, and the oscillation frequencies
remain very close to those in non-magnetic stars. At higher B0, the Zeeman splitting
becomes progressively more pronounced. Each non-magnetic frequency with fixed ` splits
into (`+ 1) Zeeman components. The components with the lowest m = 0 are plotted by
the dashed lines. These components have been studied in the literature; the real spectrum
is seen to be much more complicated. At ` = 2 and 3, the frequencies ν`0 are the lowest
among respective Zeeman components (ν`m increases with m), while at higher `, they
become the largest (ν`m decreases with m). This is reflected in the inversion of the sign of
coefficient c2(`) in Table 1.

According to Figure 1, the dependence of ν`m on B0 for stars of different masses is
similar. The frequencies ν`m for more massive stars are smaller. At sufficiently high B0, our
iterative solutions should become inaccurate (because we extend the plots to very high B,
see Sections 4 and 5). For ` ≤ 4, this seems to happen at B0 & 4× 1015 G. With increasing `,
the Zeeman splitting gets wider so that splittings for different ` start to overlap, manifesting



Universe 2023, 9, 504 10 of 15

possible cases of (avoided) crossings and mixtures of states with different `. At still higher
`, these effects are expected to occur at still lower B0, resulting in a rich, densely spaced
and complicated spectrum of frequencies, a good project for further studies.
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Figure 1. Fundamental torsional oscillation frequencies ν`m = ω`m/(2π) at four lowest ` (from 2 to 5)
versus the dipole magnetic field B0 at the magnetic pole. Calculations are performed for four neutron
star models (with the BSk21 EOS); see panels (a–d). One can observe Zeeman splitting of any
frequency in a non-magnetic star into (`+ 1) Zeeman components. The components with m = 0 are
plotted by dashed lines. With increasing m (at fixed `), the components either monotonically increase
with respect to ν`0 (for ` = 2 and 3) or decrease (for ` = 4 and 5).

8. SGR 1806–20 and SGR 1900+14

To illustrate the above results, let us sketch their use for a possible interpretation of
QPO oscillation frequencies observed in X-ray afterglows of two flaring SGRs. Taken the
simplicity of our model, we will not try to be accurate and seek the complete sets of
solutions, but present a few possible cases chosen by eye.

We analyze the low-frequency QPOs detected in the hyperflare of SGR 1806–20
(in 2004) and the giant flare of SGR 1900+14 (in 1998); e.g., [16–20] and references therein.

In particular, the low-frequency QPOs in the spectrum of the hyperflare of SGR 1806–20
were detected at 18, 26, 30, 92 and 150 Hz (and with less confidence at 17, 21, 36, 59 and
116 Hz). Taking into account a restricted range of frequencies calculated here (Figure 1),
in Figure 2 we analyze the possibility of simultaneously detecting seven QPOs at 18, 26,
30, 17, 21, 36 and 59 Hz from one and the same star with a dipole magnetic field in the
crust (leaving more complete analysis for future studies). Naturally, the Zeeman splitting
of oscillation frequencies greatly increases the probability of such an interpretation.

Figure 2a shows the theoretical frequencies for the star of a typical mass 1.4 M�. By varying
B0, we can choose such a B0-interval that is consistent with more detections. This interval,
B0 ≈ (3.2− 3.4)× 1015 G, is shown by a vertical bar. It allows one to be qualitatively consistent
with the three detected frequencies: 26, 30 and 59 Hz. The other four frequencies are not
explained in this way. In particular, the frequencies . 20 Hz remain unexplained.
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Figure 2. Calculated oscillation frequencies with ` ≤ 5 versus B0 for two neutron star models,
(a) (same as in Figure 1b) and (b) (same as in Figure 1d) compared with the low-frequency QPOs
detected in the afterglow of the hyperflare of SGR 1806–20. The detected frequencies are plotted
by horizontal dotted lines. More reliable detections (18, 26 and 30 Hz) are plotted by denser dotted
lines. Less reliable ones (17, 21, 36 and 59 Hz) are displayed by more rarefied dotted lines. Vertical
shaded strips show possible ranges of B0 simultaneously consistent with some detections (see the
text for details).

A more attractive solution can be obtained by taking a more massive star, where
torsional oscillation frequencies are smaller (e.g., [29,47]). This is shown in Figure 2b, where
we take M = 2.2 M�. With B0 ≈ (3.5− 3.7)× 1015 G, we can now qualitatively explain the
four detections at 18, 21, 26 and 59 Hz, out of six. The detected QPO at 17 Hz is quite close
to QPOs at 18 and 21 Hz; it might be produced by nonlinear interactions of QPOs at 18
and 21 Hz, especially if the magnetic field configuration is more complicated than the pure
dipole. However, the QPO at 30 Hz remains not explained. In any case, the explanation in
Figure 2b seems more satisfactory than in Figure 2a, indicating that SGR 1806–20 may be
a massive star. The obtained field strength is in line with current estimates of magnetar
fields (e.g., [24]).

Figure 3 compares our theory with the detection of low-frequency QPOs in the giant
flare of SGR 1900+14. The detected frequencies were 28, 53, 84 and 155 Hz; our current
results can be used for explaining QPOs at 28 and 53 Hz. This problem of interpreting two
detected points is much simpler than for SGR 1806–20. For instance, we take the 1.4 M�
star and show one possible explanation, where the field strength B0 ≈ (2.2− 2.4)× 1015 G
is consistent with the current estimates of magnetar fields.
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Figure 3. Theoretical oscillation frequencies with ` ≤ 5 versus B0 for a neutron star model with
M = 1.4 M� (same as in Figure 1b) compared with two low-frequency QPOs (28 and 53 Hz) detected
in the afterglow of the giant flare of SGR 1900+14 (the horizontal dotted lines). Vertical shaded strip
shows possible ranges of B0 consistent with both detected frequencies.
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The results of this section can be treated as very preliminary. They illustrate the impor-
tance of Zeeman splitting of torsional oscillations of magnetars suggested by Shaisultanov
and Eichler [45].

Let us stress once more that our approach is asymptotically accurate at not too strong
B-fields. However, our attempts (in this section) to interpret magnetar QPOs indicate
that real magnetar fields are just those, at which our approach can be already broken.
Finding accurate values of breaking fields requires much effort.

The approach is simple because it is valid in the regime in which the elasticity of
crystal matter is meant to be more important than that due to the magnetic field. Then,
the effects of bulk viscosity µ dominate, and the magneto-elastic oscillations have much
in common with pure torsional oscillations at B = 0. In particular, the oscillations are
mainly confined in the crystalline matter; in this way, they depend on the microphysics
of the matter and the magnetic field configuration in the crust. This allows one to present
solutions in a nearly closed form.

The difference between these solutions from those that were extensively studied
previously is that they deal with non-axially symmetric perturbations of matter velocities
and magnetic field perturbations (although the non-perturbed B-field is axially symmetric).
It brings into play new degrees of freedom and enriches the oscillation spectrum. It would
be an interesting project to extend previous numerical simulations (e.g., [37,38]) to this case.

With increasing B, the contribution of Alfvénic perturbations to the oscillations will
increase (and finally dominate); these perturbations will spread out of the crystalline crust,
and the presented approach will break. We fully appreciate many previous investigations
(e.g., [30]) of magnetar oscillations based on Alfvén wave propagation over the entire star
(not confined in the crust). Such waves can produce sophisticated oscillations of the star,
which can be important for magnetar QPOs. Currently, this approach is mainly restricted
by axially symmetric deformations. It would be interesting to extend such studies to
non-axially symmetric ones.

9. Discussion and Conclusions

We have studied fundamental torsional (magneto-elastic) oscillations of neutron star
crust in magnetars. The solution at B = 0 is well known and corresponds to pure torsional
oscillations of the stellar crust (Section 3). The solution for non-zero B has been extensively
studied since the beginning of the 2000s (e.g., [26–44]) mostly numerically and for axially
symmetric B-field configurations assuming axially symmetric velocity field of matter
elements and magnetic field perturbations.

The exclusion was made by Shaisultanov and Eichler [45], who considered non-
axially symmetric perturbations and predicted the effect of Zeeman splitting of torsional
oscillation frequencies in magnetars. Unfortunately, their publication has not been given
considerable attention.

We have tried to extend their consideration based on the same first-order perturbation
theory with respect to the magnetic terms in the linearized oscillation equations. The equa-
tions are outlined in Section 2, neglecting relativistic effects. The properties of pure torsional
oscillations are summarized in Section 3. The standard first-order perturbation approach is
described in Section 4 for any B-field geometry. The approach reproduces Zeeman split-
ting [45] of pure torsional oscillation frequencies ω`n into a bunch of components, enriching
the theoretical spectrum of magneto-elastic oscillations. We stress the well-defined nature
of the solutions and their breakdown at very strong magnetic fields.

Section 5 applies the formalism of Section 4 to the case of fundamental oscillations
(without nodes of radial wave functions) in a poloidal axially symmetric B-field. This case
is especially simple. Finding the oscillation frequencies reduces it to taking 2D integrals (17)
with well-defined integrands (18). In Section 6, we modified the equations to include rela-
tivistic effects. For illustration, Section 7 considers the simplest dipole field configuration in
a neutron star crust. In Section 8, our results are used for sketching possible interpretations
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of detected low-frequency QPOs (≤70 Hz) in afterglows of the hyperflare of SGR 1806–20
and of the giant flare of SGR 1900+14.

Let us emphasize that the Zeeman effect complicates the theory but greatly enriches
the oscillation spectrum and simplifies the theoretical interpretation of detected QPOs.
Needless to say, our restricted first-order iterative approach is far from being perfect and
can be elaborated. First of all, one can consider other B-field geometries (e.g., [53])—not
pure dipole but dipole-like fields, magnetic quadrupole, toroidal configurations or mixtures
of these (see, e.g., [37,38]). Preliminary estimates show that for different B-field geometries,
the Zeeman splitting can be qualitatively similar to that for the magnetic dipole but different
in details. With the loss of magnetic field symmetry, the splitting will be more complete,
removing residual degeneracy of oscillation frequencies. Additionally, one can replace the
approximate description of magneto-elastic oscillations in GR (Section 6) with the exact
description, in the spirit of Ref. [29]. Moreover, one can extend the iterative approach to
ordinary torsional oscillations, with a finite amount of nodes of radial wave functions.
Another direction of study could be to include delicate details of the microphysics of crustal
matter, like advanced shear modulus, the effects of superfluidity, possible nuclear pasta
phases and so on (as detailed, e.g., in [47]).
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19. Huppenkothen, D.; Heil, L.M.; Watts, A.L.; Göğüs, , E. Quasi-periodic Oscillations in Short Recurring Bursts of Magnetars SGR
1806-20 and SGR 1900+14 Observed with RXTE. Astrophys. J. 2014, 795, 114. [CrossRef]

20. Huppenkothen, D.; D’Angelo, C.; Watts, A.L.; Heil, L.; van der Klis, M.; van der Horst, A.J.; Kouveliotou, C.; Baring, M.G.; Göğüs, ,
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