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Abstract: We studied Einstein’s gravity with negative cosmological constant coupled to nonlinear
electrodynamics proposed earlier. The metric and mass functions and corrections to the Reissner–
Nordström solution are obtained. Black hole solutions can have one or two horizons. Thermody-
namics and phase transitions of magnetically charged black holes in Anti-de Sitter spacetime are
investigated. The first law of black hole thermodynamics is formulated and the generalized Smarr
relation is proofed. By calculating the Gibbs free energy and heat capacity we study the black hole
stability. Zero-order (reentrant), first-order, and second-order phase transitions are analyzed. The
Joule–Thomson expansion is considered, showing the cooling and heating phase transitions. It was
shown that the principles of causality and unitarity are satisfied in the model under consideration.

Keywords: Einstein’s gravity; nonlinear electrodynamics; black hole thermodynamics; phase transitions

1. Introduction

Black holes behave as thermodynamic systems [1–3] and they have the entropy con-
nected with the surface area. The surface gravity defines the temperature [4,5]. Black
holes phase transitions occur in Anti-de Sitter (AdS) spacetime, where the cosmological
constant is negative [6]. It was discovered that gravity in AdS spacetime is linked with the
conformal field theory (the holographic principle) [7] that has an application in condensed
matter physics. In black hole thermodynamics (in an extended phase space), the negative
cosmological constant is a thermodynamic pressure which is conjugated to a black hole
volume [8–11]. In Einstein-AdS gravity coupled to nonlinear electrodynamics (NED) with
coupling β, the constant β is conjugated to the vacuum polarization. The first NED was
proposed by M. Born and L. Infeld [12] to remove a singularity of a point charge and to
obtain the finite the electromagnetic field energy. At the weak-field limit, Born–Infeld
electrodynamics becomes Maxwell’s theory. Another NED model was formulated by W.
Heisenberg and H. Euler [13], where nonlinearity is due to the creation of the electron-
positron pairs within quantum electrodynamics. The interest in NED, as a source of gravity
is because of the possibility of having regular black holes and soliton-like configurations
without singularities. Recent reviews of NED models were given in [14,15]. Black hole
thermodynamics in Einstein-AdS gravity coupled to Born–Infeld electrodynamics was con-
sidered in [16–22] (see also [23,24]). Born–Infeld-AdS thermodynamics of black holes in an
extended phase space was studied in [25–29]. The Joule–Thomson expansion of black holes
was investigated in [30–39]. In this paper we studied a modified Einstein-AdS theory with
a NED model, as a matter field, to smooth out singularities of the linear Maxwell theory.
We used NED theory with Lagrangian of the form L(F ) = −F/

(
4π
(

1 + (2βF )3/4
))

,
where F = FµνFµν/4, with Fµν being the electromagnetic field tensor. The interest in this
model is due to its simplicity—the metric and mass functions are expressed in the form of
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elementary functions but in Born–Infeld NED they are special functions. We consider mag-
netically charged black holes because electrically charged black holes with NED possessing
a weak-field Maxwell limit have a singularity [40]. It is worth mentioning that Lagrangians
of NED models in the weak-field limit are different. This leads to different indexes of
diffraction and birefringent effects. The similarities in the behavior of critical isotherms,
the magnetic potential, vacuum polarization, the Gibbs free energy, and heat capacity take
place for Einstein-AdS gravity coupled to NED models. Here, attention is paid to gravity
in the AdS (not in de Sitter) spacetime because this case allows us to introduce a pressure
which is necessary to consider an extended phase space and thermodynamics. In addition,
the holographic principle only occurs in this case.

In Section 2 we obtain the metric function and its asymptotic with corrections to the
Reissner–Nordström solution. The first law of black hole thermodynamics in the extended
phase space is studied in Section 3. We calculate the thermodynamic magnetic potential and
the thermodynamic conjugate to the NED coupling (the vacuum polarization). We show
that the generalized Smarr relation holds. In Section 4, the critical temperature and critical
pressure are obtained. By analysing the Gibbs free energy and heat capacity we show that
phase transitions take place. It is demonstrated that black hole thermodynamics is similar to
Van der Waals thermodynamics. We analyse first-order, second-order, and reentrant phase
transitions. The Joule–Thomson adiabatic expansion is studied in Section 5. The Joule–
Thomson coefficient and the inversion temperature are calculated. Section 6 is a summary.
In Appendix A we calculate the Kretschmann scalar. We study causality and unitarity of
our NED model in Appendix B. We show that the principles of causality and unitarity take
place for any magnetic induction fields.

We use the units: c = h̄ = 1, kB = 1.

2. Einstein-AdS Black Hole Solution

The Einstein-AdS action with the matter is given by

I =
∫

d4x
√
−g
(

R− 2Λ
16πGN

+ L(F )
)

, (1)

where Λ = −3/l2 is negative cosmological constant, with l being the AdS radius. Here, we
use the matter Lagrangian in the form of NED1 [41]

L(F ) = − F
4π
(
1 + (2βF )3/4

) , (2)

with F = FµνFµν/4 = (B2 − E2)/2, where E and B are the electric and magnetic in-
duction fields, respectively. As β → 0 Lagrangian (2) becomes the Maxwell Lagrangian
LM = −F/(4π). From action (1), one obtains the field equations

Rµν −
1
2

gµνR + Λgµν = 8πGNTµν, (3)

∂µ

(√
−gLF Fµν

)
= 0, (4)

where LF = ∂L(F )/∂F . The energy–momentum tensor reads

Tµν = FµρF ρ
ν LF + gµνL(F ). (5)

The line element squared with spherical symmetry is

ds2 = − f (r)dt2 +
1

f (r)
dr2 + r2

(
dθ2 + sin2(θ)dφ2

)
. (6)
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We treat the black hole as a magnetic monopole with the magnetic induction field B = q/r2,
where q is the magnetic charge. The metric function is given by [40]

f (r) = 1− 2m(r)GN
r

, (7)

with the mass function
m(r) = m0 + 4π

∫ r

0
ρ(r)r2dr. (8)

Here, m0 is an integration constant (the Schwarzschild mass) and ρ is the energy density.
Making use of Equation (5), the magnetic energy density plus the energy density due to
AdS spacetime is given by

ρ =
q2

8πr
(
r3 + (βq2)3/4

) − 3
8πGN l2 . (9)

From Equations (8) and (9) one obtains the mass function

m(r) = m0 +
q3/2

12 4
√

β

[
ln

r2 − 4
√

βq2r +
√

βq

(r + 4
√

βq2)2

−2
√

3 arctan

(
1− 2r/ 4

√
βq2

√
3

)
+

π√
3

]
− r3

2GN l2 . (10)

The magnetic energy of the black hole becomes

mM =
q2

2

∫ ∞

0

r
r3 + (βq2)3/4 dr =

πq3/2

3
√

3 4
√

β
. (11)

The magnetic energy, which can be considered as a magnetic mass, is finite. Thus, the cou-
pling β smoothes singularities. Making use of Equations (7) and (10), we obtained the
metric function

f (r) = 1− 2m0GN
r

− q3/2GN

6 4
√

βr

[
ln

r2 − 4
√

βq2r +
√

βq

(r + 4
√

βq2)2

−2
√

3 arctan

(
1− 2r/ 4

√
βq2

√
3

)
+

π√
3

]
+

r2

l2 . (12)

As r → 0, when the Schwarzschild mass is zero (m0 = 0), one finds

f (r) = 1−
GN
√

qr
2β3/4 +

r2

l2 +
GNr4

5β3/2q
+O(r6). (13)

As a result, we have f (0) = 1. The finiteness of the metric function is necessary condition
in order to have the spacetime regular. But the spacetime singularity is present in the model
because the Kretschmann scalar becomes infinite at r = 0 (see Appendix A). Making use of
Equation (12) (when Λ = 0) as r → ∞, we obtain

f (r) = 1− 2MGN
r

+
q2GN

r2 − q7/2β3/4GN

4r5 +O(r−6). (14)

We define M = m0 + mM being the ADM mass. According to Equation (14), black holes
have corrections to the Reissner–Nordström solution. When β = 0, the metric (14) becomes
the Reissner–Nordström metric. The plot of metric function (12) is depicted in Figure 1 (at
m0 = 0, GN = 1, l = 10).
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Figure 1. The function f (r) at m0 = 0, GN = 1, l = 10. Figure 1 shows that black holes could have
one or two horizons. In accordance with subplot 1, if coupling β is increasing, the event horizon
radius decreases. According to subplot 2, when magnetic charge q increases the event horizon radius
also increases.

According to Figure 1, black holes may have one or two horizons. When coupling β
increases, at the constant q, the event horizon radius is decreasing. If magnetic charge q
increases, at the constant β, the event horizon radius also increases.

3. First Law of Black Hole Thermodynamics

We will consider the first law of black hole thermodynamics in extended phase space,
where the pressure is P = −Λ/(8π) [42–46] and coupling β is the thermodynamic value.
In this approach, mass M is a chemical enthalpy (M = U + PV with U being the internal
energy). By using the Euler’s dimensional analysis with GN = 1 [42,47], we obtain dimen-
sions as follows: [M] = L, [S] = L2, [P] = L−2, [J] = L2, [q] = L, [β] = L2. Then one finds

M = 2S
∂M
∂S
− 2P

∂M
∂P

+ 2J
∂M
∂J

+ q
∂M
∂q

+ 2β
∂M
∂β

, (15)

where J is the black hole angular momentum. The thermodynamic conjugate to coupling
β is the vacuum polarization [11] B = ∂M/∂β. The black hole entropy S, volume V, and
pressure P are defined as

S = πr2
+, V =

4
3

πr3
+, P = − Λ

8π
=

3
8πl2 . (16)

Making use of Equation (12) for non-rotating black holes (J = 0), we obtain

M(r+) =
r+

2GN
+

r3
+

2GN l2 +
πq3/2

4
√

3 4
√

β
− q3/2g(r+)

12 4
√

β
,
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g(r+) = ln
r2
+ − 4

√
βq2r+ +

√
βq

(r+ + 4
√

βq2)2
− 2
√

3 arctan

(
1− 2r+/ 4

√
βq2

√
3

)
, (17)

where r+ is the event horizon radius, f (r+) = 0. The total black hole mass M(r+) versus
r+ is plotted in Figure 2.
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Figure 2. The function M(r+) at m0 = 0, GN = 1. According to Figure 2, left panel, the black hole
mass M(r+) decreases, at fixed r+ and q, when the coupling β increases. In accordance with right
panel, when magnetic charge q increases, at fixed r+ and β, the event horizon radius also increases.

With the help of Equation (17) we find

dM(r+) =

[
1
2
+

3r2
+

2l2 −
q2r+

2(r3
+ + (βq2)3/4)

]
dr+ −

r3
+

l3 dl

+

[
−
√

qg(r+)
8β1/4 +

√
3qπ

8β1/4 +
qr2

+

4[r3
+ + (βq2)3/4]

]
dq

+

[
q3/2g(r+)

48β5/4 − q3/2π

16
√

3β5/4
+

q2r2
+

8β[r3
+ + (βq2)3/4]

]
dβ. (18)

The Hawking temperature is given by

T =
f ′(r)|r=r+

4π
, (19)

where f ′(r) = ∂ f (r)/∂r. By virtue of Equations (12) and (19), one obtains the Hawking
temperature
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T =
1

4π

[
1

r+
+

3r+
l2 −

q2

r3
+ + (βq2)3/4

]
. (20)

Equation (20) is converted into the Hawking temperature of Maxwell-AdS black hole as
β → 0. Making use of Equations (15), (18), and (20), we find the first law of black hole
thermodynamics

dM = TdS + VdP + Φdq + Bdβ. (21)

Comparing Equation (18) with (21), we obtain the magnetic potential Φ and the vacuum
polarization B

Φ = −
√

qg(r+)
8β1/4 +

√
3qπ

8β1/4 +
qr2

+

4[r3
+ + (βq2)3/4]

,

B =
q3/2g(r+)

48β5/4 − q3/2π

16
√

3β5/4
+

q2r2
+

8β[r3
+ + (βq2)3/4]

. (22)

The plots of Φ and B vs. r+ are depicted in Figure 2.
According to Figure 3 (subplot 1), when parameter β increases the magnetic potential

Φ decreases. As r+ → ∞ the magnetic potential vanishes (Φ(∞) = 0), but at r+ = 0 Φ is
finite. Figure 3 (subplot 2) shows that at r+ = 0 the vacuum polarization is finite and when
r+ → ∞, B is zero (B(∞) = 0).
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Figure 3. The functions Φ and B vs. r+ at q = 1. The solid curve in subplot 1 is for β = 0.05,
the dashed curve is for β = 0.2, and the dashed-dotted curve is for β = 0.5. It follows that the
magnetic potential Φ is finite at r+ = 0 and becomes zero at r+ → ∞. If coupling β increases the
magnetic potential decreases. The function B in subplot 2 vanishes as r+ → ∞ and is finite at r+ = 0.

Making use of Equations (15), (16), and (22), one can verify that the generalized
Smarr relation
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M = 2ST − 2PV + qΦ + 2βB (23)

holds.

4. Thermodynamics of Black Hole

With the help of Equation (20), one finds the black hole equation of state

P =
T

2r+
− 1

8πr2
+

+
q2

8πr+[r3
+ + (βq2)3/4]

. (24)

Equation (24), as β → 0, is converted into charged Maxwell-AdS black hole equation of
state [45]. Equation (24) is similar to the Van der Waals equation of state if the specific
volume reads v = 2lPr+ (lP =

√
GN = 1) [45]. Following that, Equation (24) becomes

P =
T
v
− 1

2πv2 +
2q2

πv[v3 + 8(βq2)3/4]
. (25)

The inflection points in the P− v diagrams (critical points) may be obtained by equations

∂P
∂v

= − T
v2 +

1
πv3 +

8q2(−v6 + (q
√

β)3)

πv2[v3 + 8(βq2)3/4]2
= 0,

∂2P
∂v2 =

2T
v3 −

3
πv4 +

8q2[5v6 + 8(βq2)3/4v3 + 32(βq2)3/2]

πv3[v3 + 8(βq2)3/4]3
= 0. (26)

By virtue of Equation (26), one finds the critical points equation

[v3
c + 8(βq2)3/4]3 − 24q2v4

c [v
3
c − 4(βq2)3/4] = 0. (27)

Making use of Equation (26), we obtain the critical temperature and pressure

Tc =
1

πvc
− 8q2[v3 + 2(βq2)3/4]

π[v3 + 8(βq2)3/4]2
, (28)

Pc =
1

2πv2
c
− 6q2v2

c

π(v3
c + 8(βq2)3/4)2

. (29)

The solutions (approximate) vc to Equation (27), critical temperatures Tc, and pressures Pc
are presented in Table 1.

Table 1. Critical values of the specific volume, temperatures, and pressures at q = 1.

β 0.1 0.2 0.4 0.5 0.7 0.8 0.9 1

vc 4.790 4.708 4.552 4.472 4.297 4.196 4.080 3.936

Tc 0.0438 0.0442 0.0448 0.0452 0.0459 0.0463 0.0467 0.0472

Pc 0.0034 0.0035 0.0036 0.0037 0.0038 0.0039 0.0040 0.0041

The P− v diagrams are given in Figure 4.
At q = 1, β = 0.5 the critical specific volume is vc ≈ 4.472 and the critical temperature

is Tc = 0.0452. Figure 4 shows that at some point the pressure is zero corresponding to the
black hole remnant. Following that, if the specific volume increases the pressure increases
and the pressure has a maximum. Then the pressure decreases, which is similar to ideal
gas. At the critical values we have similarities, with Van der Waals liquid behavior having
the inflection point. Making use of Equations (27)–(29) and for small β one finds
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v2
c = 24q2 +O(β), Tc =

1
3
√

6πq
+O(β), Pc =

1
96πq2 +O(β). (30)

At β = 0 in Equation (30), we obtain the critical points of charged AdS black hole [25]. Then
the critical ratio becomes

ρc =
Pcvc

Tc
=

3
8
+O(β), (31)

with the value ρc = 3/8 corresponding to the Van der Waals fluid.
The Gibbs free energy for fixed charge q, coupling β, and pressure P is given by

G = M− TS, (32)

where M is considered a chemical enthalpy. Making use of Equations (16), (17), (20), and
(32), we obtain

G =
r+
4
−

2πr3
+P

3
+

πq3/2

4
√

3β1/4
+

q2r2
+

4[r3
+ + (βq2)3/4]

− q3/2g(r+)
12β1/4 . (33)

The plot of the Gibbs free energy G versus T for β = 0.5 and vc ≈ 4.472, Tc ≈ 0.0452 is
depicted in Figure 5. We took into consideration that r+ is the function of P and T (see
Equation (24)).

0 1 2 3 4 5
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−0.2

0

0.2
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0.6

v

P

 

 

T=0.0452

T=0.1

T=0.2

T=0.3

Figure 4. The function P(v) at q = 1, β = 0.5. The critical isotherm corresponds to Tc ≈ 0.0452
possessing the inflection point.

Subplots 1 and 2 at P < Pc show first-order phase transitions (between small and large
black holes for T < Tc) similar to liquid–gas transitions with the ‘swallowtail’ behavior.
In accordance with subplot 3, the second order phase transition for P = Pc takes place.
Subplot 4 corresponds to the case P > Pc, where there are not phase transitions.

The entropy S vs. temperature T at q = β = 1 is given in Figure 6. Figure 6 (subplots
1 and 2) shows that entropy is ambiguous function of the temperature and, therefore,
first-order phase transitions take place. According to subplot 3, the second-order phase
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transition occurs. The critical point separates low and high entropy states. In accordance
with subplot 4, there are not phase transitions at q = β = 1, P = 0.005.
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T

G

Figure 5. The plots of the Gibbs free energy G vs. T at q = 1, β = 0.5. According to subplots 1 and 2
we have the ‘swallowtail’ plots with first-order phase transitions. Subplot 3 shows the second-order
phase transition with P = Pc ≈ 0.0037. Subplot 4 shows the case P > Pc with non-critical behavior of
the Gibbs free energy.
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T

S

0.02 0.04 0.06 0.08
0

20

40

60

80

Subplot 4: q=β=1, P=0.005

T

S

Figure 6. The plots of entropy S vs. temperature T at q = 1, β = 0.5. According to subplots 1 and
2 (in some range of T), entropy is an ambiguous function of the temperature, and first-order phase
transitions occur. In accordance with subplot 3, the second-order phase transition takes place.
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Let us study the local stability of black holes by considering the heat capacity which is
given by

Cq = T
(

∂S
∂T

)
q
=

T∂S/∂r+
∂T/∂r+

=
2πr+T

GN∂T/∂r+
. (34)

Equation (34) shows that when the Hawking temperature has an extreme the heat capacity
diverges, and the black hole phase transition occurs. The plot of the Hawking temperature
is given in Figure 7 for parameters β = 0.1, 0.3, 1 (l = q = 1).

0 0.5 1 1.5 2
−0.1

0
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0.4

0.5
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0.7

0.8

r
+

T

 

 

β=0.1

β=0.3

β=1

Figure 7. The plots of the Hawking temperature T versus horizon radius r+ at l = q = 1, β = 0.1, 0.3, 1.
Figure shows that the Hawking temperature has a minimum.

In accordance with Figure 7, the Hawking temperature possesses a minimum and
the heat capacity diverges. Figure 7 shows that there is a region where the Hawking
temperature is negative and, therefore, in this interval of event horizon radiuses, black
holes do not exist. For the case l = q = 1, β = 0.1, equation T = 0 has two real roots
r1 ≈ 0.213 and r2 ≈ 0.472. The plot of the heat capacity (34) at q = l = 1, β = 0.1 (GN = 1)
is depicted in Figure 8. In accordance with Figure 8, the heat capacity has a singularity in
the point where the Hawking temperature has a minimum. The heat capacity diverges
(∂T/∂r+=0) at r3 ≈ 0.318.

One can see from Equation (34) that when the Hawking temperature is a large black
hole in the points where the heat capacity possesses a singularity. In the region where
the heat capacity is positive the black hole is stable, otherwise the black hole is unstable.
At r2 > r+ > r1 the Hawking temperature is negative but at r+ > r2 the Hawking
temperature and the heat capacity are positive and the black hole is stable.
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Figure 8. The plot of the heat capacity Cq versus horizon radius r+ at l = q = 1, β = 0.1. According to
the figure, the heat capacity has a singularity where the Hawking temperature possesses a minimum.

Reentrant Phase Transitions

The reentrant phase transition was firstly observed in a nicotine/water mixture [48].
It was also discussed in higher dimensions [49] and in spinning Kerr-AdS black holes [50].
The phenomenon of reentrant phase transition is described in multi-component fluids [51].
The reentrant phase transition (zeroth-order phase transition) takes place when a system
possesses a transition from one phase to another phase and then goes back to the first phase.
In this process one thermodynamic variable is changed but others remain constant. As the
pressure increases from 0.001 to 0.002 in Figure 8 (from panel 1 to panel 2), there will be a
large-small-large reentrant phase transition. In our model there is the global minimum of
the Gibbs free energy with a jump depicted in Figure 9 (for an example) for P = 0.002.
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P=0.002

T
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Figure 9. Reentrant phase transition. There is a finite jump in the Gibbs free energy showing the
zeroth-order phase transition.
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When T decreases, the black hole follows the lower vertical curve until T = T1. Then
it coincides with the upper horizontal line corresponding to small stable black holes and
undergoes a first-order large-small black hole phase transition. As T decreases up to
T = T0, the Gibbs free energy G possesses a discontinuity at its global minimum. When
T continues to decrease, the system goes to the stable black holes. Thus, the zeroth-order
phase transition occurs between small and large black holes.

5. Joule–Thomson Expansion

During the Joule–Thomson isenthalpic expansion, the enthalpy (the mass M) is con-
stant. The cooling–heating phases are described by the Joule–Thomson coefficient.

µJ =

(
∂T
∂P

)
M

=
1

CP

[
T
(

∂V
∂T

)
P
−V

]
=

(∂T/∂r+)M
(∂P/∂r+)M

. (35)

Equation (35) shows that the Joule–Thomson coefficient is the slope of the P− T function.
At the inversion temperature Ti the sign of µJ is changed, and Ti can be found by equation
µJ(Ti) = 0. In the cooling phase (µJ > 0) initial temperature is higher than inversion
temperature Ti and the final temperature decreases. If the initial temperature is lower
than Ti then the final temperature increases in accordance with the heating phase (µJ < 0).
Making use of Equation (35) and taking into account equation µJ(Ti) = 0, we obtain

Ti = V
(

∂T
∂V

)
P
=

r+
3

(
∂T
∂r+

)
P

. (36)

The inversion temperature separates cooling and heating processes. The inversion temper-
ature line goes through P− T diagrams maxima [31,32]. Equation (24) may be represented
as equation of state

T =
1

4πr+
+ 2Pr+ −

q2

4π
(
r3
+ + (βq2)3/4

) . (37)

At β = 0 Equation (37) is converted into equation of state of Maxwell-AdS black holes.
From Equation (17) and using equation P = 3/(8πl2), one obtains

P =
3

4πr3
+

[
M(r+)−

r+
2
− πq3/2

4
√

3β1/4
+

q3/2g(r+)
12β1/4

]
. (38)

We depicted the P − T isenthalpic diagrams in Figure 9 by taking into account
Equations (37) and (38). Figure 10 shows that the inversion Pi − Ti diagram crosses maxima
of isenthalpic curves.

Making use of Equations (24), (36), and (37), we find the inversion pressure Pi

Pi =
3q2(2r3

+ + (βq2)3/4)

16πr+
(
r3
+ + (βq2)3/4

)2 −
1

4πr2
+

. (39)

By virtue of Equations (37) and (39) one obtains the inversion temperature

Ti =
q2(4r3

+ + (q2β)3/4)

8π(r3
+ + (q2β)3/4)2

− 1
4πr+

. (40)

Substituting Pi = 0 in Equation (39), we find the equation for the minimum of the event
horizon radius rmin
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3q2rmin(2r3
min + (βq2)3/4)− 4

(
r3

min + (βq2)3/4
)2

= 0. (41)

From Equations (40) and (41) at β = 0, one obtains minimum of the inversion temperature
corresponding to Maxwell-AdS magnetic black holes

Tmin
i =

1
6
√

6πq
, rmin

h =

√
6q
2

. (42)

Making use of Equations (30) and (42) at β = 0, we find the relation Tmin
i = Tc/2, which

corresponds to electrically charged AdS black holes [30]. With the help of Equations (39)
and (40) we plotted Pi − Ti diagrams in Figure 6. According to Figure 6, the inversion point
increases when the black hole mass increases. The inversion diagrams Pi − Ti are depicted
in Figures 10 and 11.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P

T

Figure 10. The plots of the temperature T vs. pressure P for q = 30, β = 0.5. The Pi − Ti diagram
goes via maxima of isenthalpic curves. The solid (blue) curve is for mass M = 90, the dashed (green)
curve corresponds to M = 100, and the dashed–dotted (red) curve is for M = 110. The inversion
temperature Ti vs. pressure Pi (q = 30, β = 0.5) is depicted by solid line. If black hole masses are
increasing the inversion temperature, Ti increases.

According to Figure 11, when magnetic charge q increases then the inversion tem-
perature increases. Figure 12 shows that when the coupling β increases the inversion
temperature decreases. From Equations (35), (37), and (38) we find(

∂T
∂r+

)
M

= − 1
4πr2

+

+ 2P|M + 2r+

(
∂P
∂r+

)
M
+

3q2r2
+

4π[r3
+ + (q2β)3/4]2

,

(
∂P
∂r+

)
M

=
3

4πr4
+

[√
3q3/2π

4β1/4 − 3M + r+ −
q3/2g(r+)

4β1/4 +
q2r2

+

2[r3
+ + (βq2)3/4]

]
, (43)

where P|M is given in Equation (38). Equations (35) and (43) define the Joule–Thomson
coefficient as the function of the magnetic charge q, coupling β, black hole mass M, and
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event horizon radius r+. When the Joule–Thomson coefficient is positive (µJ > 0), a cooling
process occurs. If µJ < 0, a heating process takes place.
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Figure 11. The inversion temperature Ti vs. pressure Pi at q = 25, 30, and 35, β = 0.1. When
magnetic charge q increases, the inversion temperature increases.
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Figure 12. The inversion temperature Ti vs. pressure Pi at β = 0.1, 0.2 and 0.4, q = 20. Figure shows
that if the coupling β increases the inversion temperature decreases.
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6. Summary

We obtained new magnetic black hole solution in Einstein-AdS gravity coupled to
NED. It is shown that the principles of causality and unitarity occur for any magnetic
induction fields. The metric and mass functions and corrections to the Reissner–Nordström
solution were found. When coupling β increases (at constant magnetic charge) the event
horizon radius decreases. If magnetic charge increases (at constant coupling β) the event
horizon radius increases. It was demonstrated that a spacetime singularity is present
because the Kretschmann scalar is infinite at r = 0. The black holes thermodynamics in
an extended phase space with negative cosmological constant (which is a thermodynamic
pressure) was studied. In this approach, the mass of the black hole is the chemical enthalpy.
The vacuum polarization, which is a thermodynamic quantity conjugated to coupling β,
and thermodynamic potential, conjugated to magnetic charge, were obtained. We showed
that the first law of black hole thermodynamics and the generalized Smarr formula take
place. It was demonstrated that black hole thermodynamics is similar to the Van der
Waals liquid–gas thermodynamics. We analyzed the Gibbs free energy and heat capacity
showing phase transitions. We have analyzed zero-order, first-order, and second-order
phase transitions. The critical ratio ρc obtained is different from the Van der Waals value
3/8. We studied the black hole Joule–Thomson isenthalpic expansion and cooling and
heating phase transitions. We found the inversion temperature which separates cooling
and heating processes of black holes. There are similarities and differences in this and
the past related papers. Expressions for the magnetic energy density, the mass and metric
functions, the Hawking temperature, the magnetic potential, and the vacuum polarization,
as well as the critical temperature and pressure, are different for models. It should be noted
that a weak-gravity regime is released when r goes to infinity. It follows from analytical
expressions that as r → ∞ a nonlinearity of NED disappears asymptotically.
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Appendix A

The Kretschmann scalar is defined as

K(r) ≡ RµναβRµναβ = ( f ′′(r))2 +

(
2 f ′(r)

r

)2

+

(
2( f (r)− 1)

r2

)2

. (A1)

From Equation (12) (at GN = 1) one finds

f ′(r) =
2m0

r2 +
q3/2

6r2 4
√

βq2

(
g(r) +

π√
3

)
− q3/2

r3 + β3/4q3/2 +
2r
l2 ,

f ′′(r) = −4m0

r3 −
q3/2

3r3 4
√

βq2

(
g(r) +

π√
3

)
+

4r3 + β3/4q3/2

r(r3 + β3/4q3/2)2)
+

2
l2 , (A2)

where

g(r) = ln
r2 − 4

√
βq2r +

√
βq

(r + 4
√

βq2)2
− 2
√

3 arctan

(
1− 2r/ 4

√
βq2

√
3

)
. (A3)

Making use of Equations (12) and (A2) the Kretschmann scalar versus r is plotted in
Figure A1. As r → 0 the Kretschmann scalar approaches to infinity showing a spacetime
singularity at r = 0. But at small radiuses, close to the Planck length lP =

√
GN h̄/c3, one

needs to take into account quantum effects [52]. The Kretschmann scalar becomes constant
as r → ∞.
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Figure A1. The plot of the function K(r) vs. r for q = l = 1, m0 = 0. The solid line corresponds to
β = 0.2, the dashed line corresponds to β = 0.5 and the dashed-dotted line corresponds to β = 1.
The Kretschmann scalar approaches to infinity as r → 0 showing a space-time singularity at r = 0.
As r → ∞ the Kretschmann scalar becomes constant.

According to Figure A1 the curvature invariant K(r) is not bounded. Figure A1 shows
that as the coupling β increases (at fixed q and l) the Kretschmann scalar decreases.

Appendix B

The NED models are viable if causality and unitarity principles take place. The causal-
ity principle requires that a group velocity of elementary excitations over a background
field does not exceed the light speed in vacuum. The unitarity principle requires that
the propagator residue has to be positive. These principles lead to requirements (in our
notations) [53]

LF ≤ 0, LFF ≥ 0, LF + 2FLFF ≤ 0, (A4)

were LF ≡ ∂L/∂F . Making use of of Equation (2) we obtain

LF = −
βF + 2 4

√
2βF

8π 4
√

2βF
(
1 + (2βF )3/4

)2 , LFF =
9β

32π 4
√

2βF
(
1 + (2βF )3/4

)3 ,

LF + 2FLFF = −
2(2βF )7/4 + 38βF + 8 4

√
2βF

32π 4
√

2βF
(
1 + (2βF )3/4

)3 . (A5)

Equation (A4) is satisfied for β > 0 and F = B2/2 > 0, i.e., for pure magnetic field. Thus,
the principles of causality and unitarity occur for any magnetic induction fields.
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Note
1 We insert the factor 4π in the denominator of Equation (2) to use the Gaussian units compared to Heaviside–Lorentz units

explored in [41].
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