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Abstract: For the efficient identification of quantum states, we propose the notion of linear canonical
wavelet transform in the framework of quantum mechanics. Using the machinery of Dirac represen-
tation theory and integration within an ordered product of operators, we recast the linear canonical
wavelet transform to a matrix element of the squeezing–displacing operator U (µ, s)KM between
analyzing vector 〈ψ| and two-mode quantum state vector | f 〉 to be transformed. We also derive the
inner product relation and inversion formula for the linear canonical wavelet transform in the realm
of quantum mechanics. Lastly, we present an explicit example for the lucid implementation of linear
canonical wavelet transform in identifying the quantum states.

Keywords: wavelet; linear canonical transform; quantum states; Dirac representation; inversion
formula

1. Introduction

The linear canonical transform (LCT) is a powerful analytical tool that embodies
numerous integral transforms, such as the classical Fourier, fractional Fourier, Lorentz, and
Fresnel transforms [1,2]. Mathematically, the linear canonical transform of any univariate
function f ∈ L2(R) with respect to the parametric matrix M = (A, B, C, D) is defined as

LM
[

f
]
(x, p) =

∫
R

f (x)KM(x, p) dx, (1)

where the LCT kernel KM(x, p) is given by

KM(x, p) =
1√

2πiB
exp

{
−i
2B
(

Ax2 − 2xp + Dp2)}, B 6= 0. (2)

The LCT is more flexible than other transforms due to the additional degrees of
freedom and its simple geometrical manifestation, rendering it appropriate for investigat-
ing complex problems in sampling, optics, filter design, image processing, and quantum
mechanics [3–5]. In quantum theory, these transforms are identified as the linear transfor-
mations that preserve the canonical commutation relations characterizing the coordinates
and momenta operators as invariant [6]. They enable us to solve some classical problems
and give us a clue to the quantisation of classical systems. In fact, they play a pivotal
role in obtaining the solution of the Schrödinger equation or the Hamilton–Jacobi systems,
which provides a bridge between classical and quantum mechanics [7]. By employing
Dirac’s symbolic method, a detailed correspondence between the quantum-optical and
classical-optical transformations was briefly discussed in [8].

Universe 2022, 8, 477. https://doi.org/10.3390/universe8090477 https://www.mdpi.com/journal/universe

https://doi.org/10.3390/universe8090477
https://doi.org/10.3390/universe8090477
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0002-9277-8092
https://orcid.org/0000-0001-8461-869X
https://orcid.org/0000-0002-8952-2002
https://doi.org/10.3390/universe8090477
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe8090477?type=check_update&version=2


Universe 2022, 8, 477 2 of 11

Wavelet transform is a substantial and potent time–frequency tool for analyzing non-
transient signals and has been used in a number of disciplines, including signal processing,
image processing, sampling theory, differential and integral equations, quantum mechanics,
and medicine [9]. For any f ∈ L2(R), the wavelet transform of f with respect to analyzing
wavelet ψ ∈ L2(R) is defined by

Wψ

[
f
]
(µ, s) =

1
√

µ

∫
R

f (x)ψ

(
x− s

µ

)
dx, µ ∈ R+, s ∈ R. (3)

In the framework of quantum mechanical states, Fan et al. [10,11] employed Dirac’s
symbolic method to recast the wavelet transform (1) as a matrix element of the squeezing–
translating operator between the mother wavelet state vector

〈
ψ
∣∣ and the state vector

| f
〉

to be transformed. Subsequently, Hu and Fan [12] investigate the quantum wavelet
transform, and established Parseval’s inversion formulae by using the Dirac delta rep-
resentation theory. This entangled–coherent state representation not only underlies the
symplectic dilation mixed wavelet transform, but also helps in the formulation of the
corresponding quantum transform operator, whose counterpart in classical optics is the
lens-Fresnel mixed transform [13,14]. Song and his colleagues further developed this area
in a series of articles where they presented a few novel representations of the classical
wavelet transform in terms of different quantum chemical states by employing the bipartite
entangled state representations and the technique of integration within an ordered product
of operators [15–18].

The wavelet transform has been substantially important in capturing the local char-
acteristics of nonstationary signals and has paved its way in diverse fields of science and
engineering. However, the wavelet transform fails miserably to localize signals whose
energy is weakly concentrated in the frequency domain, such as ubiquitous chirplike sig-
nals [19]. For the efficient analysis of such signals, it is both theoretically interesting and
practically beneficial to intertwine the linear canonical and wavelet transforms by replacing
the global kernel KM(x, p) appearing in (1) with a generalized family of wavelets ψM

µ,s(x),
where M = (A, B, C, D) is the real unimodular matrix. Given a real unimodular matrix
M = (A, B, C, D), the linear canonical wavelet transform of any f ∈ L2(R) is defined as

WM
ψ

[
f
]
(µ, s) =

1
√

µ

∫
R

f (x)ψ

(
x− s

µ

)
KM(x, p) dx, µ ∈ R+, s ∈ R, (4)

where KM(x, p) is given by (2). Integral Transform (4) inherits the excellent mathematical
properties of the traditional wavelet and linear canonical transforms along with some of its
own fascinating properties [20–22].

On the flip side, the development of quantum wavelet transforms have allowed for
widespread applications in different aspects of signal and image processing, including
quantum watermarking schemes and image formats that use them to extract the decompo-
sitional coefficients from a quantum image. Quantum processing tools have outperformed
the conventional signal processing method, mainly due to the exorbitantly high processing
and storage capacities. Keeping in view the good properties of the wavelet transform and
the extra degrees of freedom of the linear canonical transforms, we are deeply motivated to
study the linear canonical transform (4) in the context of quantum states. More precisely,
we recast the linear canonical wavelet transform (4) in terms of the matrix elements of the
squeezing–displacing operator U (µ, s)KM between generalized mother wavelet vector

〈
ψ
∣∣

and state vector | f
〉

to be transformed by using the machinery of Dirac delta representation
theory and integration within an ordered product of operators. Using the framework of
quantum mechanics, we were able to derive the inner product relation and inversion for-
mula for the linear canonical wavelet transform, which led us to a new orthogonal property
of the linear canonical wavelets in the parameter space. We culminate our study by carrying
out the numerical calculation of the linear canonical wavelet transform spectrum for the
binomial state.
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The rest of the article is structured as follows: Section 2 is concerned with the prelim-
inary aspects of the linear canonical and wavelet transforms in the context of quantum
mechanics. In Section 3, we present the quantum representation of the linear canonical
wavelet transform and derive the corresponding inner product and inversion formulae. In
Section 4, we establish the normal ordering of the linear canonical wavelet transform and
carry out the numerical calculation. Some potential applications of the linear canonical
wavelet transform are given in Section 5. Lastly, a conclusion is in Section 6.

2. Preliminaries

In this section, we give a brief overview of the conventional wavelet and linear canoni-
cal transforms in the context of quantum mechanics and their momentum representations.
We first present an overview of quantum mechanics.

Quantum mechanics offers a conceptual and mathematical framework for the cre-
ation of physical theories and laws. As a result, one requires four axioms to establish a
relationship between the real world and quantum mechanics, namely, state, observables,
measurements, and dynamics. A “state” is a mathematical representation of the physical
notion of a system’s state, and “observables” represent a physical system’s observable
property that can theoretically be measured by self-adjoint operators. “Measurements”
are described by a collection {Mn} of measurement operators that act on the state space
of the system being measured. For instance, if the state of the quantum system is |ψ >
immediately before the measurement, the probability that result m occurs is given by
P(n) =< ψ|M†

n Mn|ψ >, with completeness equation ∑n M†
n Mn = 1. Lastly, in “dynamics”,

a unitary transformation can be used to describe how a closed quantum system evolves.
State |ψ > of the system at time t1 is related to the state |ψ′ > of the system at time t2 by a
unitary operator U that depends only on the times t1 and t2; that is, |ψ′ >= U|ψ > . These
axioms provide a perfectly acceptable general formulation of the quantum theory. Further
reading on the foundation of quantum mechanics can be found in [23].

The Dirac representation of any function f (x) can be written as 〈x| f 〉, where | f 〉 is
the wave function of the state, and 〈x| the eigenstate of coordinate X. In Fock space,

∣∣x〉 is
expressed as

∣∣x〉 = π−1/4 exp

[
− x2

2
+
√

2xa† − a†2

2

]∣∣0〉, X
∣∣x〉 = x

∣∣x〉, X =
a + a†
√

2
, (5)

where |0〉 is the vacuum state annihilated by Bose annihilation operator a, a|0〉 = 0, and
[a, a†] = 1. Using the integration within an ordered product technique, Wavelet Trans-
form (3) of any square integrable signal f with respect to the mother wavelet ψ can be
recast as

Wψ

[
f
]
(µ, s) =

〈
ψ
∣∣U (µ, s)

∣∣ f〉, (6)

where
〈
ψ
∣∣ is the bra vector corresponding to mother wavelet ψ,

∣∣ f 〉 is the state to be
transformed, and

U (µ, s) =
1√
|µ|

∫
R

dx

∣∣∣∣∣ x− s
µ

〉〈
x
∣∣ (7)

is the squeezing–translating operator. An application of the the normal product form of
vacuum projector |0〉〈0| =: exp (−a†2

a) together with the technique of integration within
an ordered product yields

U (µ, s) = K exp

[
− a†2

2
tanh λ− a†2

√
2

sec hλ

]
exp

[
a†a log sec hλ

]
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× exp

[
a2

2
tanh λ− as√

2µ
sec hλ

]
. (8)

For s = 0, Relation (7) reduces to squeezing operator

U (µ, 0) =
1√
|µ|

∫
R

dx

∣∣∣∣∣ x
µ

〉〈
x
∣∣ = exp

[
λ(a2 − a†2

)

2

]
, µ = eλ, (9)

which maps classical dilation x/µ to the single-mode squeezing operator.
Similarly, the momentum eigenstate

∣∣p〉 of P is given by

∣∣p〉 = π−1/4 exp

[
− p2

2
+ i
√

2pa† +
a†2

2

]
|0〉, P

∣∣p〉 = p
∣∣p〉, P =

a− a†

i
√

2
. (10)

Consequently, the momentum eigenstate of squeezing translating operator U (µ, s)
becomes

U (µ, s) =
√
|µ|
∫
R

eisp∣∣µp
〉〈

p
∣∣ dp = exp

[
λ(a2 − a†2

)

2

]
eisP, (11)

where exp
{

λ(a2 − a†2
)/2
}

is the squeezing operator, and eisP is the displacing operator.
Therefore, the momentum representation of Wavelet Transform (3) becomes

Wψ f (µ, s) =
√
|µ|
∫
R

dpeisp〈ψ∣∣µp
〉〈

p
∣∣ f 〉. (12)

Next, we express the linear canonical transform (1) in the realm of quantum mechanics.
Since LCT kernel KM(x, p) given by (2) is just a transition amplitude from position x to
position p, in the framework of quantum states, we can rewrite it as

KM(x, p) =
〈

p
∣∣KM

∣∣x〉. (13)

LCT operator KM appearing on R.H.S (13) can be obtained by operating the complete-
ness conditions ∫

R
dp
∣∣p〉〈p

∣∣ = 1, and
∫
R

dx
∣∣x〉〈x

∣∣ = 1, (14)

of coherent states on the both sides of LCT Kernel (13). Upon implementing the integration
within ordered product and noticing that the normal ordering form of vacuum state

projector
∣∣0〉〈0∣∣ =: e−aa†

and
〈

p
∣∣e (iπa†a)

2 =
〈

x
∣∣
x=p , we can express LCT operator KM

appearing on R.H.S (13) as

KM =:

√
2(

(A + D) + i(B− C)
) exp

[
a2((D− A) + i(B + C)

)
2
(
(A + D) + i(B− C)

) ]

: exp

[
a†a
( iπ

2
+

2(
(A + D) + i(B− C)

) − 1
)]

: exp

[
(a†)2((A− D) + i(B + C)

)
2
(
(A + D) + i(B− C)

) ]

= C1 : exp
[

a†a
( iπ

2
+ C2

)]
: C3 (15)
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where

C1 =

√
2(

(A + D) + i(B− C)
) , C2 =

2(
(A + D) + i(B− C)

) − 1 and

C3 = exp

[
(a†)2((A− D) + i(B + C)

)
2
(
(A + D) + i(B− C)

) ]
.

We summarize the above discussion in the following definition of the linear canonical
transform in the context of quantum mechanics.

Definition 1. Given a real, unimodular matrix M = (A, B, C, D), the quantum linear canonical
transform of any signal

〈
x
∣∣ f 〉 is defined by

LM
[

f
]
(p) =

〈
p
∣∣KM

∣∣ f〉, (16)

where KM is the LCT operator given by (15).

The inversion formula corresponding to (16) is given by

f (x) = L −1
(
LM

[
f (x)

]
(p)
)
(x) =

∫
R

dp
〈

x
∣∣K†

M
∣∣p〉〈p

∣∣KM
∣∣ f 〉. (17)

3. Quantum Representation of the Linear Canonical Wavelet Transform

In this section, we introduce the notion of linear canonical wavelet transform in the
framework of quantum states. We also establish an orthogonality formula between two
signals and their respective linear canonical wavelet transforms. As a consequence of this
formula, we can deduce the resolution of identity for the proposed linear canonical wavelet
transform. We lastly derive the inversion formula for the proposed transform.

Having formulated the quantum representation of classical Wavelet Transform (6)
and Linear Canonical Transform (16), we now introduce the formal definition of the linear
canonical wavelet transform in the context of quantum states.

Definition 2. Given a real, unimodular matrix M = (A, B, C, D), the quantum linear canonical
wavelet transform of any function

〈
x
∣∣ f 〉 with respect to mother wavelet ψ is defined by

WM
ψ

[
f
]
(µ, s) =

〈
ψ
∣∣U (µ, s)KM

∣∣ f〉, (18)

where U (µ, s)KM is the generalized linear canonical wavelet operator given by

U (µ, s)KM =
√
|µ|
∫
R

dp eisp∣∣µp
〉〈

p
∣∣C1 exp

[
a†a
(

iπ
2

+ C2

)]
C3, (19)

and C1, C2 and C3 have the usual meanings.

Definition 2 allows for he following comments:
(i). For parametric set M = (0, 1,−1, 0), Transform (18) boils down to the existing

classical wavelet transforms:

WM
ψ

[
f
]
(µ, s) =

〈
ψ
∣∣ e−iπ/4 U (µ, s)

∣∣ f〉, (20)

(ii). For parametric set M = (cos θ, sin θ,− sin θ, cos θ), Linear Canonical Wavelet
Transform (18) reduces to the joint fractional wavelet transform [18]:

WM
ψ

[
f
]
(µ, s) =

〈
ψ
∣∣ e−iθ/2 ea†a

( iπ
2 +e−iθ−1

)
U (µ, s)

∣∣ f〉, (21)



Universe 2022, 8, 477 6 of 11

Theorem 1 (Inner Product Relation). LetWM
ψ

[
f
]
(µ, s) andWM

ψ

[
g
]
(µ, s) be the linear canon-

ical wavelet transforms of
〈

x
∣∣ f 〉 and

〈
x
∣∣g〉, respectively, with respect to the analysing wavelet ψ

and real uni-modular matrix M = (A, B, C, D). Then, we have∫
R

dµ

µ2

∫
R

dsWM
ψ [ f ](µ, s)

(
WM

ψ [g](µ, s)
)
= 4π Cψ

〈
g
∣∣ f 〉, (22)

where Cψ is the admissibility condition given by

Cψ =
∫
R

dp

(∣∣〈p
∣∣ψ〉∣∣
p

)
< ∞. (23)

Proof. By invoking the completeness property
∫
R

dp
∣∣p〉〈p

∣∣ = 1 along with

∫
R

ds U†(µ, s)
∣∣p′〉〈p

∣∣U(µ, s) = 2πB δ(p− p′)
∣∣∣ p′

µ

〉〈 p
µ

∣∣∣,
where δ(p− p′) =

∫
R

dx exp
{

ix(p− p′)
}

, we obtain

∫
R

dµ

µ2

∫
R

dsWM
ψ [ f ](µ, s)

(
WM

ψ [g](µ, s)
)∗

=
∫
R

dµ

µ2

∫
R

ds
〈

ψ
∣∣U (µ, s)KM

∣∣ f〉〈g
∣∣K†

M U †(µ, s)
∣∣ψ〉

=
∫
R

dµ

µ2

∫
R

ds
∫
R

dp
∫
R

dp′
〈
ψ
∣∣p〉〈p

∣∣U (µ, s)KM
∣∣ f〉〈g

∣∣K†
M U †(µ, s)

∣∣p′〉〈p′
∣∣ψ〉

=
∫
R

dµ

µ2

∫
R

dp
∫
R

dp′
〈
ψ
∣∣p〉〈p′

∣∣ψ〉∣∣ f 〉〈g
∣∣ ∫

R
dsU (µ, s)KM

∣∣p′〉〈p
∣∣K†

M U †(µ, s)

= 2πB
∫
R

dµ

µ2

∫
R

dp
∫
R

dp′
〈
ψ
∣∣p〉〈p′

∣∣ψ〉δ(p− p′)
∣∣ f 〉〈g

∣∣∣ p′

µ

〉〈 p
µ

∣∣∣
= 2πB

∫
R

dµ

µ2

∫
R

dp
〈
ψ
∣∣∣ p
µ

〉〈 p
µ

∣∣∣ψ〉〈g
∣∣p〉〈p

∣∣ f 〉
= 2πB

∫
R

dp
∫ 0

−∞

dµ

µ2

〈
ψ
∣∣∣ p
µ

〉(〈
ψ
∣∣∣ p
µ

〉)∗〈
g
∣∣p〉〈p

∣∣ f 〉
+2πB

∫
R

dp
∫ ∞

0

dµ

µ2

〈
ψ
∣∣∣ p
µ

〉(〈
ψ
∣∣∣ p
µ

〉)∗〈
g
∣∣p〉〈p

∣∣ f 〉
= 2πB

∫
R

dp
∫ ∞

0

dµ

µ

∣∣∣〈(−µp)
∣∣ψ〉∣∣∣2〈g

∣∣p〉〈p
∣∣ f 〉

+2πB
∫
R

dp
∫ ∞

0

dµ

µ

∣∣∣〈(µp)
∣∣ψ〉∣∣∣2〈g

∣∣p〉〈p
∣∣ f 〉

= 2πB
∫
R

dp Cψ

〈
g
∣∣p〉〈p

∣∣ f 〉+ 2πB
∫
R

dp Cψ

〈
g
∣∣p〉〈p

∣∣ f 〉
= 4πBCψ

∫
R

dp
∣∣p〉〈p

∣∣〈g
∣∣ f 〉

= 4πB Cψ

〈
g
∣∣ f 〉,

where Cψ =
∫ ∞

0

dµ

µ

∣∣∣〈(−µp)
∣∣ψ〉∣∣∣2 ≡ ∫ ∞

0

dp
p

∣∣∣〈p
∣∣ψ〉∣∣∣2 < ∞ is admissibility condition.

This completes the proof of Theorem 1.
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Corollary 1. For
∣∣ f 〉 = ∣∣g〉, Orthogonality Relation (22) yields

∫
R

dµ

µ2

∫
R

ds
∣∣∣WM

ψ [ f ](µ, s)
∣∣∣2 = 4πB Cψ

〈
f
∣∣ f 〉. (24)

Remarks: (i). Identity (24) is called the energy-preserving relation; thus, Linear Canoni-
cal Wavelet Transform (18) is an isometry from the space of signals to the space of transforms
with Cψ = 1.

(ii). For
∣∣ f 〉 = ∣∣x〉 and

∣∣g〉 = ∣∣x′〉, Relation (22) implies that

∫
R

dµ

µ2

∫
R

dsWM
ψ [x](µ, s)

(
WM

ψ [x′](µ, s)
)∗

=
∫
R

dµ

µ2

∫
R

ds
〈

ψ
∣∣U (µ, s)KM

∣∣x〉〈x′
∣∣K†

M U †(µ, s)
∣∣ψ〉

= 2πB
∫
R

dµ

µ2

∫
R

ds
〈

ψ
∣∣U (µ, s)

∣∣x〉〈x′
∣∣U †(µ, s)

∣∣ψ〉
= 4πB Cψ

〈
x
∣∣x′〉

= 4πB Cψ δ(x− x′). (25)

(ii). If
∣∣ f 〉 = ∣∣g〉 = ∣∣n〉, a number state with

〈
n
∣∣n〉 = 1 then (22) becomes

∫
R

dµ

µ2

∫
R

ds
∣∣∣WM

ψ [n](µ, s)
∣∣∣2 = 4πB Cψ. (26)

This implies that constant Cψ is state-independent.
The next theorem guarantees the reconstruction of the input signal from the corre-

sponding quantum Linear Canonical Wavelet Transform (18).

Theorem 2 (Inversion Formula). Any state
〈

f
∣∣ can be reconstructed from the corresponding

linear canonical wavelet transformWM
ψ [ f ](µ, s) via the following formula:

〈
x
∣∣ f 〉 = 1

4πB Cψ

∫
R

dµ

µ2√µ

∫
R

ds
〈 x− s

µ

∣∣∣ψ〉K†
MWM

ψ [ f ](µ, s). (27)

Proof. We have〈
x
∣∣U †(µ, s)K†

M =
〈

x
∣∣∣ 1√
|µ|

∫
R

dx′
∣∣∣x′〉 〈 x′ − s

µ

∣∣∣K†
M =

1√
|µ|

〈 x− s
µ

∣∣∣K†
M. (28)

An application of Orthogonality Relation (22) along with (28) and taking
〈

g
∣∣ = 〈

x
∣∣,

we obtain

4πB Cψ

〈
x
∣∣ f 〉 = ∫

R

dµ

µ2

∫
R

dsWM
ψ [ f ](µ, s)

(〈
ψ|U (µ, s)KM

∣∣x〉)∗
=
∫
R

dµ

µ2

∫
R

dsWM
ψ [ f ](µ, s)

∣∣ψ〉〈x
∣∣U †(µ, s)K†

M

=
∫
R

dµ

µ2

∫
R

dsWM
ψ [ f ](µ, s)

∣∣ψ〉 1√
|µ|

〈 x− s
µ

∣∣∣K†
M

=
∫
R

dµ

µ2
√
|µ|

∫
R

dsWM
ψ [ f ](µ, s)

∣∣ψ〉〈 x− s
µ

∣∣∣K†
M .

Equivalently,

〈
x
∣∣ f 〉 = 1

4πB Cψ

∫
R

dµ

µ2√µ

∫
R

ds
〈 x− s

µ

∣∣∣ψ〉K†
MWM

ψ [ f ](µ, s).
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This completes the proof of Theorem 2.

4. An Example

In this section, we visualize how Linear Canonical Wavelet Transform (18) can be
implemented for better analyzing and identifying quantum states. To facilitate this, we
derive the normal ordering form of Linear Canonical Operator (19). We observe that

〈
p
∣∣ exp

[
a†a
( iπ

2
+ C2

)]
= π−1/4

〈
0
∣∣ exp

[
− p2

2
+
√

2pa e C2 − a2

2
e C2

]
.

The normal ordering of Linear Canonical Wavelet Operator (19) can be obtained by
employing the technique of integration within an ordered product of operators as

U (µ, s) exp
[

a†a
(

iπ
2

+ C2

)]
=
√
|µ|
∫
R

dp eisp∣∣µp
〉〈

p
∣∣ exp

[
a†a
(

iπ
2

+ C2

)]
=

√
|µ|
π

∫
R

dp eisp exp

[
−µ2 p2

2
+ i
√

2µpa† +
a†2

2

]∣∣0〉
×
〈

0
∣∣ exp

[
− p2

2
+
√

2pa e C2 − a2

2
e C2

]
=

√
|µ|
π

∫
R

dp exp
[
−p2 (µ

2 + 1)
2

+ p
(

is + i
√

2µa† −
√

2ae2 C2
)]

× exp

[
−a†a +

a†2

2
− a2e C2

2

]

=

√
|µ|
π

exp

[
−a†a +

a†2

2
− a2e C2

2

]√
2π

(µ2 + 1)
exp

[(
is + i

√
2µa† −

√
2ae2 C2

)2

2(µ2 + 1)

]

=

√
2|µ|

(µ2 + 1)
exp

[
a†2

(1− µ2)− 2
√

2sµa†

2(µ2 + 1)
+

(1− µ2)a2e2 C2 − s2 + 2
√

2isae C2

2(1 + µ2)

]

× exp

[
a†a

(
2iµe2 C2

(µ2 + 1)
− 1

)]
.

Setting A = cosh ξ + cos θ sinh ξ, B = sin θ, C = sin θ sinh ξ, D = cosh ξ− cos θ sinh ξ,

µ = eλ, sech λ = 2µ

1+µ2 , and tanh ξ = µ2+1
µ2−1 , we obtain

C1 =
√

sech ξ exp
[

a2

2
(
− e−iθ tanh ξ

)]
, C2 = sech ξ, and C3 = exp

[
a†

2
(
eiθ tanh ξ

)]
.

Therefore, the normal ordering form of Unitary Operator (19) follows

U (µ, s)KM =
√

sech ξ exp
[

a2

2
(
− e−iθ tanh ξ

)]
×
√

λ exp

[
a†a
(
λe2 sech ξ − 1

)
+

a†2

2 tanh λ
− λsa†
√

2

]

× exp

[
a2e2 sechξ

2 tanh ξ
− s2

2(1 + e2λ)
+

√
2isae sech ξ

1 + e2λ

]
exp

[
a†

2
(
eiθ tanh ξ

)]
. (29)

For the demonstration of the quantum Linear Canonical Wavelet Transform (18) and
its implementation, we present an illustrative example.
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Example 1. Consider the second derivative of Gaussian function〈
x
∣∣ψ〉 = (1− x2) e−x2/2, (30)

which satisfies admissibility condition Cψ =
∫ ∞

0
dp

∣∣ψ(p)
∣∣2

p
=

1
2

. Then, the corresponding state

vector in Fock space is given by

∣∣ψ〉 = π1/4

2

(
1− a†2

)∣∣0〉. (31)

Using the normal Ordering (29) of Unitary Operator (19), the vacuum state
∣∣0〉 of the

linear canonical wavelet transform can be obtained as〈
ψ
∣∣U (µ, s)KM

∣∣0〉
=:
〈
ψ
∣∣√ sech ξ exp

[
a2

2
(
− e−iθ tanh ξ

)]√
λ exp

[
a†a
(
λe2 sech ξ − 1

)
+

a†2

2 tanh λ
− λsa†
√

2

]

× exp

[
a2e2 sech ξ

2 tanh ξ
− s2

2(1 + e2λ)
+

√
2isae sech ξ

1 + e2λ

]
exp

{
a†

2
(
eiθ tanh ξ

)}∣∣0〉
=

π1/4

2
(1− a2)

〈
0
∣∣√λ sech ξ

× exp
[

a2

2
(
− e−iθ tanh ξ

)]
exp

{
a†a
(
λe2 sech ξ − 1

)
+

a†2

2 tanh λ
− λsa†
√

2

}

× exp

[
a2e2 sechξ

2 tanh ξ
− s2

2(1 + e2λ)
+

√
2isae sech ξ

1 + e2λ

]
exp

[
a†

2
(
eiθ tanh ξ

)]∣∣0〉
=

π1/4

2
(1− a2)

√
λ sech ξ exp

[
a2

2
(
− e−iθ tanh ξ

)]
× exp

[
a†a
(
λe2 sech ξ − 2

)
+

a†2

2 tanh λ
− λsa†
√

2

]

× exp

[
a2e2 sech ξ

2 tanh ξ
− s2

2(1 + e2λ)
+

√
2isae sech ξ

1 + e2λ

]
exp

[
a†

2
(
eiθ tanh ξ

)]
. (32)

Similarly, single-particle state |1〉 of the linear canonical wavelet transform is given by

〈
ψ
∣∣U (µ, s)KM

∣∣1〉
=:

π1/4

2
(1− a2)

〈
0
∣∣√λ sech ξ exp

[
a2

2
(
− e−iθ tanh ξ

)]
× exp

[
a†a
(
λe2 sech ξ − 1

)
+

a†2

2 tanh λ
− λsa†
√

2

]

× exp

[
a2e2 sech ξ

2 tanh ξ
− s2

2(1 + e2λ)
+

√
2isae sech ξ

1 + e2λ

]
exp

[
a†

2
(
eiθ tanh ξ

)]∣∣1〉. (33)

5. Potential Application

The wavelet transforms play a vital tool in many fields, including information retrieval,
signal coding, watermarking, compression, and encryption; however, it is not suitable
for lossless applications and is often computationally complex. In contrast to this, at the
quantum level, the wavelet transform leads to greatly improved computational efficiency
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for both univariate and multivariate signals. As such, the development of the quantum
wavelet transform has also allowed for diversified applications across different fields,
including quantum watermarking schemes and image formats that use them to extract
decomposition coefficients from a quantum image. Through simulations, these schemes
outperform some traditional watermarking ideas. Additionally, quantum encryption, data
compression, and image denoising based on quantum wavelet transform show better visual
quality than some classical methods do. In view of the fact that the linear canonical wavelet
transform is much more reliable than the classical wavelet transform, the underlying quan-
tum mechanical variant is of utmost importance in different aspects of signal processing,
such as quantum image processing, quantum data compression, quantum encryption,
denoising, and information retrieval. The present study also stimulates interest in future
developments, including the formulation of fast algorithms and efficient circuits for the
linear canonical quantum wavelet transform. This can be achieved by assuming an efficient
quantum circuit for a given wavelet kernel and starting with a high-level description of the
packet and pyramid algorithms to analyze the feasibility and efficiency of the implementa-
tion of the packet and pyramid algorithms by using the given wavelet kernel. Other areas
of interest include the development of quantum algorithms for signal decomposition and
lossless compression.

6. Conclusions

In the present article, we introduced the notion of a kernel-based linear canonical
wavelet transform in the framework of quantum mechanics besides recasting the proposed
transform in terms of the matrix element of squeezing translating operator U (µ, s)KM
between generalized vector 〈ψ| and state vector | f 〉 to be transformed. Moreover, we
established the inner product and inversion formula for the linear canonical wavelet
transform by virtue of Dirac representation theory and integration within an ordered
product of operators. Lastly, an example was presented for identifying the quantum states,
and some potential applications were given.
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