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Abstract: Telescopes such as the Large Sky Area Multi-Object Spectroscopic Telescope and the Sloan
Digital Sky Survey have produced an extensive collection of spectra, challenging the feasibility of
manual classification in terms of accuracy and efficiency. To overcome these limitations, machine
learning techniques are increasingly being utilized for automated spectral classification. However,
these approaches primarily treat spectra as frequency domain signals, and lack robustness in low
signal-to-noise ratio (S/N) scenarios and for small datasets of rare celestial objects. Moreover, they fre-
quently neglect nuanced expert astronomical understanding. In this study, we draw inspiration from
the human spectral discrimination process and propose a new model called the Image-EFficientNetV2-
Spectrum Convolutional Neural Network (IEF-SCNN). IEF-SCNN combines spectral images using
EfficientNetV2 with one-dimensional (1D) spectra through a 1DCNN. This integration effectively
incorporates astronomical expertise into the classification process. Specifically, we plot the spectrum
as an image and then classify it in a way that incorporates an attention mechanism. This attention
mechanism mimics human observation of images for classification, selectively emphasizing relevant
information while ignoring irrelevant details. Experimental data demonstrate that IEF-SCNN outper-
forms existing models in terms of the F1-score and accuracy metrics, particularly for low S/N (<6)
data. Using progressive learning and an attention mechanism, the model trained on 12,000 M-class
stars with an S/N below 6 achieved an accuracy of 87.38% on a 4000-sample test set. This surpasses
traditional models (support vector machine with 83.15% accuracy, random forest with 65.40%, and ar-
tificial neural network with 84.40%) and the 1D stellar spectral CNN (85.65% accuracy). This research
offers a foundation for the development of innovative methods for the automated identification of
specific celestial objects, and can promote the creation of user-friendly software for astronomers who
may not have computational expertise.

Keywords: astronomy data analysis; astronomy databases; stellar spectral types; surveys

1. Introduction

In recent decades, astronomical survey telescopes such as the Sloan Digital Sky Survey
(SDSS) [1] and the Large Sky Area Multi-Object Spectroscopic Telescope (LAMOST) [2] have
amassed a substantial volume of spectral data. This invaluable spectral information has
made significant contributions to the advancement of astronomical research. Nonetheless,
the task of categorizing this vast array of spectra is formidable and presents a substan-
tial challenge.

The MK classification system [3] is a widely utilized method for categorizing stars
based on their temperature and brightness attributes. Initially, this classification relied
on human experts who applied their experience and visual analysis. However, manual
classification is susceptible to subjective errors and is notably inefficient. Consequently,
template matching methods [4,5] were developed as an alternative approach. However,
template matching may face performance challenges when handling intricate spectra.

The exponential growth in data samples coupled with advancements in computer
hardware has spurred the development of numerous machine learning and deep learning-
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based methods that can address the challenges involved in spectral classification. Machine
learning techniques have found widespread application in this context. For instance, in [6],
an artificial neural network (ANN) was employed for spectral classification. In [7], the
authors utilized principal component analysis to reduce dimensionality before employing
ANN for classification. In cases with a low signal-to-noise ratio (S/N), as described
in [8], an ANN was applied to process spectral data. Furthermore, ref. [9] introduced
the MKCLASS program, which classifies spectra based on their deviation from the MK
standard spectra. The random forest algorithm, as detailed in [10], was employed for
stellar spectral classification and feature evaluation. In [11], the authors investigated the
application of probabilistic neural networks, support vector machines, and K-means in
spectral classification. Finally, ref. [12] proposed an entropy-based approach for classifying
unbalanced spectral data. For an in-depth exploration of how machine learning is employed
in the classification of astronomical spectra, ref. [13] provides a comprehensive review.

Deep learning techniques have gained traction in spectral classification. For instance,
ref. [14] introduced deep neural networks for the prediction of star parameters, while [15]
proposed an automated method for classifying stellar spectra in the optical range using
convolutional neural networks (CNNs). In [16], the authors introduced a nine-layer one-
dimensional stellar spectral CNN (1D SSCNN) architecture for the classification of F, G,
and K stellar spectra. In [17], the authors improved CNN performance by incorporating a
residual structure and an attention mechanism.

Nevertheless, prior studies have typically involved the extraction of features from raw
spectral data (or direct input of raw data) and subsequent construction of classification
models using processed data. These approaches primarily rely on statistical knowledge,
and do not effectively incorporate the expertise of astronomers.

In this study, we draw inspiration from the process of human spectral discrimination
and propose a novel approach to categorizing stellar spectra by treating them as images
within the field of computer vision. We suggest that human experts classify spectra by
visually examining these spectral “images”, focusing on salient features while disregarding
less relevant ones. In our research, we emulate this process by plotting spectra into image
representations and incorporating an attention mechanism. Recent advancements in image
classification models, including MobileNetV2 [18], ViT [19], and EfficientNetV2 [20], have
been noteworthy; in particular, EfficientNetV2 has demonstrated remarkable performance
and efficiency, achieving top-1 accuracy on ImageNet ILSVRC2012 and surpassing ViT
while training significantly more quickly with equivalent computing resources. Therefore,
in light of the substantial volume of astronomical data, we opted to utilize EfficientNetV2
for processing spectral images. Furthermore, we explored a hybrid approach by combining
1D spectral data with the image representations plotted from the spectra. Motivated by
this concept, we have devised a model built upon the foundations of EfficientNetV2 and
a 1D SSCNN that is able to handle both images and 1D spectral data. In the case of
EfficientNetV2, we tailored the attention mechanism and progressive learning components
to better suit the characteristics of astronomical data. Simultaneously, for the 1D SSCNN
component, we integrated a convolutional structure and employed an attention mechanism
to enhance compatibility with EfficientNetV2.

The subsequent sections of this paper are structured as follows. Section 2 introduces
the data and describes the preprocessing steps applied to the spectral data obtained from
the SDSS database. Section 3 provides an overview of our methodology. Section 4 presents
a comparative analysis of the experimental results obtained with our model in relation to
other existing models. Section 5 comprises a series of discussions regarding the implications
of the experimental findings. Finally, Section 6 concludes the paper and identifies potential
areas for further research.

2. Data and Preprocessing

The SDSS represents a notably ambitious and successful survey project that provides
access to spectra and deep multicolor images of celestial objects. Spectral data from SDSS
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DR16 are openly available to the public through the Casjobs server [21],1 enabling users to
download data accompanied by relevant labels. In this particular study, we acquired stellar
data including five classes: A, F, G, K, and M, as well as five subclasses within the M-type
stars spanning the range from 0 to 4. These two sets of classifications correspond to two
distinct categorization tasks. The initial step in data preprocessing entails the normalization
of the data. To accomplish this, the flux values must be transformed into the range of 0 to 1
following the procedure outlined below:

S =
f − fMin

fMax − fMin
(1)

where f represents the flux and fMin and fMax denote the minimum and maximum flux
values, respectively.

To maintain a consistent input format, we confined the wavelength range in the
normalized data to span from 4000 Å to 9000 Å, resulting in a data size of 1 × 3522.
As our model incorporates images, it is crucial to visualize the preprocessed data in the
form of images as well. In the domain of deep learning, the resolution of an image can
exert a significant influence on training results. In theory, higher-resolution images can
encapsulate more information and potentially yield superior training results. Nevertheless,
larger images may introduce challenges such as overfitting and protracted training times.
Considering that EfficientNetV2 employs a resolution of 380 × 380 [20], we maintained this
resolution in order to ensure consistency and avoid compromising performance. During the
training phase, we employed a resolution of 300 × 300 to expedite the training process,
with a transition to 380 × 380 during testing, aligning with the specifications outlined in
the original EfficientNetV2 papers.

In addition to image resolution, the line width of the drawn spectrum plays a crucial
role in influencing the experimental results. The term “line width” pertains to the thickness
of the lines, and is measured in pixels. We utilized the matplotlib plot function2 to plot these
spectral images; line width serves as one of the optional parameters within this function.
While a larger line width facilitate improved information acquisition, it may sacrifice finer
details; on the other hand, a narrower line width capture more complex details at the
expense of slower convergence during training. Considering that EfficientNetV2 requires
input data with three channels corresponding to RGB colors, and our spectral images
inherently possess only one color, we addressed this disparity by generating three distinct
images, each with a different line width, to populate the three color channels. This approach
is elucidated in Figure 1, where the model simultaneously processes three distinct images
of a single spectrum.

Figure 1 illustrates that the conventional model accepts the normalized 1D data
obtained by extracting the spectral flux and resizing it to a consistent dimension as input.
In this study, the model endeavors to enhance its classification capacity by incorporating
the spectral image generated through spectral plotting alongside the 1D spectral data.
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Figure 1. Spectral preprocessing: first, the spectrum is extracted, cropped, and normalized to obtain
a 1 × 3522 vector. Then, this vector is used to plot three single-channel images, each with a different
line width that represents the width of the spectral lines in the image. The x-axis represents the
wavelength, while the y-axis represents the relative flux. Finally, these three single-channel images are
merged into a single three-channel image, with each channel corresponding to one of the three images.

3. Method

In this study, we introduce an innovative model referred to as IEF-S CNN (Image
EfficientNetV2-Spectrum) that seamlessly integrates spectral images and 1D spectral data to
facilitate the classification process. The network architecture of EfficientNetV2 is harnessed
to extract salient features from the image component. Furthermore, specialized attention
and progressive learning modules are enhanced to cater specifically to the characteristics
of astronomical spectral data. To capture features from the 1D spectral component, we
devised a structured 1D convolutional neural network (1DCNN). Ultimately, the features
extracted from both the images and the 1D spectral data are synergistically amalgamated
to serve the classification objective.

3.1. EfficientNetV2

EfficientNet [22], proposed by Google in 2019, represents an advanced network archi-
tecture that has demonstrated remarkable performance in image classification. The suc-
cess of EfficientNet can be attributed to two pivotal factors. First, Google harnessed its
formidable computing power to conduct a thorough neural network search, culminating in
the discovery of an enhanced network structure. Second, while traditional CNN models
typically rely on augmenting the size of the convolutional kernel, the depth of the network,
and the input resolution individually to improve performance, EfficientNet adopts a holistic
approach by optimizing all three aspects concurrently, leading to superior results.

In this study, we employed EfficientNetV2, an improved iteration of EfficientNet [20],
which introduces two notable enhancements. First, it accelerates the training speed of shal-
lower networks. Second, it introduces a progressive learning technique that dynamically
adjusts the regularization method (e.g., dropout) based on the training image size. This
approach expedites the training process and elevates accuracy. In comparison to its prede-
cessor, EfficientNetV2 achieves an eleven-fold increase in training speed while reducing the
number of parameters to 1/6.8. EfficientNetV2 comprises a combination of MBConv [18]
and FusedMBConv blocks. The fundamental element within MBConv is the mobile in-
verted bottleneck, which incorporates an attention mechanism. It comprises two standard
convolutional layers, namely, a depthwise convolutional layer and a squeeze–excitation
(SE) [23] attention mechanism. FusedMBConv addresses the inefficiency of the depthwise
convolution layer in MBConv by replacing the previous normal convolution and depthwise
convolution layers with a single normal convolution, facilitating hardware acceleration.

EfficientNetV2 models of various sizes have been developed and tailored to different
tasks. In this specific study, recognizing the relatively lower complexity of spectral images
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compared to natural images, we chose to utilize the smallest model from the EfficientNetV2
family, EfficientNetV2-S.

3.2. Optimization of the Attention Mechanism

The behavior exhibited by experts who focus on specific features of the spectrum aligns
with the concept of the attention mechanism in deep learning. The squeeze–excitation (SE)
attention mechanism is employed by EfficientNetV2. However, recognizing the critical role
played by the attention mechanism, we opted to replace the SE attention mechanism with
two alternative attention mechanisms for the purpose of comparative experiments: efficient
channel attention (ECA) [24] and convolutional block attention module (CBAM) [25].

The SE attention mechanism centers its attention on the interplay between different
channels. Following a global pooling operation and two fully connected layers, the model
discerns the significance of various channels. Nevertheless, the SE attention mechanism
compresses the input feature map, leading to a reduction in dimensionality, which can
impede the model’s capacity to learn dependencies between channels. In contrast, the ECA
attention mechanism bypasses dimensional reduction and adaptively captures local cross-
channel interactions through the use of 1D convolution, facilitating the extraction of inter-
channel dependencies. The size of the 1D convolution kernel, denoted as k, represents a
hyperparameter that is varied according to the number of channels, denoted as C. To ad-
dress this variability, ECA proposes an adaptive approach to determine the optimal size for
the 1D convolution kernel.

The calculation of the convolution kernel k is depicted in the following equation, with γ
set to 2 and b set to 1. It is noteworthy that the ECA attention mechanism is conceptually
and operationally simpler than the SE attention mechanism, exerting a negligible effect on
network processing speed.

k = ψ(C) =
∣∣∣∣ log2(C)

γ
+

b
γ

∣∣∣∣
odd

(2)

In comparison to the SE and ECA attention mechanisms, CBAM is a module that
amalgamates both spatial and channel information. In theory, employing CBAM may
yield superior experimental results, although it necessitates a greater computational effort.
In this study, considering their significance in our research, we included all three attention
mechanisms in the experimental phase to facilitate a thorough comparison and evaluation.

3.3. 1DCNN

The structure of the 1DCNN designed in this study is visually presented in Figure 2.
It includes four convolutional units along with the ECA (efficient channel attention)
mechanism. Additionally, there are flattened and fully connected layers that produce
1 × 1280 features. The 1DCNN effectively extracts features in 1280 dimensions by pro-
gressively expanding the number of channels using these four convolutional units. These
extracted features undergo compression within the network through a maximum pooling
layer. Subsequently, the flattened and fully connected layers convert these compressed
features into 1280-dimensional representations. To enhance the feature extraction process,
two ECA attention mechanism modules were integrated into the convolutional process.

Each convolutional unit within the 1DCNN consists of four essential components:
a convolutional layer, batch normalization [26], rectified linear unit (ReLU) activation
function, and dropout layer. The convolutional layer is tasked with feature extraction; in this
study, we employed a 1 × 16 convolutional kernel. Batch normalization was incorporated
to expedite training and facilitate network convergence, and can additionally help to control
gradient issues such as explosion and vanishing gradients while mitigating overfitting.
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Figure 2. The entire model structure can be divided into two parts: first, the spectrum is represented
as an image and the features are extracted using EfficientNetV2; second, the features of the spectrum
are then extracted using 1DCNN. Afterwards, the extracted features from both parts are concatenated
and fed into a fully connected layer and softmax function to obtain the classification results.

Following batch normalization, the ReLU activation function is applied. It promotes
efficient training via gradient descent and backpropagation. This choice of activation func-
tion effectively mitigates problems related to gradient explosion and vanishing gradients.
The ReLU activation function is mathematically represented by the following equation,
and its calculation process is straightforward, simplifying the overall computational process:

f (x) = max(0, x). (3)

3.4. Overall Model Structure and Training Process

The overall architecture of the model, depicted in Figure 2, can be divided into two
components: EfficientNetV2 and 1DCNN. Both components extract features in the form of
1 × 1280 dimensions, which are subsequently concatenated to form 1 × 2560 features. These
combined features pass through a fully connected layer, followed by a softmax activation
function, resulting in a probability distribution for each category.

All preprocessed spectra, having previously undergone normalization, are represented
as 1 × 3522 dimensional data. These normalized spectra serve as the input for the entire
model, and training occurs in two parallel aspects:

1. The input data undergo transformation into three 380 × 380 images, each with
varying line widths. These three images are then amalgamated into a single image through
the RGB channels, collectively serving as input to the EfficientNetV2 backbone. The output
of this process yields a 1 × 1280 feature matrix denoted as χimage.

2. The data are directly used as the input of the 1DCNN, and the output is a 1 × 1280
feature matrix denoted as χspec.

The outputs from both parts are concatenated to form χboth. The classification results
are obtained after passing χboth through a fully connected layer.
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The training of our model is divided into two steps. First, in the initial stage of training,
which uses two thirds of the training epoch, the loss for the output results of ypred

image and ypred
spec

is calculated using the cross-entropy loss [27]. The loss is defined in Equations (4) and (5),
where C represents the number of classes and ytrue is the true label of the data. Second,
in the later stage of training, using one third of the training epoch, the cosine similarity
Losscos between χimage and χspec is calculated in order to facilitate the fusion of the features
from both parts (χimage and χspec). These two losses are defined in Equations (6) and (7).

Lossimage

(
ypred

image, ytrue
)
= − log

exp
(

ypred
image, ytrue

)
∑C

c=1 exp
(

ypred
image,c

) (4)

Lossspec

(
ypred

spec , ytrue
)
= − log

exp
(

ypred
spec , ytrue

)
∑C

c=1 exp
(

ypred
spec,c

) (5)

Lossboth

(
ypred

both , ytrue
)
= − log

exp
(

ypred
both , ytrue

)
∑C

c=1 exp
(

ypred
both,c

) (6)

Losscos =
∑n

i=1

(
χi

image × χi
spec

)
√

∑n
i=1

(
χi

image

)2
×
√

∑n
i=1

(
χi

spec

)2
(7)

Loss = α × Lossboth + β × Lossimage + γ × Lossspec + δ × Losscos (8)

In summary, the comprehensive loss calculation for our model is depicted in
Equation (8). Following numerous experiments, we determined the hyperparameters α, β,
γ, and δ, which we respectively set as {0, 0.2, 0.8, 0} during the initial training phase and
{0.2, 0, 0.4, 0.2} during the later stages of training.

3.5. Optimization of Progressive Learning

Progressive learning is a methodology that entails commencing training with low-
resolution images during the early stages and gradually increasing the resolution of training
images over time. The primary objective of progressive learning is to enhance training
speed, although it often comes at the cost of decreased accuracy. To mitigate this decline in
accuracy, EfficientNetV2 incorporates adaptive tuning regularization techniques such as
dropout to simultaneously improve both training speed and accuracy. Specifically, adaptive
tuning regularization is applied when dealing with smaller training image sizes, whereas
stronger data augmentation is employed when working with larger training image sizes.

In this study, we introduce an additional dimension termed the S/N of the spectrum
to augment this process. As illustrated in Figure 3, higher S/N data are initially utilized to
facilitate the fitting process during training, while lower S/N data are introduced later to
capture more complex and complex features.
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Figure 3. Progressive learning of astronomical spectral data. Data with higher SNR are used at the
beginning of training and data with lower SNR are used in the later stage.

4. Results
4.1. Dataset and Experimental Environment

Our experiments included two datasets. As outlined in Table 1, Dataset-A comprised
25,000 data entries, including A, F, G, M, and K stars. All spectra within this dataset
exhibited S/N exceeding 5. Dataset-A was specifically employed for the stellar classification
task. In contrast, dataset-B comprised 20,000 data entries dedicated exclusively to M stars,
including subclasses 0–4. The S/N distribution for dataset-B is visualized in Figure 4,
demonstrating that all spectra in this dataset possess S/N values less than 6. Dataset-B
was utilized for the subclass classification of M stars. Across both datasets, 60% of the data
were allocated for training, 20% for validation, and 20% for testing.

dataset-B S/N Distribution

N
um

be
r o

f s
pe

ct
ru

m

0 1 2 3 4 5 6
S/N

2000

1750

1500

1250

1000

750

500

250

0

Figure 4. The S/N distribution for dataset-B.

The classification performance of each model was evaluated using two primary met-
rics: accuracy and F1-score. Accuracy represents the ratio of correct predictions, including
both true positives and true negatives, to the total number of predictions. Precision quanti-
fies the proportion of true positive samples among all samples classified as positive, while
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recall represents the ratio of correctly classified positive samples to all true positive samples.
The F1-score, a comprehensive performance metric, combines precision and recall. These
metrics are mathematically defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1-score =
2 × (Precision × Recall)

Precision + Recall
(12)

In the above equations, the terms are defined as follows: TP (true positive) refers to the
count of positive samples predicted correctly, TN (true negative) signifies the count of
negative samples predicted correctly, FP (false positive) represents the count of negative
samples inaccurately predicted as positive, and FN (false negative) denotes the count of
positive samples inaccurately predicted as negative. These metrics collectively provide a
comprehensive assessment of the model’s classification performance.

All programs in this study were implemented in Python and executed on a desktop
computer equipped with a 2.80 Ghz Intel(R) Core(TM) i9-10900F processor, 32 GB of RAM,
a 64-bit Windows operating system, and an RTX 2080s GPU for computation.

Table 1. Description of dataset-A and dataset-B.

Dataset Type No. of Instances Training (%) Validation (%) Test (%)

dataset-A A 5000 60 20 20
F 5000 60 20 20
G 5000 60 20 20
K 5000 60 20 20
M 5000 60 20 20

dataset-B M0 4000 60 20 20
M1 4000 60 20 20
M2 4000 60 20 20
M3 4000 60 20 20
M4 4000 60 20 20

4.2. Model Optimization

We embarked on a series of experiments designed to compare our model with other es-
tablished techniques, including SVM [28], random forest [29], ANN [6], and 1D SSCNN [16].
Each experiment leveraged the two datasets outlined in Table 1. For all the models under
evaluation (SVM, random forest, ANN, and 1D SSCNN) we engaged in diligent parameter
tuning using both datasets. To achieve this, we conducted a comprehensive grid search
across all parameters, utilizing the accuracy as the guiding metric to pinpoint the optimal
parameter configurations. The experimental results of the models under various parameters
can be found in Appendix A.

The model parameters of SVM include C and γ. In our study, we opted for the radial
basis function (rbf) kernel function for SVM to achieve superior performance. The parame-
ter ranges for each model were as follows:

1. C: 0.1, 1, 10, 100, 1000, 10,000
2. γ: 1, 0.1, 0.01, 0.001, 0.0001
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For SVM, a total of 25 parameter combinations were considered. Each experiment
involved five-fold cross-validation; the optimal model parameters for dataset-A were {‘C’:
10, ‘γ’: 0.01, ‘kernel’: ‘rbf’}, while the optimal parameters for dataset-B were {‘C’: 1000, ‘γ’:
0.0001, ‘kernel’: ‘rbf’}.

For the random forest model, the parameters included the number of trees in the
forest, max_depth, min_samples_split, and min_samples_leaf. The parameter ranges were
as follows:

1. max_depth: 20, 30, 40
2. min_samples_leaf: 1, 2, 5
3. min_samples_split: 2, 5, 10
4. n_estimators: 300, 400, 500

There were a total of 81 parameter combinations. Each experiment involved five-
fold cross-validation; the optimal model parameters for dataset-A were {‘max_depth’: 30,
‘min_samples_leaf’: 2, ‘min_samples_split’: 2, ‘n_estimators’: 300}, while the optimal model
parameters for dataset-B were {‘max_depth’: 20, ‘min_samples_leaf’: 1, ‘min_samples_split’:
2, ‘n_estimators’: 400}.

For ANN, the model parameters included the activation function, α, hidden_layer_sizes,
learning_rate, and solver. The parameter ranges were as follows:

1. activation function: relu, tanh, logistic
2. α: 0.0001, 0.05
3. hidden_layer_sizes: (100,), (200,), (300,)
4. learning_rate: constant, adaptive
5. solver: adam, sgd

A total of 72 parameter combinations were considered. Each experiment was subjected
to five-fold cross-validation; the optimal model parameters for dataset-A were {‘activation
function’: ‘relu’, ‘α’: 0.0001, ‘hidden_layer_sizes’: (100,), ‘learning_rate’: ‘adaptive’, ‘solver’:
‘adam’}, while the optimal model parameters for dataset-B were {‘activation function’: ‘relu’,
‘α’: 0.0001, ‘hidden_layer_sizes’: (100,), ‘learning_rate’: ‘adaptive’, ‘solver’: ‘adam’}.

The model parameters of the 1D SSCNN included the learning rate and dropout
rate; the range of each model parameter was as follows:

1. learning_rate: 0.01, 0.005, 0.001, 0.0005, 0.0001
2. dropout_rate: 0, 0.1, 0.3, 0.5

There were 20 parameter combinations in total. The optimal parameters for dataset-A
were {learning_rate: 0.0005, dropout_rate: 0.3}, while the optimal parameters for dataset-B
were {learning_rate: 0.0005, dropout_rate: 0.1}.

Finally, regarding our proposed model, the initial learning rate was set to 0.01, the co-
sine annealing algorithm [30] was employed to adjust it to 0.001 during training, the dropout
rate was chosen as 0.2, and the stochastic gradient descent method [31] was utilized.

4.3. Experimental Results

Table 2 presents the experimental results for dataset-A, including the accuracy and
F1-score for each class. Our model exhibits superior accuracy compared to the other
tested models. Furthermore, we conducted a comparison within our model to examine
the performance when using only image data or only spectral data. The results indicate
that combining both images and spectra leads to improved experimental results. We
additionally compared the results with and without data preprocessing, revealing that
all metrics achieved with preprocessing outperform those without preprocessing. This
underscores the importance of preprocessing in our experiment. However, in light of the
high S/N of dataset-A and the relatively insignificant differences among all models, we
place greater emphasis on the results for dataset-B.



Universe 2023, 9, 477 11 of 22

Table 2. Classification result for dataset-A. The text in bold indicates the highest performance
according to the metrics (Training Time, Accuracy, and F1-Score).

Algorithm Training Time Accuracy (%) F1-Score (%)

A F G K M

SVM 19 s 91.78 95.761 78.781 86.810 97.451 99.299
Random forest 1 min 12 s 90.10 93.147 77.472 86.838 94.998 97.295
ANN 1 min 14 s 93.62 95.470 86.004 91.576 96.604 98.323
1D SSCNN 2 h 23 min 36 s 93.04 96.445 83.070 88.388 97.520 99.450
Our model (only image) 10 h 18 min 20 s 93.86 95.090 86.446 91.263 97.558 98.901
Our model (only spectra) 2 h 11 min 2 s 94.26 96.263 87.107 91.361 97.600 98.855
Our model 10 h 34 min 52 s 94.62 96.293 87.691 91.913 97.908 99.201
Our model (without preprocessing) 10 h 31 min 43 s 94.20 96.348 87.192 90.927 97.410 99.053

For dataset-B, we specifically conducted subclass classification for M-class stars to
further assess our model’s performance. Unlike dataset-A, the majority of training data in
dataset-B feature low S/N, providing an opportunity to exhibit our model’s effectiveness
in challenging conditions. We employed progressive training, as described in Section 3.5,
to maximize the utilization of these data. The experimental results in Table 3 consistently
demonstrate our model’s superior performance across all metrics. Notably, the model’s
performance improves and the training time decreases with the application of progres-
sive learning.

Finally, we replaced the attention mechanism in the EfficientNetV2 network structure
with CBAM [25] to assess the effect of this modification. This comparison experiment
was conducted on dataset-B, with only the attention mechanism being changed while
keeping all other parameters constant. The results in Table 4 show that the experimental
performance remains nearly unchanged when using ECA [24] instead of SE [23], while the
training time is reduced. On the other hand, the experimental results with CBAM exhibit
improvement along with a significant increase in training time, aligning with our earlier
speculations in Section 3.2.

Table 3. Classification results for dataset-B. The text in bold indicates the highest performance
according to the metrics (Training Time, Accuracy, and F1-Score).

Algorithm Training Time Accuracy -(%) F1-Score -(%)

M0 M1 M2 M3 M4

SVM 18 s 83.15 85.941 79.156 79.332 82.658 88.761
Random forest 2 min 54 s 65.40 71.647 55.659 60.414 61.974 76.097
ANN 2 min 8 s 84.40 88.732 82.157 81.707 82.440 87.344
1D SSCNN 1 h 44 min 22 s 86.13 87.555 82.447 84.197 84.072 89.449
Our model (only image) 8 h 33 min 24 s 84.98 87.010 80.419 82.473 84.867 90.120
Our model (only spectra) 1 h 49 min 22 s 86.08 89.097 83.696 85.327 84.328 88.138
Our model 8 h 37 min 21 s 86.75 89.169 83.744 85.587 85.178 90.087
Our model (progressive learning) 7 h 22 min 32 s 87.38 89.497 84.045 85.732 86.582 90.932
Our model (without preprocessing) 8 h 55 min 2 s 85.30 88.239 82.491 84.000 83.963 87.796
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Table 4. Classification with attention mechanism for dataset-B. The text in bold indicates the highest
performance according to the metrics (Training Time, Accuracy, and F1-Score).

Algorithm Training Time Accuracy (%) F1-Score (%)

M0 M1 M2 M3 M4

Our model (SE) 5 h 47 min 21 s 86.65 89.969 85.133 85.965 83.833 88.177
Our model (ECA) 5 h 2 min 43 s 85.18 88.384 82.571 83.505 83.544 87.635
Our model (CBAM) 7 h 22 min 32 s 87.38 89.497 84.045 85.732 86.582 90.932

5. Discussion

Table 2 illustrates the excellent performance of all models on dataset-A, which is
characterized by high S/N. Data with high S/N tend to yield good results even with
simpler methods, making it challenging for models to exhibit substantial improvements.
Consequently, our primary focus shifted to dataset-B, where most of the data have low S/N.

The random forest method performs well on dataset-A and poorly on dataset-B. This
discrepancy may be attributed to random forest’s unsuitability for data with low S/N or
subtle differences. However, because we did not specifically analyze the performance of
the random forest model, we do not explore this matter further here. The random forest
method was excluded from the subsequent analyses of model performance.

To emphasize our model’s advantages on low S/N data, we divided the test set of
dataset-B into two subsets based on the S/N ratio. One subset contained data with an
S/N ratio less than 2, while the other contained data with an S/N ratio greater than 2.
We calculated the accuracy for each subset, as shown in Figure 5. Our model, especially
when trained with the progressive training method, exhibits a significant advantage on the
low S/N subset. In contrast, all models show minimal differences on the high S/N subset.
These findings further validate our model’s superiority in handling low S/N data.
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77.26

91.87

78.97

92.38
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93.35
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93.25
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cc
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SVM ANN 1D SSCNN our model our model (progressive learning)
0 – 2 (2045) 2 – 6 (1955)

Figure 5. Accuracy on dataset-B test set at different S/N levels. The test set of 4000 spectra was
divided into 2045 spectra and 1955 spectra according to S/N levels of 0–2 and 2–6.

Additionally, we generated confusion matrices for each model using the test set of
dataset-B, which are depicted in Figures 6 and 7. Our model does not exhibit substantial
improvements on M0 and M1, corresponding to relatively high average S/N ratios. How-
ever, it demonstrates significant enhancements on M2, M3, and M4, which represent low
S/N scenarios.
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Figure 6. Average S/N for each category of the dataset-B test set.
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Figure 7. Confusion matrix for each model on the dataset-B test set.

Furthermore, we analyzed the contribution of each component of our model by
plotting confusion matrices for each component with and without the use of progressive
learning, as shown in Figure 8. On M4, which has the lowest average S/N ratio, the model
with both image and spectral components outperforms the models with only one of these
components. This suggests that our model can effectively combine the strengths of both
image and spectral data, resulting in improved overall accuracy. Additionally, our model
with progressive learning exhibits enhanced accuracy in most categories, particularly M4,
thanks to the progressive learning technique.
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Figure 8. Confusion matrix for our model on dataset-B test set.

In summary, the main contributions of this study are as follows:
1. We propose a novel approach to spectral classification using spectral images utilizing

EfficientNetV2 and optimizing it for astronomical data, which yields promising results.
2. We design a model that effectively combines spectral images and 1D spectral data,

which is particularly beneficial for low S/N data; this is particularly significant in light of
the prevalence of the low S/N ratios prevalent in astronomical data.

6. Conclusions

In this study, we present a novel approach to spectral classification that departs from
traditional methods. Our model integrates both spectral images and 1D spectral data,
leveraging the features extracted from both for classification. For the image component, we
employ EfficientNetV2 with specific optimizations for astronomical data. To process the
raw spectral data, we introduce a new 1DCNN architecture.

We evaluated our model using spectra from SDSS DR16 and conducted experiments
on two datasets: one for stellar spectral classification, and another for M-class stellar
subclass classification. Our model achieved remarkable results, with an accuracy of 94.62%
on the stellar spectral classification test set (dataset-A) and 87.38% on the M-class stellar
subclass classification test set (dataset-B). These results outperformed the other tested
models, particularly in the challenging scenario of M-class subclass classification with low
S/N data.

Our model’s strength lies in its ability to handle data with lower S/N levels; this is
a crucial aspect in astronomy, where a significant portion of the data exhibit low S/N levels.
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Appendix A. Model Parameter Tuning Process

Appendix A.1. Optimal Model Parameter Selection of SVM for Dataset-A

The model parameters of SVM included C and γ. In this study, in order to obtain
better performance, RBF (Radial Basis Function) was selected as the kenel function, and the
range of each model parameter was as follows:

1. C: 0.1, 1, 10, 100, 1000, 10,000
2. γ: 1, 0.1, 0.01, 0.001, 0.0001

There were 25 parameter combinations in total. Each experiment was subject to
five-fold cross-validation, and all results are listed in Table A1. As shown in Table A1,
the optimal model parameters are {‘C’: 10, ‘γ’: 0.01, ‘kernel’: ‘rbf’}.

Table A1. Model parameters and performance of SVM for dataset-A. The text in bold indicates the
highest performance according to the Accuracy.

C γ Kernel Accuracy (%) B γ Kernel Accuracy (%)

0.1 1 rbf 35.22 100 1 rbf 63.89

0.1 0.1 rbf 83.48 100 0.1 rbf 90.76

0.1 0.01 rbf 82.67 100 0.01 rbf 90.93

0.1 0.001 rbf 78.69 100 0.001 rbf 90.73

0.1 0.0001 rbf 73.40 100 0.0001 rbf 88.45

1 1 rbf 62.01 1000 1 rbf 63.89

1 0.1 rbf 89.15 1000 0.1 rbf 90.76

1 0.01 rbf 87.55 1000 0.01 rbf 90.72

1 0.001 rbf 84.71 1000 0.001 rbf 89.62

1 0.0001 rbf 79.43 1000 0.0001 rbf 90.05

https://dr16.sdss.org/
https://dr16.sdss.org/
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Table A1. Cont.

C γ Kernel Accuracy (%) B γ Kernel Accuracy (%)

10 1 rbf 63.89 10,000 1 rbf 63.89

10 0.1 rbf 90.71 10,000 0.1 rbf 90.76

10 0.01 rbf 91.08 10,000 0.01 rbf 90.72

10 0.001 rbf 88.23 10,000 0.001 rbf 88.63

10 0.0001 rbf 85.65 10,000 0.0001 rbf 88.26

Appendix A.2. Optimal Model Parameter Selection of SVM for Dataset-B

Similar to dataset-A, the range of model parameters for SVM was as follows:

1. C: 0.1, 1, 10, 100, 1000, 10,000
2. γ: 1, 0.1, 0.01, 0.001, 0.0001

The results are described in Table A2. From Table A2, the optimal parameters are {‘C’:
1000, ‘γ’: 0.0001, ‘kernel’: ‘rbf’}.

Table A2. Model parameters and performance of SVM for dataset-B. The text in bold indicates the
highest performance according to the Accuracy.

C γ Kernel Accuracy (%) B γ Kernel Accuracy (%)

0.1 1 rbf 24.72 100 1 rbf 42.96

0.1 0.1 rbf 50.51 100 0.1 rbf 74.88

0.1 0.01 rbf 51.43 100 0.01 rbf 80.78

0.1 0.001 rbf 39.38 100 0.001 rbf 83.02

0.1 0.0001 rbf 27.37 100 0.0001 rbf 76.48

1 1 rbf 40.87 1000 1 rbf 42.96

1 0.1 rbf 71.58 1000 0.1 rbf 74.86

1 0.01 rbf 72.04 1000 0.01 rbf 80.33

1 0.001 rbf 59.93 1000 0.001 rbf 82.23

1 0.0001 rbf 38.93 1000 0.0001 rbf 83.44

10 1 rbf 42.96 10,000 1 rbf 42.96

10 0.1 rbf 74.85 10,000 0.1 rbf 74.86

10 0.01 rbf 80.26 10,000 0.01 rbf 80.34

10 0.001 rbf 75.65 10,000 0.001 rbf 81.26

10 0.0001 rbf 60.98 10,000 0.0001 rbf 81.74

Appendix A.3. Optimal Model Parameter Selection of Random Forest for Dataset-A

For random forest, the model parameters included the number of trees in the forest,
max_depth, min_samples split, and min_samp. In this study, the ranges for each model
parameter were as follows:

1. max_depth: 20, 30, 40
2. min_samples_leaf: 1, 2, 5
3. min_samples_split: 2, 5, 10
4. n_estimators: 300, 400, 500
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There were 81 parameter combinations in total. Each experiment used five-fold cross-
validation, and part of the results are indicated in Table A3. As shown in Table A3, the opti-
mal model parameters are {‘max_depth’: 30, ‘min_samples_leaf’: 2, ‘min_samples_split’: 2,
‘n_estimators’: 300}.

Table A3. Model parameters and performance of random forest for dataset-A. The text in bold
indicates the highest performance according to the Accuracy.

Max_Depth Min_Samples_Leaf Min_Samples_Split n_Estimators Accuracy (%)

20 1 2 300 88.71

20 1 2 400 88.62

. . . . . . . . . . . . . . .

30 1 10 400 88.78

30 1 10 500 88.67

30 2 2 300 88.86

30 2 2 400 88.64

30 2 2 500 88.59

30 2 5 300 88.61

30 2 5 400 88.59

30 2 5 500 88.83

30 2 10 300 88.59

30 2 10 400 88.51

. . . . . . . . . . . . . . .

40 1 2 300 88.70

40 1 2 400 88.79

40 1 2 500 88.79

40 5 10 300 88.47

40 5 10 400 88.59

40 5 10 500 88.51

Appendix A.4. Optimal Model Parameter Selection of Random Forest for Dataset-B

Similar to dataset-A, the range of each model parameter for random forest was as
follows:

1. max_depth: 5, 10, 15, 20
2. min_samples_leaf: 1, 2, 5, 10
3. min_samples_split: 2, 10, 15, 100
4. n_estimators: 100, 200, 300, 400, 500

There were 320 parameter combinations in total. Each experiment was subject to five-
fold cross-validation, and part of the results are shown in Table A4. From the table, the op-
timal model parameters are {‘max_depth’: 20, ‘min_samples_leaf’: 1, ‘min_samples_split’:
2, ‘n_estimators’: 400}.
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Table A4. Model parameters and performance of random forest for dataset-B. The text in bold
indicates the highest performance according to the Accuracy.

Max_Depth Min_Samples_Leaf Min_Samples_Split n_Estimators Accuracy (%)

5 1 2 100 47.84

5 1 2 200 48.13

. . . . . . . . .. . . . . . .

20 1 2 100 62.98

20 1 2 200 63.83

20 1 2 300 64.86

20 1 2 400 65.06

. . . . . . . . . . . . . . .

20 10 15 500 63.74

20 10 100 100 59.16

20 10 100 200 59.64

20 10 100 300 59.52

20 10 100 400 59.63

20 10 100 500 59.73

Appendix A.5. Optimal Model Parameter Selection of ANN for Dataset-A

The model parameters of ANN included activation function, α, hidden_layer_sizes,
learning_rate, and solver. In this study, the range of each model parameter was as follows:

1. activation function: relu, tanh, logistic
2. α: 0.0001, 0.05
3. hidden_layer_sizes: (100,), (200,), (300,)
4. learning_rate: constant, adaptive
5. solver: adam, sgd

There were 72 parameter combinations in total. Each experiment was subject to
five-fold cross-validation, and part of the results are shown in Table A5. As shown in
Table A5, the optimal model parameters are {‘activation function’: ‘relu’, ‘α’: 0.0001, ‘hid-
den_layer_sizes’: (100,), ‘learning_rate’: ‘adaptive’, ‘solver’: ‘adam’}.

Table A5. Model parameters and performance of ANN for dataset-A. The text in bold indicates the
highest performance according to the Accuracy.

Activation Function α Hidden_Layer_Sizes Learning_Rate Solver Accuracy (%)

relu 0.0001 (100,) constant adam 91.39

relu 0.0001 (100,) constant sgd 91.73

relu 0.0001 (100,) adaptive adam 92.76

. . . . . . . . . . . . . . . . . .

relu 0.05 (300,) adaptive adam 90.80

relu 0.05 (300,) adaptive sgd 92.11

tanh 0.0001 (100,) constant adam 92.05
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Table A5. Cont.

Activation Function α Hidden_Layer_Sizes Learning_Rate Solver Accuracy (%)

tanh 0.0001 (100,) constant sgd 91.03

tanh 0.0001 (100,) adaptive adam 91.83

tanh 0.0001 (100,) adaptive sgd 90.76

tanh 0.0001 (200,) constant adam 92.25

tanh 0.0001 (200,) constant sgd 90.49

. . . . . . . . . . . . . . . . . .

logistic 0.05 (200,) adaptive sgd 84.46

logistic 0.05 (300,) constant adam 88.73

logistic 0.05 (300,) constant sgd 84.72

logistic 0.05 (300,) adaptive adam 89.56

logistic 0.05 (300,) adaptive sgd 84.82

Appendix A.6. Optimal Model Parameter Selection of ANN for Dataset-B

Similar to dataset-A, the range of model parameters for ANN was as follows:

1. activation function: relu, tanh, logistic
2. α: 0.0001, 0.05
3. hidden_layer_sizes: (100,), (200,), (300,)
4. learning_rate: constant, adaptive
5. solver: adam, sgd

There were 72 parameter combinations in total. Each experiment used 5five-fold cross-
validation, and part of the results are shown in Table A6. As indicated in Table A6, the opti-
mal model parameters are {‘activation function’: ‘relu’, ‘α’: 0.0001, ‘hidden_layer_sizes’:
(100,), ‘learning_rate’: ‘adaptive’, ‘solver’: ‘adam’}.

Table A6. Model parameters and performance of ANN for dataset-B. The text in bold indicates the
highest performance according to the Accuracy.

Activation Function α Hidden_Layer_Sizes Learning_Rate Solver Accuracy (%)

relu 0.0001 (100,) constant adam 81.48

relu 0.0001 (100,) constant sgd 80.95

relu 0.0001 (100,) adaptive adam 82.90

relu 0.05 (200,) adaptive sgd 80.95

relu 0.05 (300,) constant adam 79.24

relu 0.05 (300,) constant sgd 80.78

relu 0.05 (300,) adaptive adam 82.07

relu 0.05 (300,) adaptive sgd 81.43

. . . . . . . . . . . . . . . . . ..

tanh 0.0001 (100,) constant sgd 80.29

tanh 0.0001 (100,) adaptive adam 80.75

tanh 0.05 (300,) constant sgd 81.08

tanh 0.05 (300,) adaptive adam 81.15

. . . . . . . . . . . . . . . . . .
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Table A6. Cont.

Activation Function α Hidden_Layer_Sizes Learning_Rate Solver Accuracy (%)

logistic 0.05 (300,) constant adam 78.41

logistic 0.05 (300,) constant sgd 73.76

logistic 0.05 (300,) adaptive adam 75.55

logistic 0.05 (300,) adaptive sgd 73.60

Appendix A.7. Optimal Model Parameter Selection of 1D SSCNN for Dataset-A

The model parameters of 1D SSCNN included the learning rate and dropout rate.
The range of each model parameter was as follows:

1. learning_rate: 0.01, 0.005, 0.001, 0.0005, 0.0001
2. dropout_rate: 0, 0.1, 0.3, 0.5

There were 20 parameter combinations in total. The results are shown in Table A7.
From the table, the optimal parameters are {learning_rate: 0.0005, dropout_rate: 0.3}.

Table A7. Model parameters and performance of 1D SSCNN for dataset-A. The text in bold indicates
the highest performance according to the Accuracy.

Learning_Rate Dropout_Rate Accuracy (%) Learning_Rate Dropout_Rate Accuracy (%)

0.01 0 20.00 0.01 0.3 20.00

0.005 0 42.38 0.005 0.3 89.42

0.001 0 85.53 0.001 0.3 92.52

0.0005 0 84.97 0.0005 0.3 93.04

0.0001 0 85.05 0.0001 0.3 92.26

0.01 0.1 20.00 0.01 0.5 20.00

0.005 0.1 89.38 0.005 0.5 88.30

0.001 0.1 92.46 0.001 0.5 92.38

0.0005 0.1 92.88 0.0005 0.5 92.54

0.0001 0.1 91.96 0.0001 0.5 91.76

Appendix A.8. Optimal Model Parameter Selection of 1D SSCNN for Dataset-B

Similar to dataset-A, the range of model parameters for 1D SSCNN was as follows:

1. learning_rate: 0.01, 0.005, 0.001, 0.0005, 0.0001
2. dropout_rate: 0, 0.1, 0.3, 0.5

The results are shown in Table A8. From the table, the optimal parameters are {learn-
ing_rate: 0.0005, dropout_rate: 0.1}.

Table A8. Model parameters and performance of 1D SSCNN for dataset-B. The text in bold indicates
the highest performance according to the Accuracy.

Learning_Rate Dropout_Rate Accuracy (%) Learning_Rate Dropout_Rate Accuracy (%)

0.01 0 20.00 0.01 0.3 20.00

0.005 0 42.38 0.005 0.3 57.88

0.001 0 85.53 0.001 0.3 84.45

0.0005 0 84.97 0.0005 0.3 85.60
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Table A8. Cont.

Learning_Rate Dropout_Rate Accuracy (%) Learning_Rate Dropout_Rate Accuracy (%)

0.0001 0 85.05 0.0001 0.3 85.70

0.01 0.1 20.00 0.01 0.5 20.00

0.005 0.1 29.38 0.005 0.5 53.08

0.001 0.1 85.28 0.001 0.5 84.68

0.0005 0.1 86.13 0.0005 0.5 85.63

0.0001 0.1 85.20 0.0001 0.5 85.90

Notes
1 https://skyserver.sdss.org/CasJobs/, accessed on 7 November 2023.
2 https://matplotlib.org/stable/, accessed on 7 November 2023.
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