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Abstract: This paper studies dispersive bright and dark optical solitons, modeled by the Schrödinger–
Hirota equation, numerically by the aid of the Adomian decomposition. The surface plots of the
algorithm yielded an impressively small measure. The effects of soliton radiation are ignored.
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1. Introduction

There are multiple models that study the dynamics of dispersive optical solitons that
propagate through an optical fiber. A few such models are the Fokas–Lenells equation,
cubic-quartic solitons; pure-quartic solitons, pure-cubic solitons, and highly dispersive
solitons. The Schrödinger–Hirota equation (SHE) will be used to explain the dynamics of
dispersive optical solitons in today’s presentation. This equation is derived from the main
governing equation that is studied in nonlinear optics, namely the nonlinear Schrödinger’s
equation (NLSE) in the presence of a third-order dispersion and other Hamiltonian type
perturbations. To derive SHE, one needs to apply Lie transform to the NLSE and ignore
the higher order terms which would eventually lead to SHE. This derivation has been
discussed previously [1]. The nonlinear form of the refractive index that would be taken
into consideration is the Kerr type that is alternatively known as the cubic type. Additional
research work related to the present study can be found in [2–4].

This work is a numerical study of SHE that is conducted using the Adomian decom-
position method (ADM). To this effect, SHE is first split into three operators, namely the
temporal derivative, the linear operator, and the nonlinear operator. Subsequently, the
Adomian polynomials are constructed. Finally, the Laplace transform is carried out for
each of the components and then added. The final solution structure is obtained by taking
the inverse Laplace transform recursively for each component and taking its N-component
finite sum. The test examples were carried out for both bright and dark solitons. It must
be noted that the adverse effect such as soliton radiation as well as the slow-down effect
of solitons are neglected here so that the focus is on the core soliton. The error plots were
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finally constructed and gave an impressive error measure that is of the order of 10−8. The
detailed scheme and the soliton surface plots are discussed in the subsequent sections of
this manuscript.

2. Schrödinger–Hirota Equation

The Schrödinger–Hirota equation (SHE) with Kerr law nonlinearity in dimensionless
form is written as [1,5–10]:

iqt + aqxx + c|q|2q + i(γqxxx + σ|q|2qx) = 0, (1)

where q(x, t) stands for the complex-valued wave profile and qt is its linear temporal
evolution. Furthermore, in Equation (1) a represents the group velocity dispersion (GVD), c
is the Kerr law nonlinearity coefficient, γ is the coefficient of third order dispersion (3OD),
σ is the coefficient of nonlinear dispersion and i is the imaginary unit. The dynamics
of dispersive optical solitons propagating over long-range optical fibers are modeled by
Equation (1), such as the ones used for inter-oceanic or intercontinental telecommunications.

3. Bright and Dark Solitons for the Governing Equation (1)
3.1. Bright Solitons

The bright soliton solution to (1) investigated by the trial equation method in [11] is
given by

q(x, t) = A1 sech[B1(x− νt)]× exp{i(−κx + ωt + θ)}, (2)

where the parameters of the soliton are obtained from the coefficients of Equation (1) and
are given by

A1 =

√
2(ω + aκ2 + γκ3)

c + κσ
, (3)

B1 =

√
ω + aκ2 + γκ3

κ2(a + 3γκ)
, (4)

the physical parameters κ, ω and ν are real numbers such that

(c + κσ)(ω + aκ2 + γκ3) > 0, (5)

and
(a + 3γκ)(ω + aκ2 + γκ3) > 0. (6)

3.2. Dark Solitons

In the same study made by the authors in [11], the dark soliton solution to (1) is given by

q(x, t) = A2 tanh[B2(x− νt)]× exp{i(−κx + ωt + θ)}, (7)

where the parameters of the soliton are obtained from the coefficients of Equation (1) and
are given by

A2 =

√
ω + aκ2 + γκ3

c + κσ
, (8)

B2 =

√
−(ω + aκ2 + γκ3)

2κ2(a + 3γκ)
, (9)

the physical parameters κ, ω and ν are real numbers such that

(c + κσ)(ω + aκ2 + γκ3) > 0, (10)
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and
(a + 3γκ)(ω + aκ2 + γκ3) < 0. (11)

4. The Laplace Transform Combined with the Adomian Decomposition Method

In this section we will briefly develop the well-known Adomian decomposition
method and demonstrate its improvement resulting from the method’s combination with
the Laplace transform [12,13]. The development is focused on achieving both bright and
dark solitons for the SHE model (1).

In general, using operators we can write Equation (1) as

Dtq(x, t) + Rq(x, t) + Nq(x, t) = 0, (12)

subject to the initial condition
q(x, 0) = f (x), (13)

where Dtq = iqt is the usual time derivation operator, Rq is a linear differential operator,
which in our case turns out to be

Rq(x, t) = aqxx + iγqxxx, (14)

while Nq is a nonlinear operator, which acts as a

Nq(x, t) = c|q|2q + iσ|q|2qx. (15)

According to the standard Adomian decomposition method, the solution q can be expanded
in an infinite series as follows:

q(x, t) =
∞

∑
n=0

qn(x, t), (16)

and the nonlinear term series

Nq(x, t) =
∞

∑
n=0

Pn(q0, . . . , qn), (17)

where each of the Pn is an Adomian polynomial [14].
In the case of the nonlinear operator given in Equation (15), we can decompose it as

Nq(x, t) = N1q(x, t) + N2q(x, t), (18)

where
N1q = c|q|2q, N2q = iσ|q|2qx, (19)

both N1 and N2 can be decomposed into infinite series of Adomian polynomials given by:

N1q = c|q|2q =
∞

∑
n=0

An(q0, q1, . . . , qn), (20)

N2q = iσ|q|2qx =
∞

∑
n=0

Bn(q0, q1, . . . , qn). (21)

where An as Bn symbolizes the Adomian polynomials, which will be calculated by means
of the formulas established in [15], that is,

An(q0, q1, . . . , qn) =

{
N1(q0), n = 0
1
n ∑n−1

k=0 (k + 1)qk+1
∂

∂q0
An−1−k, n = 1, 2, 3, . . . (22)
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and

Bn(q0, q1, . . . , qn) =

{
N2(q0), n = 0
1
n ∑n−1

k=0 (k + 1)qk+1
∂

∂q0
Bn−1−k, n = 1, 2, 3, . . . (23)

From now on L will denote the Laplace transform and L −1 its inverse operator. Then
applying L on both sides of the operational Equation (12) we have

L {Dtq(x, t) + Rq(x, t) + Nq(x, t)} = 0, (24)

and making use of the initial condition, which will be derived from the initials profiles of
the solitons f , we obtain

L {q(x, t)} = 1
s

f (x)− 1
s
(
L {Rq(x, t)}+L {Nq(x, t)}

)
. (25)

Substituting Equations (16)–(17) into Equation (25) gives

L
{ ∞

∑
n=0

qn(x, t)
}
=

1
s

f (x)− 1
s

(
L
{

R
( ∞

∑
n=0

qn(x, t)
)}

+L
{ ∞

∑
n=0

Pn(q0, . . . , qn)
})

. (26)

Considering the process of decomposition in the Adomian polynomials (18)–(21) we obtain

L
{ ∞

∑
n=0

qn(x, t)
}
=

1
s
(

f (x)−L
{

R
( ∞

∑
n=0

qn(x, t)
)}
−L

{ ∞

∑
n=0

[
An(q0, . . . , qn) + Bn(q0, . . . , qn)

]})
. (27)

Matching both sides of Equation (27), we obtain the Laplace transform of each of the
components of the solution, that is

L {q0(x, t)} = 1
s

f (x) (28)

and for every m ≥ 1, the recursive relations are given by

L {qm(x, t)} = −1
s
(
L {Rqm−1(x, t)}+L {Am−1(q0, . . . , qn) + Bm−1(q0, . . . , qn)}

)
. (29)

Now let us compute some Adomian polynomials, for this purpose let us consider the
nonlinear operators N1 and N2 on q appearing in Equation (19) and by using formulas (22)
and (23), we obtain

A0 = cq2
0q̄0,

A1 = c(q̄1q2
0 + 2q̄0q1q0),

A2 = c(q̄2q2
0 + q̄0q2

1 + 2q̄0q2q0 + 2q̄1q1q0),

A3 = c(q̄3q2
0 + q̄1q2

1 + 2q̄2q1q0 + 2q̄1q2q0 + 2q̄0q3q0 + 2q̄0q1q2),

A4 = c(q̄4q2
0 + q̄2q2

1 + q̄0q2
2 + 2q̄3q1q0 + 2q̄2q2q0 + 2q̄1q3q0 + 2q̄0q4q0 + 2q̄1q1q2 + 2q̄0q1q3),

...
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B0 = iσ(q0q̄0q0x),

B1 = iσ(q1q̄0q0x + q0q̄1q0x + q0q̄0q1x),

B2 = iσ(q2q̄0q0x + q1q̄1q0x + q0q̄2q0x + q1q̄0q1x + q0q̄1q1x + q0q̄0q2x),

B3 = iσ(q3q̄0q0x + q2q̄1q0x + q1q̄2q0x + q0q̄3q0x + q2q̄0q1x + q1q̄1q1x + q0q̄2q1x + q1q̄0q2x

+ q0q̄1q2x + q0q̄0q3x),

B4 = iσ(q4q̄0q0x + q3q̄1q0x + q2q̄2q0x + q1q̄3q0x + q0q̄4q0x + q3q̄0q1x + q2q̄1q1x + q1q̄2q1x

+ q0q̄3q1x + q2q̄0q2x + q1q̄1q2x + q0q̄2q2x + q1q̄0q3x + q0q̄1q3x + q0q̄0q4x),

...

and so on for other Adomian polynomials.
Finally, considering the inverse Laplace transform L −1, the components q0, q1, q2, . . .

, are then determined recursively by:

q0(x, t) = f (x),
q1(x, t) = −L −1( 1

s L {Rq0(x, t)}+ 1
s
[
L {A0(q0, . . . , qn) + B0(q0, . . . , qn)}

])
,

q2(x, t) = −L −1( 1
s L {Rq1(x, t)}+ 1

s
[
L {A1(q0, . . . , qn) + B1(q0, . . . , qn)}

])
,

...
qm(x, t) = −L −1( 1

s L {Rqm−1(x, t)}+ 1
s
[
L {Am−1(q0, . . . , qn) + Bm−1(q0, . . . , qn)}

])
, m ≥ 1.

(30)

where q0 is referred to as the zero-th component.
Now, the solution functions q in the Laplace-Adomian decomposition algorithm are

extracted as

q(x, t) =
∞

∑
i=0

qi(x, t). (31)

Convergence of the Algorithm

The solution given above is a series that quickly and uniformly converges to the exact
solution. To validate the convergence of the series (31), we will employ a strong important
functional analysis result. For sufficient convergence conditions of the proposed technique,
we demonstrate the following theorem and its application in the previous algorithm.

Theorem 1. Let B be a Banach space and T : B → B be a contractive nonlinear operator such
that for all x, y ∈ B, ||T(x)− T(y)|| ≤ β||x− y||, 0 < β < 1. Consequently, using the Banach
contraction principle, T has a unique point x such that T(x) = x.

The series presented in (31) may be expressed using the Adomian decomposition
technique as follows:

qn = T(qn−1), qn−1 =
n−1

∑
i=1

qi, n ≥ 1, (32)

and assume that q0 ∈ Vr(q) where Vr(q) = {z ∈ B : ||q′ − q|| < r}, therefore, we have

(a) qn ∈ Vr(q),
(b) lim

n→∞
qn = q.

Proof. To prove (a), by the first step of mathematical induction, i.e., if n = 1, we have

||q0 − q|| = ||T(q0)− T(q)|| ≤ β||q0 − q||.

Now suppose that the result is true for n− 1, then

||q0 − q|| ≤ βn−1||q0 − q||.
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we have
||qn − q|| = ||T(qn−1)− T(q)|| ≤ β||qn−1 − q|| ≤ βn||q0 − q||.

Therefore, we have
||qn − q|| ≤ βn||q0 − q|| ≤ βnr < r,

hence it follows that qn ∈ Vr(q).
To prove (b), according to the fact that lim

n→∞
βn = 0 and that also ||qn − q|| ≤ βn||q0 −

q||. Therefore, we have
lim

n→∞
||qn − q|| = 0,

wich implies that
lim

n→∞
qn = q.

For the above, the N− term approximate solution of the power series (31) is given by

SN =
N

∑
i=0

qi(x, t). (33)

For more details about the convergence of the method, see [16–18].

In the next section, we will perform the numerical simulation for the calculation of
optical solitons for Equation (1) in order to show the high degree of accuracy and efficiency
of the algorithm obtained from LADM.

5. Numerical Simulations of Solitons for Equation (1)

The numerical simulation results are carried out by using the Mathematica software
and the results obtained will be shown graphically.

5.1. Bright Highly Dispersive Optical Soliton

We now consider the initial condition at t = 0 from Equation (2):

f (x) = A1 sech(B1x)× exp{i(−κx + θ)}, (34)

We will carry out the simulation for three cases with the parameters given in Table 1 and
the results obtained are shown graphically in Figures 1–3.

Table 1. Coefficients of Equation (1) to simulate bright solitons.

Cases a c γ σ N |Max Error|

1 0.52 0.80 0.08 1.16 14 2.5× 10−8

2 0.63 1.22 0.95 2.44 14 1.2× 10−8

3 1.32 1.90 1.75 0.45 15 8.0× 10−9

Figure 1. 3D, 2D and absolute error graphics for Case 1.
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Figure 2. 3D, 2D and absolute error graphics for Case 2.

Figure 3. 3D, 2D and absolute error graphics for Case 3.

5.2. Dark Highly Dispersive Optical Soliton

We now consider the initial condition at t = 0 from Equation (7):

f (x) = A2 tanh(B2x)× exp{i(−κx + θ)}, (35)

We will carry out the simulation for three cases with the parameters given in Table 2 the
results obtained are shown graphically in Figures 4–6.

Table 2. Coefficients of Equation (1) to simulate dark solitons.

Cases a c γ σ N |Max Error|

4 0.32 1.05 0.35 3.33 14 1.2× 10−8

5 0.83 0.88 0.05 1.29 14 1.7× 10−8

6 0.90 1.20 1.23 0.87 14 1.0× 10−8

Figure 4. 3D, 2D and absolute error graphics for Case 4.

Figure 5. 3D, 2D and absolute error graphics for Case 5.
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Figure 6. 3D, 2D and absolute error graphics for Case 6.

6. Conclusions

The results of the current paper display a visual effect of the dynamics of dispersive
optical solitons that emerge from SHE. In this context, both bright and dark solitons are
taken into consideration. Dispersive bright and dark optical solitons are modeled in this
paper by using SHE with the Kerr law of nonlinear refractive index change, and these
solitons are simulated numerically. The scheme is from the Laplace ADM algorithm that is
presented. The error measure is impressively small which enabled the display of almost
perfect surface plots of these solitons. The effects of soliton radiation are not included and
thus the slow-down of solitons due to third-order dispersive effects is not reflected in the
numerical schemes.

This work and the results presented here pave the way for future research to take
place. These are to be extended to birefringent fibers, followed by an extension to DWDM
topology. These simulations are in the work and the results will be subsequently and
sequentially disseminated. Another feature to think about is the formation of quiescent
solitons that come from the fact that the CD is rendered to be nonlinear for SHE. This aspect
will be reported on further down the road.
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