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Abstract: In this contribution, motivated by the quest to understand cosmic acceleration, based
on the theory of Hořava–Lifshitz and on the branch-cut gravitation, we investigate the effects of
non-commutativity of a mini-superspace of variables obeying the Poisson algebra on the structure
of the branch-cut scale factor and on the acceleration of the Universe. We follow the guiding lines
of a previous approach, which we complement to allow a symmetrical treatment of the Poisson
algebraic variables and eliminate ambiguities in the ordering of quantum operators. On this line
of investigation, we propose a phase-space transformation that generates a super-Hamiltonian,
expressed in terms of new variables, which describes the behavior of a Wheeler–DeWitt wave
function of the Universe within a non-commutative algebraic quantum gravity formulation. The
formal structure of the super-Hamiltonian allows us to identify one of the new variables with a
modified branch-cut quantum scale factor, which incorporates, as a result of the imposed variable
transformations, in an underlying way, elements of the non-commutative algebra. Due to its structural
character, this algebraic structure allows the identification of the other variable as the dual quantum
counterpart of the modified branch-cut scale factor, with both quantities scanning reciprocal spaces.
Using the iterative Range–Kutta–Fehlberg numerical analysis for solving differential equations,
without resorting to computational approximations, we obtained numerical solutions, with the
boundary conditions of the wave function of the Universe based on the Bekenstein criterion, which
provides an upper limit for entropy. Our results indicate the acceleration of the early Universe in
the context of the non-commutative branch-cut gravity formulation. These results have implications
when confronted with information theory; so to accommodate gravitational effects close to the Planck
scale, a formulation à la Heisenberg’s Generalized Uncertainty Principle in Quantum Mechanics
involving the energy and entropy of the primordial Universe is proposed.
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1. Introduction

As an ontological domain-extended version of General Relativity [1], analytically
continued to the complex plane and combined with the multiverse conception of Hawking–
Hertog [2], the branch-cut gravitation (BCG) [3–10] is the result of the axiomatic incor-
poration of the mathematical principles and norms of existential closure and complete-
ness [11]. Domain extension in Quantum Mechanics, through the incorporation of complex
variables [12], not only broadened our perception of the submicroscopic world, but also
revealed direct physical manifestations associated with infinitesimal small scales [13,14].
At the other extreme, assuming an environment encompassed by pseudo-complex General
Relativity (pc-GR), such a descriptive notion of domain extension brought to light a sup-
pression mechanism of the primordial gravitational singularity and the prediction of the
existence of dark energy outside and inside cosmic mass distributions [15–17], with unique
consequences for the stability of compact stars and for the evolution of the Universe.

In this contribution, we focus our study on BCG since, by covering General Relativity
in a extended domain to the complex plane, this formulation represents one of the most
promising theories to describe the early evolutionary stages of the Universe.

A serious problem in the quantization of General Relativity (GR) is that this theory,
as demonstrated by a simple power counting, is not renormalizable. Fortunately, the
Hořava–Lifshitz [18,19] formulation is a renormalizable theory of gravity that is also
Lorentz invariant at low energies, although it breaks this symmetry at high energies, which
is a consequence of an implicitly present minimum length. In the early Universe, the idea
of a minimal length becomes important and has to be addressed. A minimal length can be
included in various manners and is related not only to a breaking of Lorentz invariance
but also to the appearance of a non-commutative behavior in short space-time scales. Due
to the effects of quantum gravity, the effective space-time dimensionality can change in
the UV regime, implying that point sources are effectively smoothed by the Planck scale
characteristics of non-commutative quantum fields [20].

In this contribution, we address the effects of the non-commutativity of a mini-
superspace of variables obeying the Poisson algebra on the structure of the branch-cut scale
factor and on the acceleration of the Universe by means of a non-commutative algebraic
formulation of the Hořava–Lifshitz theory. In Section 2, we review the concepts of the
classical BCG approach, and in Section 3, the basic motivation for a non-commutative
quantum gravity is addressed. In Section 4, the commutative BCG approach is outlined,
and in Section 5, the extension to the non-commutative approach is discussed in detail. In
the same section, the Wheeler–DeWitt equation is rewritten in a convenient form, enabling
numerical to be found solutions for the wave function of the Universe. In Section 6, new
numerical solutions are presented, and the results of the non-commutative BCG quantum
gravity are compared to its commutative version. In Section 7, a discussion of the results is
presented, and, finally, in Section 8, conclusions are drawn.

2. Classical BCG Approach

The classical version of BCG [3–10] describes a foliated Universe in which multiple sin-
gularities merge, generating a topological smooth branch-cut structure of Riemann surfaces,
continuously connected, with a new scale parameter, ln−1[β(t)], analytically continued to
the complex plane, the only dynamical variable of the theory.1 The branched manifoldM
is layered on hypersurfaces, Σt, restricted to Riemann foliation leaves, characterized by a
complex time parameter, t, with the analytically continued branching line element defined
as [4,5]

ds2
[ac] = −σ2N2(t)c2dt2 + σ2(ln−1[β(t)]

)2
[

dr2(
1− kr2(t)

) + r2(t)
(

dθ2 + sin2θdφ2
)]

. (1)

In this expression, the variables r and t, respectively, represent real and complex space-time
parameters, while k represents the spatial curvature of the multiverse, corresponding to
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negatively curved (k = −1), flat (k = 0), or positively curved (k = 1) spatial hypersurfaces.
N(t) in turn represents the lapse function2 with σ2 = 2/3π denoting a normalization factor.

BCG theory additionally contemplates analytically continued Friedmann-type equa-
tions, as well as expressions for the energy–stress conservation law, Hubble rate, decelera-
tion parameter, Ricci scalar, Ricci curvature, and the corresponding complex conjugated
expressions (for details, see [3–10]). The classical version of the BCG theory describes a
smooth Universe with a fine-tuned transition region circumscribing the contraction and the
expansion phases, purely geometric in nature, that replaces the cosmological singularity.

Therefore, the primordial singularity is replaced by a family of Riemann foliation
sheets. These sheets depict the branching cosmic scale factor ln−1[β(t)], which when
shrinking to a finite critical size, is shaped by a range, foliation regularization, and domain
extension encoded by the β(t) function. The range of this function extends beyond the
Planck dimensions according to Bekenstein’s criterion.3

Bekenstein’s criterion establishes an upper limit on the thermodynamic entropy con-
tained in a given finite region of space, as well as the corresponding (finite) amount of
associated energy. Alternatively, the criterion establishes the maximum amount of informa-
tion needed to perfectly describe a given physical system, down to the quantum level. The
Bekenstein bound states that the entropy of a given region of space-time—where gravity is
so strong that nothing, including light or other electromagnetic waves, has enough energy
to escape it—is proportional to the number of Planck areas that would be needed to cover
the corresponding event horizon. In this sense, there is perfect harmony between the Planck
dimensions and the dimensions of the event horizon. In this domain, translating this view
to the corresponding BCG predictions [7], which indicates a significantly larger range of
the branched cosmic scale factor in comparison to the Planck dimensions, this range can be
interpreted as quantifying the number of Planck areas that would be necessary to cover the
primordial singularity, thus reconciling the BCG predictions with the micro-structure of
(quantum) space-time.

In the contracting phase of the branch-cut Universe, as each patch size decreases
with a linear dependence on ln−1[β(t)], light travels through geodesics in each Riemann
foliation sheet, continuously bordering each branch point, and although the horizon size
scales with lnε[β(t)], where ε denotes the dimensionless thermodynamic connection, the
length of the path for the light to travel compensates for the difference in scale between
the patch and horizon sizes. Under these conditions, causality between the horizon size
and the patch size can be achieved through the accumulation of branches in the transition
region between the current state of the Universe and the primordial past of the events [7].
In addition to causality, the flatness and horizon problems of cosmology have been ad-
dressed by BCG theory [7,10]. The flatness problem involves a very small Planck value
for the scaling ratio between the total density of the Universe and the critical density,
Ωc∼ln2ε[β(t)]/ ln2[β(t)] [23–25]. The horizon problem, in turn, is related to the lack of
a causal connection between the patch size of the observable Universe and the past of
events [23–25].

As a corollary, the branched gravitation approach merely expands the realm of real-
ization of the governing principles of General Relativity, while maintaining the rationality,
structural logics, mathematical operations, and norms underlying its theoretical foun-
dations. BCG’s classic and quantum formulations, in tune with its inspiring theoretical
motivations, seek to shed new light and fresh perspectives on the question of the origin
and evolution of the Universe. In the following, we recall recently developed BCG quan-
tum approaches, within the scope of commutative quantum gravity, and subsequently,
we introduce elements of the present formulation, which seeks to advance the field of a
non-commutative theoretical proposal.

3. Non-Commutative Quantum Gravity

The intense inhomogeneous and anisotropic nature of the primordial expansion gener-
ated causally disconnected patches leading to the assumption of a period of cosmic inflation
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during which the exponential growth of the Universe contributed to the smoothing of
heterogeneities within the cosmological horizon, defining, in this way, the observable
causal domain.

The ΛCDM model establishes that our Universe is presently in a phase of accelerated
expansion originating in the presence of dark energy, while cold dark matter (CDM) is the
main driver of the gravitational interaction, responsible in turn for shaping the large-scale
structure of the Universe. This view of the evolutionary Universe has been supported
during the last few decades by means of a series of main cosmological probes, for instance,
the cosmic microwave background (CMB) [26,27], type Ia supernovae [28–30], and baryonic
acoustic oscillations [31,32].

To the best of our knowledge, H.S. Snyder was the first to propose a quantized space-
time [33]. In the abstract of his paper, he notes that “it is usually assumed that space-time is
a continuum. This assumption is not required by Lorentz invariance. In this paper we give
an example of a Lorentz-invariant discrete space-time”. The emphasis is that space-time can
be quantized without violating Lorentz symmetry. This publication was mostly ignored.
In [34], it is shown that a pseudo-complex extension of coordinates and momenta leads to a
non-commutative quantization of the real coordinates and momenta. Lorentz invariance is
also conserved. This formulation has, as a consequence, a minimal length, which simulates
the appearance of a quantized space-time. Numerous other attempts have been made to
quantize space-time, with string theory and quantum-loop quantization being the most
prominent. However, these efforts generally suffer from the drawback of violating Lorentz
invariance, resulting in complex calculations. Whether or not one should prioritize the
preservation of Lorentz invariance depends on the specific context under consideration.

In this manuscript, the Hořava–Lifshitz theory is used, which keeps Lorentz invariance
at low energy but violates it at high energy, which corresponds to large momenta and thus
to very small distances. In this context, we demonstrate the possibility of introducing a
non-commutative formulation, enabling the study of the effects of a minimal length on
the Universe’s solutions. As just discussed, it is important to study non-commutativity
of space-time because, at high energy (small distances), the structure of space-time must
undergo changes to yield finite results in quantum theory, particularly in General Relativity,
which is our interest here.

In recent years, the quest to understand the acceleration of the Universe has led to nu-
merous propositions and scenarios, including non-commutative quantum cosmologies. In
what follows, we investigate the effects of non-commutativity of mini-superspace variables
on the accelerating behavior of the branch-cut cosmic scale factor and the wave function of
the Universe.

4. Commutative Quantum BCG Approach

Recently, we proposed Lagrangian formulations for the BCG in [9,10] within the frame-
work of Hořava–Lifshitz’s theory of renormalizable gravity (HLGT) [18,19]. This approach
contemplates high-order curvature terms while preserving General Relativity diffeomor-
phism [35] and the usual foliation of the Arnowitt–Deser–Misner (ADM) formalism in the
infrared limit [36]. In combination with the Wheeler–DeWitt (WdW) equation [37], the
formulation is free of ghosts, making it suitable for describing quantum effects of the gravi-
tational field [36]. The solutions of the WdW equation, represented in turn by a geometric
functional of compact manifolds and matter fields, describe the evolution of the quantum
wave function of the Universe [38,39]. The most intriguing aspect of the WdW equation,
the absence of the time variable, although linked to a classical image of space-time [35],
represents a feature of the classical Hamilton–Jacobi formulation of General Relativity, in
which the observable universe does not exhibit time-reversal symmetry, giving way to a
quantum description of events, as the basic cosmic constituents [40–44]. The wave function,
in turn, depends only on a “3-geometry”, which corresponds to the equivalence class of
metrics under a diffeomorphism. It does not rely on the specific coordinate-dependent
form of the metric tensor [42–44]. In terms of cosmological quantum interpretation, the
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wave function of the Universe can be expressed as a functional restricted to a superspace
configuration, which includes three-surface and matter fields denoted by Φ. The metric
is represented by hij in this framework. The associated WdW wave function, denoted as
Ψ(hij, Φ), can be understood as describing the evolution of Ψ(Φ) regarding the physical
variable Φ.

The action of the projectable Hořava–Lifshitz theory combined with BCG, SHL, de-
pends on the branching scalar curvature of the Universe,R, and its derivatives, in different
orders [9,10,18,19]:

SHL =
M2

P
2

∫
d3x dt N

√
g

(
KijKij − λK2 − g0M2

p − g1R− g2M−2
P R

2

− g3M−2
P RijRij − g4M−4

P R
3 − g5M−4

P R(R
i
jR

j
i)− g6M−4

P R
i
jR

j
kR

k
i

− g7M−4
P R∇

2R− g8M−4
P ∇iRjk∇iRjk

)
, (2)

where λ and gi represent running coupling constants4, MP is the Planck mass, ∇i denotes
covariant derivatives, and the branching Ricci components of the three-dimensional metrics
are determined by imposing a maximum symmetric surface foliation [9]:

Rij =
2

σ2 ln−2[β(t)]
gij , and R =

6
σ2 ln−2[β(t)]

. (3)

In expression (2), K represents the trace of the extrinsic curvature tensor Kij, given by [9,10]

K = Kijgij = −
3

2σN

(
d
dt ln−1[β(t)]

)
ln−1[β(t)]

. (4)

By introducing the variable change u(t) ≡ ln−1[β(t)], with du ≡ d ln−1[β(t)], and sub-
sequently applying standard canonical quantization procedures,5 and by promoting the
canonical conjugate momentum into an operator, i.e., pu 7→ −i ∂

∂u , the Hamiltonian is also
elevated to an operator. The new complex dynamical variable u(t), representing the helix-
like scale factor analytically continued to the complex plane, along with the corresponding
conjugate momentum pu, are then treated as operators, denoted, respectively, as Ĥ(t), û(t),
and p̂u. This leads to the formulation of the branching Hamiltonian given by6 [19]

H =
1
2

N
u(t)

[
−p2

u − gku2(t) + gΛu4(t) + gr +
gs

u2(t)

]
, with pu = −u(t)

N
du(t)

dt
. (5)

In this expression, pu represents the conjugate momentum of the original branching
gravitation dynamical variable ln−1[β(t)], gk, gΛ, gr, and gs represent respectively the cur-
vature, cosmological constant, radiation, and stiff matter running coupling constants [19,45]

gk ≡
2

3λ− 1
; gΛ ≡

ΛM−2
P

18π2
(
3λ− 1

)2 ; gr = 24π2(3g2 + g3
)
;

gs ≡ 288π4(3λ− 1
)
(9g4 + 3g5 + g6). (6)

The gr and gs running coupling constants can be positive or negative, without affecting
the stability of the solutions. The contribution of stiff matter, in turn, is determined by the
condition ρ = ωp in the corresponding equation of state. In [10], we supplemented the
Hamiltonian with two additional terms, gmu, which describes the contribution of baryon
matter combined with dark matter, and gqu3, a quintessence contribution, a time-varying,
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spatially inhomogeneous and negative pressure component of the cosmic fluid [46,47],
which allows approaching the “coincidence problem”.7

5. Non-Commutative Quantum BCG Approach

In order to incorporate a non-commutative quantum formulation, we adhere to the
principles outlined in [48,49], with a slight alteration to the coordinate transformations in
the classical phase-space, resulting in a super-Hamiltonian that is more in line with the
canonical structure of the commutative formulation, as we demonstrate below.

To build a formalism with non-commutative variables, the authors of [48,49] intro-
duced in the Hořava–Lifshitz formalism the action of a perfect fluid, characterized by a
dimensionless number ω, associated with a dual variable to the scale factor of the standard
formulation a(t), represented by v(t), whose canonically conjugated momentum is repre-
sented by pv. After inserting this contribution into Equation (5), supplemented with the
two additional terms gmu and gqu3, the following expression is obtained

H =
1
2

N
u(t)

[
−p2

u + gr − gmu− gku2 − gqu3 + gΛu4 +
gs

u2(t)
+

1
u3ω−1 pv

]
, (7)

with pv = − v(t)
N

dv(t)
dt . The condition for late time acceleration, imposed on the equation

of the state parameter of dark energy, corresponds to ω < −1/3, where ω is the ratio of
pressure p and the energy density ρ.

In the next steps, the authors of [49], based on a similar Hamiltonian formulation,
sought to determine a Lagrangian density of the system by using an iterative procedure
and introducing the following non-commutative algebra:

{u, v} = σ ; {pu, pv} = α ; {u, pv} = γ ; {v, pu} = χ ; {u, pu} = {v, pv} = 1 ; (8)

translating this composition to the branch-cut gravity formulation, due to the complex
nature of the variable u, the algebraic relation (8) states that the variable v as well as the set
of variables {σ, α, γ, χ}must also be complex.

Still, according to the assumptions outlined in [49], the following coordinate transfor-
mation in the classical phase-space was defined:

ũ = u ; ṽ = v ; p̃u =
1
Γ

(
−pu + 2αv + χpv

)
; p̃v =

1
Γ

(
γpu + αu− pv

)
, (9)

with
Γ =

(
ασ− 1

)
+ χγ → Γ = χγ− 1 , (10)

since σ = 0 is the condition for the new variables ũ and ṽ to satisfy the Poisson bracket al-
gebra8 [49]. By inverting the above Equation (9), in combination with the non-commutative
Hamiltonian (7), a super-Hamiltonian then results, with the following dependence on the
variables ũ = u, ṽ = v, p̃u, p̃v, ∂̃u, ∂̃v (for comparison, see [49]):

H =
1
2

N
u(t)

[
−p2

u + gr − gmu− gku2 − gqu3 + gΛu4 +
gs

u2(t)
+

1
u3ω−1 pv

]
,

=
1
2

N
u(t)

[
−
(
− p̃u + 2αv + χ p̃v

)2
+

1
u3α−1

(
γ p̃u + αu− p̃v

)
+

(
gr − gmu− gku2 − gqu3 + gΛu4 +

gs

u2(t)

)]
. (11)
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Making the replacements p̃u → −i ∂̃
∂u and p̃u → −i ∂̃

∂v , Equation (11) may be rewritten as

H =
1
2

N
u(t)

[(
∂̃2

∂u2 − 4iαv
∂̃

∂u
− χ

[
∂̃

∂u
∂̃

∂v
+

∂̃

∂v
∂̃

∂u

]
+ 4iαχv

∂̃

∂v
+ χ2 ∂̃2

∂v2 − 4α2v2

)

− 1
u3α−1

(
iγ

∂̃

∂u
− i

∂̃

∂v
− αu

)
+

(
gr − gmu− gku2 − gqu3 + gΛu4 +

gs

u2(t)

)]
. (12)

As an alternative, in view of the formal structure resulting from the transformations (9),
in what follows, a symmetrical treatment in terms of the variables u and v is proposed,
and ambiguities in the ordering of the quantum operators ∂̃

∂u
∂̃

∂v + ∂̃
∂v

∂̃
∂u are overcome by

adopting a different phase-space coordinate transformation, which allows a consistent
symmetric incorporation of the non-commutative algebra into the intrinsic structure of
the new set of variables {ũ, p̃u, ṽ, p̃v}. We then introduce the following linear mapping,
which relates the commutative {u, pu, v, pv} and the non-commutative phase-space set of
variables {ũ, p̃u, ṽ, p̃v} in the super-Hamiltonian:

ũ = u ; ṽ = v ; p̃u =
1
Γ

(
pu − χpv

)
; p̃v =

1
Γ

(
−γpu + αu− αv + pv

)
. (13)

As this is not the main topic of this contribution, for a more profound discussion about
factor ordering in Quantum Mechanics and quantum gravity and its implications for the
behavior of the wave function of the Universe, see [10,50–52].

From Equation (13), we obtain, by incorporating the Γ matrices in the conjugate
momenta p̃u and p̃v:

p̃u =
(

pu − χpv

)
; p̃v =

(
−γpu + αu− αv + pv

)
. (14)

By inverting Equation (13),

p̃u → pu =
(

p̃u − χ p̃v

)
; p̃v → pv =

(
−γ p̃u + αu− αv + p̃v

)
, (15)

the super-Hamiltonian becomes

H =
1
2

N
u(t)

[
−p2

u + gr − gmu− gku2 − gqu3 + gΛu4 +
gs

u2(t)
+

1
u3ω−1 pv

]
,

=
1
2

N
u(t)

[
−
(

p̃u − χ p̃v

)2
− 1

u3α−1

(
γ p̃u − αu + αv− p̃v

)
+

(
gr − gmu− gku2 − gqu3 + gΛu4 +

gs

u2(t)

)]
. (16)

The Hamiltonian operator given in Equation (16), when applied to the wave function
of the Universe, Ψ(u, v), under the conditionHΨ(u, v) = 0, gives the following equation:[(

∂̃2

∂u2 − 2χ
∂̃

∂u
∂̃

∂v
+ χ2 ∂̃2

∂v2

)
+

1
u3α−1

(
iγ

∂̃

∂u
− i

∂̃

∂v
+ αu− αv

)

+

(
gr − gmu− gku2 − gqu3 + gΛu4 +

gs

u2(t)

)]
Ψ(u, v) = 0 . (17)

In what follows, the parameters χ and γ are treated as complex numbers; however,
to make contact with conventional formulations, especially regarding the insertion of a
set of ordering factors to overcome ambiguities in the ordering of quantum operators, and
maintain the complex nature of the variables u and v, we consider only the real component
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of the parameter α. From now on, we use the following notation for formal simplification:
γ = i|γ|, so iγ = i2|γ| = iγ = −|γ|, so the previous equation becomes:[(

∂̃2

∂u2 − 2χ
∂̃

∂u
∂̃

∂v
+ χ2 ∂̃2

∂v2

)
− 1

u3α−1

(
|γ| ∂̃

∂u
+ i

∂̃

∂v
− αu + αv

)

+

(
gr − gmu− gku2 − gqu3 + gΛu4 +

gs

u2(t)

)]
Ψ(u, v) = 0 . (18)

Additionally, for simplicity, we do not use the symbol and ˜ in the partial derivatives as
identification of the new variables in the scope of non-commutative algebra. Equation (18)
can thus be rewritten in the general form:[

a(u, v)
∂2

∂u2 − 2b(u, v)
∂2

∂u∂v
+ c(u, v)

∂2

∂v2

]
Ψ(u, v)

=

[
d(u, v)

∂

∂u
+ e(u, v)

∂

∂v
+ F

(
u, v
)]

Ψ(u, v) ,

= G

(
u, v, Ψ,

∂

∂u
,

∂

∂v

)
, (19)

with

a(u, v) = 1 ; b(u, v) = χ ; c(u, v) = χ2 ; d(u, v) =
γ

u3α−1 ; e(u, v) =
i

u3α−1 ;

F
(
u, v
)

= −
(

gr − gmu− gku2 − gqu3 + gΛu4 +
gs

u2 +
α

u3α−2 −
αv

u3α−1

)
, (20)

where a(u, v), b(u, v), and c(u, v) represent functions of the independent variables u
and v, and have continuous derivatives up to the second-order. Since the b2(u, v) −
a(u, v)c(u, v) = 0 expression (19) belongs to the mathematical group of parabolic equations,
to reduce this equation to a canonical form, one should first write out the characteristic
equation [53]

a dv2 − 2b du dv + c du2 = 0 , (21)

which splits into two equations

a dy−
(
b±

√
b2 − ac

)
dx = 0 . (22)

Then, one should find their general integrals. In the case of a parabolic equation, the
two previous solutions coincide, resulting in a common general integral ϕ(u, v) = IG.
This allows the variables u and v to be changed to new independent variables ξ and η, in
accordance with

ξ = ϕ(u, v), and η = η(u, v) , (23)

where η(u, v) is a differentiable function that satisfies the non-degeneracy condition of the
Jacobian D(ξ, η)/D(x, y) in the given domain. As a result, Equation (19) is reduced to the
canonical form

∂2Ψ(ξ, η)

∂η2 = G

(
ξ, η, Ψ,

∂

∂ξ
,

∂

∂η

)
. (24)

For η one can take u or v. We take, for convenience, u. In the Faddeev–Jackiw formal-
ism, the variables u and v are non-commutative, and after the variable transformation, ξ
and η are also non-commutative. In this sense, ξ and η are canonically conjugate dual vari-
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ables, which span reciprocal spaces, so the following relation between these variables holds:

ξ =
1√
2π

∫ ∞

−∞
A(η)eiξηdη . (25)

Equation (17) then becomes

∂2Ψ(ξ, η)

∂η2 =

(
d(ξ, η)

∂

∂η
+ e(ξ, η)

∂

∂ξ
+ F

(
ξ, η
))

Ψ(ξ, η) ,

= −
(

γ

η3α−1
∂

∂η
+ gr − gmη − gkη2 − gqη3 + gΛη4 +

gs

η2 +
α

η3α−2

)
Ψ(ξ, η)

+

(
i

η3α−1
∂

∂ξ
− αξ

η3α−1

)
Ψ(ξ, η) . (26)

This equation may be rearranged in the form

H(ξ, η)Ψ(ξ, η) = 0 , (27)

from which the super-HamiltonianH(ξ, η) may be identified as:

H(ξ, η) =
1
2

N
η(t)

[
∂2

∂η2 +
γ

η3α−1
∂

∂η
+ gr − gmη − gkη2 − gqη3 + gΛη4 +

gs

η2

+
α

η3α−2 −
αξ

η3α−1 −
i

η3α−1
∂

∂ξ

]
. (28)

For comparison with the original version of the super-Hamiltonian (7), we may rewrite
Equation (28) in the form

H(ξ, η) =
1
2

N
η(t)

[
−p2

η,γ,α + gr − gmη− gkη2 − gqη3 + gΛη4 +
gs

η2

+
α

η3α−2 −
αξ

η3α−1 +
1

η3α−1 pξ

]
, (29)

with

−p2
η,γ,α ≡

∂2

∂η2 +
γ

η3α−1
∂

∂η
. (30)

The super-Hamiltonian given in expression (29) shows that the adoption of the partic-
ular phase-space transformation in the context of Poisson algebra given by expression (13)
brings additional advantages. One advantage refers, as we will see below, to the main-
tenance of the original formal structure, providing consistent comparisons between the
predictions of the commutative and non-commutative formulations. The commutative
Hořava–Lifshitz formulation presented in Equation (7), which served as a starting point
for the alternative non-commutative algebraic formulation (13), following similar proce-
dures performed in [49], contemplates a standard formulation that contains the quadratic
term p̂2

η,γ,α, where p̂η,γ,α represents the operator corresponding to the canonical moment
associated with the variable η, and the contribution corresponding to its dual variable
ξ is represented by the linear term p̂ξ . The transformations introduced in (13), despite
originally also containing second-order derivatives referring to both variables u and v,
including the contribution originally referring to the perfect fluid, through the canonical
reduction of the original differential equation, by means of a transformation of coordinates
delineated by the corresponding characteristic equations, allow one to identify and select
one of the new coordinates ξ or η in a very particular way, restricting, in this way, the
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resulting Hamiltonian to a dependence on the canonical momenta p̂2
η,γ,α and p̂ξ , in a similar

way to the original mathematical structure of the commutative algebraic formulation. This
is because, although one of the original variables can be directly identified with one of the
new transformed coordinates, the other is restricted to identification with the common gen-
eral integral. In short, carrying out an adequate identification, the new variables, although
underlying their dual character, allow a transcription that follows, from a formal point
of view, the main structure of the commutative formulation, thus allowing a consistent
comparison between the evolutionary processes of the wave function of the Universe,
considering the commutative and the non-commutative algebraic formulations. Another
advantage concerns the form of the expression (30) for the quadratic term referring to
the variable η, which includes a term dependent on a first-order partial derivative ∂/∂η,
multiplied by a factor given by γ/η3α−1. The form of this expression is structurally similar
to the insertion of a set of ordering factors in quantum gravity formulations, given by κ, in
order to overcome ambiguities in ordering quantum operators. A way of approaching this
theme can be exemplified in the expression below (see, for example, [10])

p2
κ = − 1

ηκ(t)
∂

∂η(t)

(
ηκ(t)

∂

∂η(t)

)
. (31)

Taking as an example κ = 0, 1, 2, for comparison with standard formulations (see [10]
and references therein), we obtain, from (31), respectively

p2
0 = − ∂2

∂η(t)2 ; p2
1 = −

{
∂2

∂η(t)2 +
1
η

∂

∂η(t)

}
; p2

2 = −
{

∂2

∂η(t)2 +
2
η

∂

∂η(t)

}
. (32)

Thus, in the order of the removal of ambiguities in the ordering of quantum operators,
the choices κ = 0, 1, 2 in combination with (30) would lead to the following set of values
for the γ and α parameters 9: for p0, γ = α = 0; for p1, γ = 1, α = 2/3; and for p2,
γ = 2; α = 2/3. In what follows, we consider that the parameters γ and α are normalized
to 1, in which the negative values of these parameters are not excluded. The numerical
approach of the authors of [49], in calculating the dependence of the scale factors as a
function of the parameter α, considering α = −0.5, 0, 05, reveals that such variations imply
very small changes in the scale factors. This gives us confidence in choosing the value
α = 1/3, which makes it possible to separate the variables in the super-Hamiltonian
equation for the wave function of the Universe, in order to solve the corresponding partial
differential equation, despite its known technical difficulties, without approximations.
Finally, the formal structure of the super-Hamiltonian obtained allows us to identify the
new variable η(t) with the branch-cut gravitation scale factor, ln−1[β(t)], although evidently
incorporating, as a result of the imposed variables’ transformations, in an underlying way,
elements that characterize a non-commutative algebra. Due to its structural character,
this algebraic structure allows identifying the complex variable ξ(t) as the complex dual
quantum counterpart of η(t), both scanning reciprocal quantum complex spaces.

5.1. Friedmann-Type Branch-Cut Equations

In view of the previous interpretation, the non-commutative BCG contemplates com-
plex equations similar to Friedmann’s equations (for comparison see for instance [10]):(

d
dt η(t)
η(t)

)2

=
8πG

3
ρ(t)− kc2

η(t)
+

1
3

Λ;

(
d2

dt2 η(t)
η(t)

)
=−4πG

3

(
ρ(t) +

3
c2 p(t)

)
+

1
3

Λ , (33)
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where Λ represents the cosmological constant, as well as the corresponding complex
conjugated expressions:

(
d
dt η∗(t∗)
η∗(t∗)

)2

=
8πG

3
ρ∗(t∗)− kc2

η∗(t∗)
+

1
3

Λ∗;

(
d2

dt2 η∗(t∗)
η∗(t∗)

)
=−4πG

3

(
ρ∗(t∗) +

3
c2 p∗(t∗)

)
+

1
3

Λ∗. (34)

These are the equations that underlie the scenarios of the non-commutative branched grav-
itation in the imaginary sector, in which the primordial singularity is replaced by a foliated
transition region, described by the helix-like cosmological factor η(t), analytically contin-
ued to the complex plane, interposing two distinct evolutionary stages of the Universe, a
contraction and an expansion phase. The consequences of these scenarios on the behavior
of the wave function of the universe are notable insofar as they imply the evolutionary
description of Ψ(η) in both regions.

5.2. Boundary Conditions

Approaches to quantum gravity based on the Hořava–Lifshitz formulation usually
found in the literature, due to the technical computational difficulties, are limited frequently
to plotting potentials and/or to solving the corresponding Friedmann and Wheeler–DeWitt
equations by using approximation methods, and, in the context of non-commutative alge-
bra, those approaches impose restrictions into the parameter space, in order to simplify
the formal treatment in the search of viable solutions. In this contribution, we do not use
numerical computational approximations, although we have limited the parameter α to the
value 1/3 to allow for the separation of variables in the super-Hamiltonian associated with
the wave function of the Universe. The parameter χ in turn, as already stressed, in view
of the nature of the variable transformations, is implicitly contained in the definition of ξ,
which together with the quantity η, form a fundamental dual system and two complemen-
tary elements of the theory, the rescaled cosmic scale factor η and its counterpart ξ, defined
in a reciprocal space.

The differential equations presented in this work were solved adhering to established
principles and standard criteria to ensure convergence, stability, and continuity of the solu-
tions. Using the iterative Range–Kutta–Fehlberg numerical analysis for solving differential
equations, we obtained numerical solutions, with the boundary conditions of the wave
function of the Universe based on the Bekenstein criterion, which provides an upper limit
for the entropy, following the proposition presented in [10].

The entropy of a black hole, according to the Bekenstein limit, is proportional to the
number of Planck areas needed to cover the black hole’s event horizon (where each Planck
area corresponds to one entropy unit). In non-commutative branched gravitation, we
assume that the primordial singularity is equally covered by a certain number of Planck
areas, the number value of which in turn corresponds to the primordial entropy of the
Universe. Assuming that the dimensions of this border region correspond to the most
distant points that can be casually observed, taking the proper distance d(t) of a pair of
objects, at any arbitrary instant t and its relation to the proper distance d(t0) at a reference
time t0, such that d(t) = |η(t)|d(t0), this implies that for t = t0, then |η(t0) = 1|. From
a quantum probabilistic point of view, this condition implies a maximum probability of
observation, |Ψ(1)| = 1, assuming a normalized wave function. Thus, the boundary
conditions assumed in this contribution in the contraction sector are Ψ(−1) = −1, and in
the expansion region are Ψ(1) = 1.



Universe 2023, 9, 428 12 of 24

6. Solutions for the Wave Function of the Universe

With the particular choice α = 1/3, which allows a separation of variables, Equation (26)
reduces to

∂2Ψ(ξ, η)

∂η2 = −
(

γ
∂

∂η
+ gr +

1
3

η − gmη − gkη2 − gqη3 + gΛη4 +
gs

η2

)
Ψ(ξ, η)

+

(
i

∂

∂ξ
− 1

3
ξ

)
Ψ(ξ, η) . (35)

Assuming expression (35) is separable, adopting the representation Ψ(ξ, η) = Ψ(ξ)Ψ(η),
the following equations then hold:(

∂2

∂η2 + γ
∂

∂η
+ gr +

1
3

η − gmη − gkη2 − gqη3 + gΛη4 +
gs

η2 − C
)

Ψ(η) = 0 ;

→
(

∂2

∂η2 + γ
∂

∂η
+ g̃r − g̃mη − gkη2 − gqη3 + gΛη4 +

gs

η2

)
Ψ(η) = 0 ;

→
(

∂2

∂η2 + γ
∂

∂η
+ V(η)

)
Ψ(η) = 0 , (36)

with g̃r ≡ gr − C, g̃m ≡ gm − 1/3,

V(η) = g̃r − g̃mη − gkη2 − gqη3 + gΛη4 +
gs

η2 , (37)

and (
i

∂

∂ξ
− 1

3
ξ + C

)
Ψ(ξ) = 0 , (38)

where C is a constant. The solution to the second equation above, up to an additional
constant, is

Ψ(ξ) = i

(
Cξ − 1

3
ξ2

)
. (39)

In order to make contact with previous calculations, we adopt values for the running
coupling constants from [9,10]).

Figures 1 and 2 (below) show the behavior of the effective potential for different
sets of values of the running coupling constants corresponding to the non-commutative
formulation. The results show a domain of the term that describes stiff matter. The for-
mulation adopted contemplates, in a still preliminary stage of the theoretical approach,
real potentials, although the wave function Ψ(η) and the scale factor η are complex quanti-
ties. Therefore, in this preliminary approach, we did not adopt a formulation that would
allow, as with the classic BCG formulation, to circumvent the singularity, which we intend
to address in a subsequent investigation. Fortunately, the boundary conditions imply a
topological leap in the region where singularities predominate, allowing a formulation
consistent with the implications of the Bekenstein limit. The main difference between the
plots in Figures 1 and 2 is related to the factor gs. In Figure 1, gs has a negative value,
generating an attractive potential that contemplates a singularity, while in Figure 2, gs is
positive, generating a barrier of potential with two disconnected regions. The asymptotic
behavior of the curves, however, does not present significant differences for the adopted
values of the running coupling constants.

Considering that the change in sign of the parameters g̃r and gs does not affect the
stability of the solutions, Figure 3 shows the behavior of the potential V(η) with a change
in the sign of the running coupling constant of the dominant term gs/η2, which represents
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the stiff matter contribution. The implications of these results in terms of signatures that
discriminate these parameterizations, however, require a more rigorous future analysis.
According to the curves in Figure 3, the potential (37) shows a similar behavior both in the
commutative and in the non-commutative case, being practically insensitive to the new
Poisson algebra parameters introduced.

Figure 1. Graphical illustration of the potential V(η) (Equation (37)) corresponding to the non-
commutative approach. The values for the running coupling constants are: g̃r = 0.4; g̃m = 0.6185;
gk = 1; gq = 0.7; gΛ = 0.333; gs = −0.03 (blue line), and g̃r = −0.4; g̃m = 0.6185; gk = 1; gq = 0.7;
gΛ = 0.333; gs = −0.03 (yellow line)..

Figure 2. Same as Figure 1 but for values of the running coupling constants given by g̃r = 0.4;
g̃m = 0.6185; gk = 1; gq = 0.7; gΛ = 0.333; gs = 0.03 (blue line), and g̃r = −0.4; g̃m = 0.6185; gk = 1;
gq = 0.7; gΛ = 0.333; gs = 0.03 (yellow line)..

Figure 3. Graphical illustration of the potential V(η) for the commutative (yellow line) and non-
commutative (blue line) approaches. The values of the running coupling constants are: g̃r = 0.4;
g̃m = 0.2855; gk = 1; gq = 0.7; gΛ = 0.333; gs = −0.03 (yellow line), and g̃r = 0.4; g̃m = 0.6185;
gk = 1; gq = 0.7; gΛ = 0.333; gs = −0.03 (blue line).
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Figure 4 presents typical solutions of the wave function of the Universe corresponding
to the commutative case. The wave function of the Universe, as a function of the branch-cut
scale factor, presents a wave-like behavior whose amplitudes progressively increase, in
the contraction sector, when approaching the boundary region, and shows the opposite
behavior in the expansion sector, where the amplitudes of the wave function of the Universe
decrease as the wave function moves away from the boundary region. These results describe
the evolution of the wave function of the Universe—associated with hypersurfaces Ση

analytically continued to the complex plane—in the cosmic scale factor η(t). The main
characteristics of these solutions are the oscillatory behavior, whose increasing amplitudes
during the Universe contraction are contrasted by the decreasing of the thermodynamic
entropy, while, in the expansion sector, the corresponding main characteristics are the
decreasing amplitudes of the wave function and increasing of the thermodynamic entropy.
These results imply a Universe described by oscillating quantum states tending towards a
stable ordering at some future time. Going back to the past of the events, the systematic
increase in the oscillatory amplitudes of the wave function as a function of the scale factor
η suggests the accumulation of branches, as indicated by the BCG, to restore causality.
The effect of accumulating branches actually occurs in both phases corresponding to
the expansion and contraction regions around the transition domain modulated by an
accumulation of Riemann sheets. The oscillatory behavior of the wave function of the
Universe corresponding to the commutative case, in the contraction sector, implies a period
of acceleration, prior to the branch-cut transition. Likewise, the corresponding oscillatory
behavior in the expansion phase could be interpreted as a deceleration of the branch-
cut Universe, in disagreement with the inflation canons. Conversely, the results of the
non-commutative model indicate an inflationary period, a natural consequence of the non-
commutative branch-cut gravity structure, without the need to introduce this assumption
in an ad hoc way, as we see below.

Figure 4. Typical solutions of the wave function Ψ(η) corresponding to the commutative algebra,
with α = χ = γ = 0, gr = 0.4, and gs = −0.03.

Figure 5 presents results of the wave function of the Universe corresponding to the
non-commutative case with γ = −1 and α = 1/3. The results indicate that the wave
function of the Universe, as a function of the branch-cut scale factor, in the contraction and
expansion sectors, presents a similar wave-like behavior, growing systematically in both
phases. This behavior indicates, as a result of the imposition of the non-commutativity
of a mini space-time superspace of variables that obey the Poisson algebra, acceleration
of the branched Universe. In the contraction sector, the behavior of the wave function
of the Universe is similar to the behavior in the corresponding commutative sector; the
most striking difference is thus registered in the expansion sector, indicating an inflationary
period of our Universe. This behavior is repeated for other choices of running coupling
constants, except for the case in which we change the sign of the parameter γ, as we see
below. We limit the number of curves displayed in order not to overcrowd graphs with
results similar to this contribution, impairing the reading dynamics.
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Figure 5. Solutions of the wave functions Ψ∗(η) (left) and Ψ(η) (right), corresponding to the non-
commutative algebra, with γ = −1. The values of the running coupling constants are: g̃r = 0.4;
g̃m = 0.6185; gk = 1; gq = 0.7; gΛ = 0.333; gs = −0.03.

Figure 6 shows the results of the wave function of the Universe corresponding to the
non-commutative case with γ = 1 and α = 1/3. The figures show that the amplitudes
of the wave function of the Universe, as a function of the branch-cut scale factor, in the
contraction and expansion sectors, present a wave-like behavior similar to the previous
figures. However, unlike the previous results, the amplitudes systematically decrease in
both phases. This behavior indicates, as a result of the imposition of the non-commutativity
of a mini space-time superspace of variables that obey the Poisson algebra, deceleration
of the branched Universe. In the expansion sector, the behavior of the wave function of
the Universe is similar to the behavior in the corresponding commutative sector; the most
striking difference is thus registered in the contraction sector, indicating a disinflationary
period of the branched Universe.

Figure 6. Solutions of the wave functions Ψ∗(η) (left) and Ψ(η) (right), corresponding to the non-
commutative algebra, with γ = 1. The values of the running coupling constants are: g̃r = 0.4;
g̃m = 0.6185; gk = 1; gq = 0.7; gΛ = 0.333; gs = −0.03.

7. Discussion of the Results

There are numerous works in the literature that deal with the topic of quantum gravity
in a non-commutative environment. With regard to the Hořava–Lifshitz quantum gravity
formalism combined with the Wheeler–DeWitt equation, or other cosmological models,
the number of articles decreases considerably. These works deal, in most cases, with the
temporal evolution of the Universe’s scale factor in a standard formalism, characterized
by the nomenclature designation dynamical equations, with the number of authors dealing
with the evolution of the Universe’s wave function being quite limited. In some articles,
the authors deal with both themes (see, for example, for theoretical approaches [54–65]
and for an experimental contribution [66]). Most authors, with regard to the wave function
of the Universe and the resolution of its evolutionary equations, central themes in our
investigation, direct their studies towards formal aspects, and when looking for numerical
or algebraic results, due to the computational difficulties imposed by the formalism, use
approximations that significantly limit their conclusions.
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Although this is not the central theme of this work, it is important to highlight that
studies involving strings and non-commutative gauge theories have contributed signif-
icantly to a better understanding of the influence of the non-commutative algebra on
geometric structures and the accelerated evolution of our Universe. Starting with Edward
Witten’s brilliant work published in 1986 [67], many authors have followed this line of
investigation (for a review up to 2005 see [68]). Among the most recent works, we high-
light [69] (and references therein) whose cosmological solutions describe a Universe in
accelerated expansion, with several realizations in string theory models.

In the present work, as previously mentioned, we used the method known as Runge–
Kutta–Fehlberg for solving differential equations, without adopting any numerical ap-
proximation. Our numerical calculations enabled a broad study of the evolution of the
function Ψ(η) and a wide class of solutions, the presentation of which, for reasons of
brevity, we limit to just a few figures. These results, involving the contraction phase as well
as the expansion phase of the branch-cut Universe, as far as we know, are original, and
indicate an acceleration of the wave function Ψ(η) in the expansion phase, in tune with the
predictions of the inflation model, as well as a deceleration in the contraction phase, with
both predictions being in tune with the BCG predictions.

Our results have implications when confronted with information theory. For a given
random variable ζ with n possible event values (outcomes) q1, . . . , qn such that the proba-
bility of each outcome is denoted by Prob[ζ = qi] = Pi, the information equation, defined
in the form

I(P) = −logb(P) = logb

(
1
P

)
, (40)

relates the degree of information associated to a particular event, represented by I(P), and
the associated probability P that this event may occur. The amount of information in a
random message ζ is given by Shannon information entropy [70], defined as

H(ζ) :=
n

∑
i=1
Pi Ii(Pi) =

n

∑
i=1
Pilogb

(
1
Pi

)
. (41)

In more precise terms, in information theory, H(ζ) represents the average number of
bits needed to encode a random message. For every random variable ζ distributed on a set
of n values, Shannon’s entropy obeys the inequality

0 ≤ H(ζ) ≤ 1/n . (42)

H(ζ) = 0 occurs if and only if a distribution is concentrated at one point, and
H(ζ) = 1/n, if and only if the distribution is uniform. From the point of view of the
corresponding interpretation, in information theory, a minimum entropy corresponds to
the maximum probability that a certain event occurs, whereas a maximum entropy occurs
when all probabilities of all outcomes have equal quantified values, more precisely, as 1/n.
This conception of information theory reinforces the idea that the entropy at the beginning
of the Universe is close to zero and cannot be null since, according to the Bekenstein cri-
terion, it would be impossible for singularities to occur, from a thermodynamic point of
view. Recalling that the Bekenstein criterion imposes that the initial state of the Universe is
unique, therefore, in a probabilistic conception, the primordial state of the Universe would
fit the case of minimum entropy as theorized in the theory of information. In the process
of the formation of a black hole, the catalyzed conversion of a pure quantum state to a
mixed state occurs, in contradiction with the principle of unitary quantum evolution, thus
causing loss of information. To reach a value close to zero, the thermodynamic entropy
decreases in the contraction phase, consequently increasing in the expansion phase. This
realization has led to the “information paradox”, a topic that has been the scene of fierce
conceptual disputes.
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According to Quantum Mechanics, however, the information content of isolated sys-
tems is conserved. On the other hand, entropy subadditivity seems to describe information
overload when examining single components of a composite system and their correlations
in the case where we disregard the intrinsic quantum information encoded in the coherence
of pure states. To overcome this gap, by introducing the concept of coherent entropy, neces-
sary to account for the “missing” information, it is possible to restore its conservation [71].
Furthermore, coherent entropy is equal to the information transmitted in the future by
the quantum states. These concepts, when translated into the quantum-evolutionary de-
scription of the cosmic wave function, indicate that this asymmetric behavior finds, in
information theory, a safe harbor to indicate that the informational content of the branch-
cut Universe does not change in time when we consider the phases of contraction and
expansion in an associated integrated manner.

From the point of view of the last information transmitted from the contraction sector
to the expansion sector, associated with the boundary conditions, imagining that the
temporal parametric propagation takes place in the direction of the transition region, the
results displayed in Figure 4 indicate that this information is preserved. Despite the last
transmitted information, in view of the boundary conditions, Ψ(−1) = −1 and Ψ(1) = 1,
corresponding to the quantum leap between the phases that separate the early Universe
and the present Universe, which could seem to imply non-conservation of information, the
values of the probability densities corresponding to the two phases of the wave function of
the Universe, |Ψ(±1)| = 1, coincide, thus implying the confirmation of this conservation.10

The conservation of the last information referring to the contraction and expan-
sion phases would not be confirmed, apparently, in a preliminary view of the results
of Figures 5 and 6 since the apex of the amplitudes of the wave functions corresponding to
the contraction phase of the early Universe do not correspond to the starting point of the
amplitudes in the expansion regions of the present Universe. This is because, due to the
structure of the non-commutative differential equations, the starting point of the solution in
the expansion phase in Figure 5 corresponds to a null value, while in Figure 6, the opposite
result occurs. Similar results occur for positive values of gs.

However, these results, in light of classical branch-cut gravitation, require further
analysis. The classic BCG view, as we stated earlier, describes a smooth Universe with
a fine-tuned transition region circumscribing the contraction and the expansion phases,
purely geometric in nature, that replaces the cosmological singularity. The results obtained
through the imposition of the Bekenstein criterion contemplate two interpretations, one
from the classical point of view and the other from the quantum point of view. The classical
view would indicate, as we also stated earlier, that the primordial singularity is replaced by
a family of Riemann foliation sheets that depict the branched cosmic scale factor ln−1[β(t)]
shrinking to a finite critical size, shaped by the range, foliation regularization, and domain
extension function β(t). Moreover, as we saw in [7], the range of this function extends
beyond the Planck dimensions, representing a gateway, from the classical point of view, of
all the information contained in the evolutionary process of the Universe traversing from
the contraction to the expansion phases, generating a communication channel between the
primordial Universe and the present one, serving as a source of primordial seeds.

From this point of view, it would be essential to reconcile BCG’s classical and quantum
views and establish a minimal length consistent with the Planck dimensions, and this
compatibility process would indicate that, from the point of view of information theory,
Figures 5 and 6 seem to indicate, unlike what is well established by Quantum Mechanics,
that information in the present case is not conserved, being generated, or lost, in the
transition process between the contraction and expansion phases depending on the values,
in this case, of the crucial parameter γ in the modeling of the non-commutative branch-cut
algebraic formulation. However, to deepen this issue, it is necessary to go back to the step
of introducing new variables, η and ξ, with a view to solving the wave equation of the
Universe Ψ(η, ξ) described in terms of the separated components Ψ(η) and Ψ(ξ), implying,
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let us say, two linearly independent random variables, represented by ζ and ς, which obey
the requirements of a joint conditional information entropy

H(ζ, ς) :=
n

∑
i=1

m

∑
j=1
Pi,j Ii,j(Pi,j) =

n

∑
i=1

m

∑
j=1
Pi,jlogb

(
1
Pi,j

)
. (43)

The conditional entropy is a measure of how much uncertainty remains about the random
variables ζ and ς.

With respect to the Bekenstein bound, a topic that has aroused permanent discussions
in the search for compatibility between General Relativity and Quantum Gravitation, an
interesting path, within the scope of the formulation of non-commutative BCG, would
be to resort, as carried out, for example, by the authors of [72], to a modified/extended
version of the Heisenberg uncertainty relation, in light of quantum gravity, to accommodate
gravitational effects close to the Planck scale. This is a crucial problem, still open in the
domain of quantum gravity.

Bekenstein’s universal upper bound of a localized quantum system establishes that

S ≤ 2πkBRE
h̄c

, (44)

with E representing the total energy of a system enclosed in a circumference with surface
area A and radius R. Assuming a particle in a nutshell with mass m, characterized by a
wave packet of spatial size R and linear momentum p = E/c (see, for instance, [72]), from
expression (44) the following uncertainty relation can be defined:

∆S∆E .
2πkB

h̄c
∆R
(
∆E
)2 → ∆S∆E .

2πkB
h̄c

(
∆R∆E

)2

∆R
; (45)

where, since the motion of the particle is unknown a priori, the following assumptions
∆p ' px ' ∆E/c and ∆x ' R, as the uncertainty on its position, were adopted. From
Equations (44) and (45), we obtain

∆S∆E .
2πkB

h̄c

(
∆R∆E

)2

∆R
' 2πkBc2

h̄c

(
∆x∆p

)2

∆x
. (46)

This expression, in combination with the Generalized Heisenberg Uncertainty Principle
(GHUP), may be recast as

∆S∆E .
2πkBc2

h̄c

(
∆x∆p

)2

∆x
&

2πkBc2

h̄c
1

∆x
h̄2

4

[
1 + θ

(
∆p
mc

)2]
' πkB h̄c

2∆x

[
1 + θ

(
∆p
mc

)2]
, (47)

where θ is a parameter that describes the scale at which quantum-gravitational effects
become relevant. From this expression, the regime ∆p ' mc results in

∆S∆E .
h̄c
2

πkB
(
1 + θ

)
√

θ`P
, (48)

in which
√

θ represents the minimum scale in the non-commutative space-time algebra, so
the minimum observable GHUP length is assumed as ∆x ∼

√
θ`P.

Figure 7 outlines three different perspectives for the transition region between the
contraction and expansion phases of branched gravitation. The figure on the left presents a
sketch of the classical view in which the Bekenstein criterion would shape the dimensions
of the “transition portal”. The middle figure sketches the quantum view in which the
Bekenstein criterion shapes the region contemplating a quantum leap. The figure on the
right shapes a conception still under construction in which both previous conceptions
consistently intersect, in which Bekenstein’s criterion shapes both regions. This conception
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would imply the possibility of accessing distances typical of the Planck scale, and at the
same time would allow seeds from the contraction phase to flow into the expansion phase.
This would imply, however, that a small but finite amount of entropy or information
can be packed into a region of the Planck dimensions needed to cover the primordial
singularity, thus reconciling the classical view of BCG predictions with the micro-structure
of space-time.

Figure 7. The figure outlines three different perspectives for the transition region between the
contraction and expansion phases of branched gravitation: on the left is the classical view in which
Bekenstein criterion would shape the dimensions of the “transition portal”; in the middle is the
quantum view in which the Bekenstein criterion shapes the region contemplating a quantum leap;
on the right is a conception in which both previous conceptions consistently intersect, in which
Bekenstein criterion shapes both regions. Figure produced with Tikz by one of the authors (CAZV).

8. Conclusions

General Relativity is described in terms of a commutative space-time geometry, while
Quantum Mechanics is described in terms of non-commutative algebras generated by
position and momentum or energy and time operators satisfying canonical commutation
relations. Understanding how to reconcile General Relativity with the concepts of Quantum
Mechanics represents a challenge for a consistent quantum theory of gravity, as it involves
replacing the geometric structures that underlie General Relativity with non-commutative
algebraic structures.

One way to approximate the classical continuous description of General Relativity with
Quantum Mechanics is to introduce space-time deformation quantization. In this approach,
points no longer exist and are replaced by Planck cells by inserting the Poisson tensor
Θµν(x) into the standard theory. As a consequence, the commutator operation involving
coordinate functions, in the leading order in the deformation parameter λ, reads [73,74]

[xµ, xν] = iλΘµν(x) +O(λ2) . (49)

According to the authors of [73,74], coordinate uncertainty relations may have implica-
tions in the quantum micro-structure of space-time, smoothing out ultraviolet divergences,
preventing gravitational collapse, and even allowing black hole formation only at scales
larger than the Planck length.

Recently, in a non-commutative quantum mechanical approach based on the Seiberg–
Witten map, the authors of [75] proposed a parametrization scheme that associates non-
commutative parameters with the Planck length and the cosmological constant. As a
result, they discovered that non-commutativity introduces an effective gauge field in
the Schrödinger and Pauli equations, which breaks translation and rotational symme-
tries in the non-commutative phase-space, leading to the generation of intrinsic quantum
fluctuation effects.
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Moreover, in accordance with the uncertainty principle of Quantum Mechanics, quan-
tum vacuum fields may possess an immense amount of energy. According to the equiv-
alence principle of General Relativity, this energy must gravitate, producing significant
gravitational effects. Consequently, fluctuations in the quantum vacuum, intrinsically
associated with a non-commutative algebraic structure, could potentially serve as a cause
for the expansion of the Universe. This aspect of cosmic acceleration served as the primary
motivation for the study conducted based on the Hořava–Lifshitz theory and branch-cut
gravitation. The study developed a formalism grounded in the non-commutativity of a
“mini-superspace” of variables obeying Poisson’s algebra.

Following a similar line of investigation, Massimiliano Rinaldi [76] proposes a novel
scenario in which the inflationary phase is not driven by a classical scalar field, as introduced
by Alan Guth [77,78], but rather by a non-commutative structure of space-time, whose
dynamics are governed by quantum effects encoded in the expectation value of the stress
tensor. Rinaldi introduces an inflationary scenario expressed in terms of coherent states of
non-commutative quantum field theory [76]. The inspiration for this formulation is drawn
from the work in [79], where it was demonstrated that the study of dispersion relations,
involving a maximal momentum or, more precisely, a minimum Compton wavelength
(quantum of space), could lead to inflation as the radiation temperature surpasses the
Planck temperature. Rinaldi’s formulation, in turn, is based on the concept that the non-
commutative structure of space-time naturally regulates the divergent ultraviolet behavior
of the propagator. Consequently, the stress tensor for matter fields should be finite in
the UV domain. The results of this approach indicate the presence of a minimal length,
which primarily contributes to smearing off the expectation value of the quantum stress
tensor. Additionally, this formulation affects the acceleration behavior of the scale factor
a(t) of standard cosmology and cosmic density. A noteworthy point of comparison with
branch-cut gravity pertains to the density of the Universe, which is no longer singular. As
a result, it becomes possible to extend the analysis to include the pre-Big Bang scenario
of string cosmology, allowing time to extend from −∞ and +∞ [76]. Furthermore, the
analysis of the number of e-folds related to the asymptotic behavior of the scale factors
a(∓∞) yielded a value of N = 60 [76], which corresponds to eN = e60 e-folds. This result
can be contrasted with the number of folding branches ( f b) to achieve causality in BCG,
which is estimated to be approximately N[ f b]

BCG ∼ 1061 [6].
Similarly to the findings presented in the work of Rinaldi [76], in the context of BCG

non-commutative quantum cosmology, the inflationary phase is not driven by a classical
scalar field [77,78]. Instead, it arises from the non-commutative structure of space-time,
governed by quantum effects encoded in the Hamiltonian structure of the model. This
quantum influence is explicitly manifested through the presence of a parametric non-
commutative algebra.

The main outcomes of our approach suggest that the wave function of the Universe,
as a function of the branch-cut scale factor, may exhibit, in addition to a wave-like behavior,
systematically, amplitude decreasing in the contraction phase, and amplitude increasing
during the expansion phases as well as a frequency increase. This intriguing behavior
stems from the imposition of non-commutativity in a mini space-time superspace of vari-
ables obeying Poisson algebra. The implications of the non-commutative algebra can be
visualized in the solutions of the wave function of the Universe, indicating in the expan-
sion phase, a dynamical acceleration driven by a force whose work can be hypothetically
synthesized in an expression of the type W = −p f dV, where p f represents the strength of
the pressure in the expanding region. This force may be originated, as the behavior of the
potential V(η) suggests, by the reconfiguration of matter in the early Universe due to the
algebraic structure of the non-commutative geometry, by means of an asymmetric potential,
that sets up the presence of primordial matter. The non-commutative algebraic structure
captures the short-distance properties of space-time, with notable implications for the
dynamical evolution of the branch-cut Universe. In short, our results indicate that Planck
scale effects are encoded in the non-commutative group manifold structure, implying not
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only an effective dimensional space-time reduction but also a reconfiguration of matter and
fields, which in turn drives the acceleration of the Universe.

An interesting aspect concerns whether this type of inflation modeling may be com-
pleted in late times and then the reheating process can be carried out. The answer to this
question currently lacks strong elements for its understanding. In the original version of
the inflationary model, inflation is completed by a first-order phase transition, in which
the Universe decays from its false vacuum state by bubble nucleation. In the first stage
of reheating, vacuum energy is converted into kinetic energy for the bubble walls. Here,
the expanding Universe is not created out of nothing, emerging instead from a previous
stage, of contraction, with a transition region modeled by a smooth topological branch-
cut structure of continuously connected Riemann surfaces with a new scale parameter,
ln−1[β(t)], analytically continued to the complex plane, the unique dynamical variable
of the theory, stratified into hypersurfaces restricted to leaves of a Riemann foliation. A
damping mechanism that causes this kind of inflation to be finalized and a later time
reheating process to be realized represents an interesting challenge to be addressed in
future studies.
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Notes
1 ln−1[β(t)] represents the inverse of ln[β(t)] and β(t) represents a regularization function that identifies the range and cuts of the

helix-like cosmological factor in branched gravitation [10].
2 N(t) does not represent a dynamical quantity; instead, it denotes a pure gauge variable.
3 Bekenstein’s criterion is understood here as a kind of criterion of truth [21], a measure of the truthfulness and reliability of our

knowledge of the limits of validity of the model [7,22]
4 General Relativity is recovered in the limit λ→ 1, which corresponds to the full diffeomorphism invariance [19]
5 The canonical quantization Dirac procedure applied to the Einstein–Hilbert action results in a second-order functional differential

equation defined in general terms in a configuration superspace, whose solutions depend on a three-dimensional metric and on
matter fields [37–40]. Among the different quantization methods, the canonical quantization procedure allows the preservation
of the original formal structure of a classical theory, as well as its symmetries and corresponding underlying conservation laws.

6 to simplify notation, the hat symbol is not used in the operators û and p̂u, or in most equations involving the time-dependent
variable û.

7 The coincidence problem refers to the initial conditions necessary to produce the quasi-coincidence of the densities of matter and
quintessence in the current stage of the Universe [46,47].

8 Because the variables u and v commute, so do ũ, and ṽ. Inspecting Equation (8), this implies that σ is set to zero.
9 It is important to remember that the parameter χ that complements the proposed algebraic structure is implicitly inserted in the

variables η and ξ.
10 We draw attention to the fact that the difference in scales of the contraction and expansion phases of Figure 4 requires careful

analysis to confirm these statements.



Universe 2023, 9, 428 22 of 24

References
1. Einstein, A. Die Grundlage der Allgemeinen Relativitätstheorie. Ann. Phys. 1916, 49, 769–822. [CrossRef]
2. Hawking, S.W.; Hertog, T.J. A Smooth Exit from Eternal Inflation? High Energ. Phys. 2018, 04, 147. [CrossRef]
3. Zen Vasconcellos, C.A.; Hadjimichef, D.; Razeira, M.; Volkmer, G.; Bodmann, B. Pushing the Limits of General Relativity Beyond

the Big Bang Singularity. Astron. Nachr. 2019, 340, 857–865. [CrossRef]
4. Zen Vasconcellos, C.A.; Hess, P.O.; Hadjimichef, D.; Bodmann, B.; Razeira, M.; Volkmer, G.L. Pushing the Limits of Time Beyond

the Big Bang Singularity: The branch cut universe. Astron. Nachr. 2021, 342, 765–775. [CrossRef]
5. Zen Vasconcellos, C.A.; Hess, P.O.; Hadjimichef, D.; Bodmann, B.; Razeira, M.; Volkmer, G.L. Pushing the Limits of Time Beyond

the Big Bang Singularity: Scenarios for the branch-cut Universe. Astron. Nachr. 2021, 342, 776–787. [CrossRef]
6. Bodmann, B.; Zen Vasconcellos, C.A.; de Freitas Pacheco, J.; Hess, P.O.; Hadjimichef, D. Causality and the Arrow of Time in the

Branch-cut Cosmology. Astron. Nachr. 2022, 344, e220086. [CrossRef]
7. de Freitas Pacheco, J.; Zen Vasconcellos, C.A.; Hess, P.O.; Hadjimichef, D.; Bodmann, B. Branch-cut Cosmology and the Bekenstein

Criterion. Astron. Nachr. 2022, 344, e220070. [CrossRef]
8. Zen Vasconcellos, C.A.; Hess, P.O.; de Freitas Pacheco, J.; Hadjimichef, D.; Bodmann, B. The Branch-cut Cosmology: Evidences

and open questions. Astron. Nachr. 2022, 344, e20220079. [CrossRef]
9. Hess, P.O.; Zen Vasconcellos, C.A.; de Freitas Pacheco, J.; Hadjimichef, D.; Bodmann, B. The Branch-cut Cosmology: A topological

canonical quantum-mechanics approach. Astron. Nachr. 2022, 344, e20220101. [CrossRef]
10. Bodmann, B.; Zen Vasconcellos, C.A.; Hess, P.O.; de Freitas Pacheco, J.A.; Hadjimichef, D.; Razeira, M.; Degrazia, G.A. A

Wheeler–DeWitt Quantum Approach to the Branch-Cut Gravitation with Ordering Parameters. Universe 2023, 9, 278. [CrossRef]
11. Manders, K. Domain Extension and the Philosophy of Mathematics. J. Philos. 1989, 86, 553–562. [CrossRef]
12. Dirac, P.A.M. Complex Variables in Quantum Mechanics. Proc. R. Soc. A 1937, 160, 48–59.
13. Aharonov, Y.; Bohm, D. Significance of Electromagnetic Potentials in the Quantum Theory. Phys. Rev. 1959, 115, 485–491.

[CrossRef]
14. Wu, K.-D.; Kondra, T.V.; Rana, S.; Scandolo, C.M.; Xiang, G.-Y.; Li, C.-F.; Guo, G.-C.; Streltsov, A. Operational Resource Theory of

Imaginarity. Phys. Rev. Lett. 2021, 126, 090401. [CrossRef] [PubMed]
15. Hess, P.O.; Greiner, W. Pseudo-complex General Relativity. Int. J. Mod. Phys. E 2009, 18, 51–77. [CrossRef]
16. Hess, P.O.; Schäfer, M.; Greiner, W. Pseudo-Complex General Relativity; Springer International Publishing: Cham, Switzerland, 2016.
17. Hess, P.O.; Greiner, W. Pseudo-Complex General Relativity: Theory and observational consequences. In Centennial of General

Relativity: A Celebration; Zen Vasconcellos, C.A., Ed.; World Scientific Publishing Co.: Singapore, 2017; p. 97.
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[CrossRef]
37. DeWitt, B.S. Quantum Theory of Gravity. I. The Canonical Theory. Phys. Rev. 1967, 160, 1113. [CrossRef]
38. Hartle, J.B.; Hawking, S.W. Wave function of the Universe. Phys. Rev. D 1983, 28, 2960. [CrossRef]
39. Hawking, S.W. The Boundary Conditions of the Universe. Pontif. Acad. Sci. Scr. Varia 1982, 48, 563.
40. Lukasz, A.G. Novel Solution of Wheeler-DeWitt theory. Appl. Math. Phys. 2014, 2, 73–81.
41. Rovelli, C. The Strange Equation of Quantum Gravity. Class. Quantum Gravity 2015, 32, 124005. [CrossRef]
42. Rovelli, C. The Order of Time; Riverhead Books: New York, NY, USA, 2019.
43. Rovelli, C. Quantum Gravity; Cambridge University Press: Cambridge, UK, 2004.
44. Rovelli, C.; Smerlak, M. Classical and Quantum Gravity Thermal Time and Tolman–Ehrenfest Effect: ‘Temperature as the speed

of time’. Class. Quantum Gravity 2011, 28, 075007. [CrossRef]
45. Maeda, K.-i.; Misonoh, Y.; Kobayashi, T. Oscillating Bianchi IX Universe in Hořava-Lifshitz Gravity. Phys. Rev. D 2010, 82, 064024.
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D 2017, 96, 126013. [CrossRef]
65. Sheikhahmadi, H.; Aghamohammadi, A.; Saaidi, K. Non-commutative and Commutative Vacua Effects in a Scalar Torsion

Scenario. Phys. Lett. B 2015, 749, 231–235. [CrossRef]
66. Piscicchia, K.; Addazi, A.; Marcianò, A.; Bazzi, M.; Cargnelli, M.; Clozza, A.; De Paolis, L.; Del Grande, R.; Guaraldo, C.; Iliescu,

M.A.; et al. Experimental Test of Noncommutative Quantum Gravity by VIP-2 Lead. Phys. Rev. D 2023, 107, 026002. [CrossRef]
67. Witten, E. Non-commutative Geometry and String Field Theory. Nucl. Phys. B 1986, 268, 253–294. [CrossRef]
68. Dolan, L.; Nappi, C.R. Strings and Noncommutativity. arXiv 2003, arXiv:hep-th/0302122.
69. Andriot, D.; Tsimpis, D.; Wrase, T. Accelerated Expansion of an Open Universe, and String Theory Realizations. arXiv 2023,

arXiv:2309.03938.
70. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]

http://dx.doi.org/10.1002/asna.201512218
http://dx.doi.org/10.3390/universe8040237
http://dx.doi.org/10.1103/PhysRev.160.1113
http://dx.doi.org/10.1103/PhysRevD.28.2960
http://dx.doi.org/10.1088/0264-9381/32/12/124005
http://dx.doi.org/10.1088/0264-9381/28/7/075007
http://dx.doi.org/10.1103/PhysRevD.82.064024
http://dx.doi.org/10.1103/PhysRevLett.80.1582
http://dx.doi.org/10.1103/PhysRevLett.82.896
http://dx.doi.org/10.1016/j.physletb.2010.04.007
http://dx.doi.org/10.1007/s10714-019-2577-3
http://dx.doi.org/10.1088/0264-9381/23/11/013
http://dx.doi.org/10.1016/0550-3213(86)90478-5
http://dx.doi.org/10.1016/j.physletb.2020.135712
http://dx.doi.org/10.1088/1742-6596/174/1/012053
http://dx.doi.org/10.1103/PhysRevD.83.064021
http://dx.doi.org/10.1142/S0218271809014376
http://dx.doi.org/10.1088/1742-6596/24/1/023
http://dx.doi.org/10.1142/S0218271817500110
http://dx.doi.org/10.1016/j.physletb.2010.03.016
http://dx.doi.org/10.1103/PhysRevD.84.044005
http://dx.doi.org/10.1007/JHEP05(2012)144
http://dx.doi.org/10.1142/S0218271817500225
http://dx.doi.org/10.1140/epjp/i2017-11398-7
http://dx.doi.org/10.1103/PhysRevD.96.126013
http://dx.doi.org/10.1016/j.physletb.2015.07.075
http://dx.doi.org/10.1103/PhysRevD.107.026002
http://dx.doi.org/10.1016/0550-3213(86)90155-0
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x


Universe 2023, 9, 428 24 of 24

71. Roncaglia, M. On the Conservation of Information in Quantum Physics. Found. Phys. 2019, 49, 1278. [CrossRef]
72. Buoninfante, L.; Luciano, G.G.; Petruzziello, L.; Scardigli, F. Bekenstein Bound and Uncertainty Relations. Phys. Lett. B 2022,

824, 136818. [CrossRef]
73. Doplicher, S.; Fredenhagen, K.; Roberts, J.E. Spacetime Quantization Induced by Classical Gravity. Phys. Lett. B 1994, 331, 39–44.

[CrossRef]
74. Doplicher, S.; Fredenhagen, K.; Roberts, J.E. The Quantum Structure of Space-time at the Planck Scale and Quantum Fields.

Commun. Math. Phys. 1995, 172, 187–330. [CrossRef]
75. Shi-Dong, L.; Matthew, J.L. An Introduction to Noncommutative Physics. Physics 2023, 5, 436–460.
76. Rinaldi, M. A New Approach to Non-commutative Inflation. Class. Quantum Grav. 2011, 28, 105022. [CrossRef]
77. Guth, A.H. Inflationary Universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347. [CrossRef]
78. Guth, A.H. Inflation. In Carnegie Observatories Astrophysics Series, Vol. 2: Measuring and Modeling the Universe; Freedman, W.L., Ed.;

Cambridge University Press: Cambridge, MA, USA, 2004; pp. 1–22.
79. Alexander, S.; Brandenberger, R.; Magueijo, J. Noncommutative Inflation. Phys. Rev. D 2003, 67, 081301. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10701-019-00304-9
http://dx.doi.org/10.1016/j.physletb.2021.136818
http://dx.doi.org/10.1016/0370-2693(94)90940-7
http://dx.doi.org/10.1007/BF02104515
http://dx.doi.org/10.1088/0264-9381/28/10/105022
http://dx.doi.org/10.1103/PhysRevD.23.347
http://dx.doi.org/10.1103/PhysRevD.67.081301

	Introduction
	Classical BCG Approach
	 Non-Commutative Quantum Gravity
	Commutative Quantum BCG Approach
	Non-Commutative Quantum BCG Approach
	Friedmann-Type Branch-Cut Equations
	Boundary Conditions

	Solutions for the Wave Function of the Universe
	Discussion of the Results
	Conclusions
	References

