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Abstract: We derived astroparticle constraints in different dark matter scenarios that are alternatives
to cold dark matter (CDM): thermal relic warm dark matter, WDM; fuzzy dark matter, ψDM; self-
interacting dark matter, SIDM; sterile neutrino dark matter, νDM. Our framework is based on updated
determinations of the high-redshift UV luminosity functions for primordial galaxies to redshift z ∼ 10,
on redshift-dependent halo mass functions in the above DM scenarios from numerical simulations,
and on robust constraints on the reionization history of the Universe from recent astrophysical and
cosmological datasets. First, we built an empirical model of cosmic reionization characterized by
two parameters, namely the escape fraction fesc of ionizing photons from primordial galaxies, and
the limiting UV magnitude Mlim

UV down to which the extrapolated UV luminosity functions steeply
increased. Second, we performed standard abundance matching of the UV luminosity function
and the halo mass function, obtaining a relationship between UV luminosity and the halo mass,
whose shape depends on an astroparticle quantity X specific to each DM scenario (e.g., WDM
particle mass); we exploited such a relationship to introduce (in the analysis) a constraint from
primordial galaxy formation, in terms of the threshold halo mass above which primordial galaxies
can efficiently form stars. Third, we performed Bayesian inference on the three parameters fesc,
Mlim

UV, and X via a standard MCMC technique, and compared the outcomes of different DM scenarios
on the reionization history. We also investigated the robustness of our findings against educated
variations of still uncertain astrophysical quantities. Finally, we highlight the relevance of our
astroparticle estimates in predicting the behavior of the high-redshift UV luminosity function at faint,
yet unexplored magnitudes, which may be tested with the advent of the James Webb Space Telescope.

Keywords: cosmic reionization; dark matter; galaxy formation

1. Introduction

Many astrophysical probes and cosmological experiments have firmly established that
most of the matter content of the Universe is dark, i.e., is constituted by particles suffering
very weak or negligible interactions with baryons apart from long-range gravitational
forces. However, so far, such dark matter (DM) particles have escaped firm detection, both
in colliders [1–3] and from direct [4,5] or indirect [6–9] searches in the sky.

The standard paradigm envisages DM to be constituted by weakly interacting particles
(such as supersymmetric neutralinos or gravitinos) with masses in the GeV range [10]. Such
a form of DM is said to be cold, meaning that particles are non-relativistic at the epoch
of decoupling and feature negligible free-streaming1. As a consequence, bound cold DM
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(CDM) structures, called halos, grow sequentially in time and hierarchically in mass by
stochastically merging together [11,12].

On large, cosmological scales, such a picture is remarkably consistent with the data,
and most noticeably with microwave background detection experiments [13]. However, on
galactic and subgalactic scales, the CDM hypothesis has been challenged by various issues,
including: the flat shape of the inner density profiles in DM-dominated dwarfs with respect
to the steep behavior measured in the halos of N-body simulations [14,15]; the discrepancy
between the number and dynamical properties of observed Milky Way satellites with
respect to those of subhalos in gravity-only simulations [16,17]; the emergence of tight
relationships between properties of the dark and luminous components in disc-dominated
galaxies, such as the universal core surface density or the radial acceleration relation [18,19],
which may be indicative of a new dark sector and/or of non-gravitational coupling between
DM particles and baryons. One possible explanation for the above effects invokes physical
processes that can cause violent fluctuations in the inner gravitational potential and/or the
transfer of energy and angular momentum from the baryons to DM, such as dynamical
friction [20,21] or feedback effects from stars and active galactic nuclei [22–24].

An alternative, perhaps more fascinating solution is to abandon the CDM hypothesis
and look at nonstandard particle candidates [25–27]. A few examples often considered
in the literature and relevant for the present paper include: thermal warm dark matter
(WDM) relics with masses∼ a few keVs [28–30]; fuzzy or particle-wave dark matter (ψDM),
i.e., Bose–Einstein condensates of ultralight axions with masses & 10−22 eV [31,32]; self-
interacting dark matter (SIDM) mediated by a massive dark photon decaying to a light–dark
fermion [33–35]; non-thermally produced sterile neutrinos dark matter (νDM) with the
keV-scale mass, and given lepton asymmetry [36–38]. As a consequence of free-streaming,
quantum pressure effects, and/or dark-sector interaction, all these scenarios produce a
matter power spectrum suppressed on small scales, fewer (sub)structures, and flatter
inner density profiles within halos relative to CDM [33,35,39–45]. Indirect astrophysical
constraints on the properties of such nonstandard DM scenarios, and especially of thermal
WDM relics, have been obtained by investigating the Lyman-α forest [29,46,47], high-
redshift galaxy counts [48–51], γ-ray bursts [52,53], cosmic reionization [54–57], integrated
21cm data [58–61], γ-ray emission [62,63], fossil records of the Local Group [64,65], and
Milky Way satellite galaxies [66–68].

The present paper will mainly focus on the constraints to DM that can be derived from
cosmic reionization. This is the process by which the intergalactic medium has transitioned
again to an ionized state (it was already fully ionized before the epoch of recombination,
when the Universe was younger than 380,000 years) due to the radiation from the first
astrophysical sources, such as primordial galaxies and AGNs. Reionization constitutes
a natural bridge between galaxy formation and the underlying cosmological model; in
a nutshell, the basic argument runs as follows. The history of cosmic reionization, as
reconstructed from cosmological and astrophysical observations, can be exploited to gauge
the level of the ionizing background from primordial galaxies, and in turn (although with
some assumptions to be discussed next) to probe their number densities. Such galaxies
are faint and tend to live within small halos so that their numbers can inform us about the
shape of the halo mass distribution and of the power spectrum at the low mass end, which
is sensitive to the microscopic properties of the DM particles.

More specifically, in the present paper, we aimed to obtain revisited and additional
astroparticle constraints for the aforementioned DM scenarios (WDM, ψDM, SIDM, and
νDM) by combining different ingredients: (i) updated measurements of the high-redshift
UV luminosity functions for primordial galaxies out to redshift z ∼ 10; (ii) precision
determination of the redshift-dependent halo mass functions in different DM scenarios
from numerical simulations; (iii) recent constraints on the reionization history of the
Universe from astrophysical and cosmological probes. Such ingredients were exploited
to build an empirical model of cosmic reionization to be compared with the data. The
model depended on three basic parameters: the escape fraction of ionizing photons from
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primordial galaxies, the limiting UV magnitude down to which the UV luminosity function
steeply increased, and an astroparticle property specific to the DM scenario (e.g., WDM
particle mass). We then performed Bayesian inference on these three parameters via a
standard MCMC technique, and at the same time, we investigated how the astroparticle
constraints were degenerated with (and robust against) variations in crucial (but still
uncertain) astrophysical quantities. The structure of the paper is as follows: in Section 2
we describe our methods and analysis; in Section 3 we present and discuss our results; in
Section 4, we summarize our findings and future perspectives. Throughout the work, we
adopted the standard, flat cosmology [13] with rounded parameter values: matter density
ΩM ≈ 0.31, baryon density Ωb ≈ 0.05, Hubble constant H0 = 100 h km s−1 Mpc−1 with
h ≈ 0.68. A Chabrier [69] initial mass function was assumed.

2. Methods and Analysis

In this section, we present our empirical model of reionization, derive a galaxy for-
mation constraint from the abundance matching of the luminosity functions with the halo
mass functions in a specific DM scenario, and finally describe our estimation procedure
based on a Bayesian MCMC technique.

2.1. An Empirical Model of Reionization

To build a simple empirical model of reionization, we start from the recent determi-
nation of the UV luminosity functions by [70,71] out to redshift z ∼ 10. Specifically,
in Figure 1 we illustrate the binned luminosity functions (filled circles) at ≈ 1600 Å
in the relevant redshift range z ∼ 4–10 (color-coded), together with the correspond-
ing continuous Schechter function rendition (solid lines) in the form dN/dMUV dV ∝
10−0.4 (MUV−M?

UV) (α+1) × exp[−10−0.4 (MUV−M?
UV)]. The luminosity functions were well de-

termined down to a UV magnitude MUV ≈ −17, with the faint end progressively steepen-
ing from a slope α ≈ −1.7 at z ≈ 4 to α ≈ −2.4 at z ≈ 10, and a characteristic magnitude
M?

UV ≈ −21 is almost independent of redshift for z & 4. Note that the UV magnitude
can be related to the monochromatic UV luminosity at 1600 Å by the relation log LUV
[erg s−1 Hz−1] ≈ −0.4 (MUV − 51.6).

In Figure 1, we also report the intrinsic luminosity functions after correction for dust
extinction (dashed lines), which have been computed exploiting the relation between
extinction, the slope of the UV spectrum, and observed UV magnitude by [72,73]; we caveat
the reader that such a dust correction can be considered well-established and robust only for
UV magnitude MUV & −22 and z . 8. The figure shows that the effects of dust extinction
on the galaxy statistics are negligible in the present context since cosmic reionization is
majorly contributed by faint galaxies with MUV & −17, where the intrinsic and observed
luminosity functions are practically indistinguishable. The intrinsic UV luminosity is
routinely linked to the physical star formation rate (SFR) of galaxies by the relation LUV =
κUV × SFR, with the quantity κUV depending somewhat on the IMF, on galactic age and
on chemical composition (see [74–78]); we adopt as a reference value κUV ≈ 1.5× 1028 erg
s−1 Hz−1 M−1

� year, apt for a Chabrier IMF, age & 108 years, and appreciably sub-solar
metallicity. Then the relation log SFR [M� year−1] ≈ −0.4 (MUV + 18.5) holds.

From the intrinsic UV luminosity functions, we compute the cosmic SFR density as

ρSFR(z) =
∫ Mlim

UV
dMUV

dN
dMUV dV

SFR , (1)

where Mlim
UV represents a limiting magnitude down to which the luminosity function is

steeply increasing; the rationale is that at magnitudes fainter than such a threshold, the
luminosity function bends downwards because the galaxy formation process becomes
inefficient and/or because the power spectrum is cut-off due to the microscopic nature of
DM [44,79,80]. The quantity Mlim

UV is uncertain since the observations of the UV luminosity
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function are limited to MUV ≈ −17; thus, it will be treated as a free parameter in our
Bayesian analysis discussed in Section 2.3.

Then we compute the cosmic ionization photon rate as

Ṅion ≈ fesc kion ρSFR + ṄAGN
ion ; (2)

here kion ≈ 4 × 1053 is the number of ionizing photons s−1 M−1
� year appropriate for

a Chabrier IMF, fesc is the average escape fraction of ionizing photons from primordial
galaxies [76,77,81,82], and ṄAGN

ion is the contribution to the ionization rate from active
galactic nuclei (AGNs).
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Figure 1. The UV luminosity functions at redshifts z ∼ 4 (red), 6 (green), 8 (blue), and 10 (purple).
Data points (circles) and fits are from [70,71]. Solid lines illustrate the observed luminosity func-
tions, while dashed lines illustrate the intrinsic ones, after correction for dust extinction via the UV
continuum slope according to the procedure by [73].

The escape fraction from primordial galaxies is still a very uncertain quantity, with
estimates ranging from a few percentage points to a few tens of percentage points [83–90].
We will keep fesc as a free parameter in our Bayesian analysis of Section 2.3, to highlight the
impact of such an astrophysical uncertainty on the astroparticle constraints. However, we
will also explore the implication of adopting a redshift-dependent escape fraction fesc(z)
increasing from small values 5% in the local Universe to around ≈20% at a high redshift, as
suggested by cosmological radiative transfer simulations of the UV background [91].

The quantity kion entering in Equation (2) is also somewhat uncertain because it
depends on the adopted IMF, metallicity, and other stellar population properties; however,
its values have been shown not to vary wildly [55,73,76,78,81]. Perhaps the only exception
is when a hypothetically strongly top-heavy IMF is assumed, since in that case the number
of ionizing photons is considerably enhanced; however, note that such an IMF would
imply a correspondingly stronger metal and dust enrichment of the interstellar medium in
primordial galaxies already at z & 8, which is not expected for these faint UV sources and
in turn, would dramatically reduce their ionization efficiency. For the sake of simplicity,
hereafter we will assume the aforementioned definite value of kion, but notice that any
constraint derived on fesc should actually be referred to as the combined quantity fesc ×
(kion/4× 1053 s−1 M−1

� year).
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As for the AGN contribution ṄAGN
ion appearing in Equation (2), we adopt the redshift-

dependent parameterization by [92]

ṄAGN
ion ≈ 1.1× 1050 f AGN

esc
(1 + z)5.865 e0.731 z

15.6 + e3.055 z , (3)

in units of ionizing photons s−1 Mpc−3, which is based on the latest determination of the
bolometric AGN luminosity functions. These imply a rapid decline in the number density
of bright quasars and a relative paucity of faint AGNs for z & 4, though the latter point
is still somewhat debated [92–98]. As a consequence, the AGN contribution to the overall
Ṅion for z & 5 is minor with respect to primordial galaxies, even when escape fractions
around f AGN

esc ∼ 100% are adopted [99,100].
We then exploit Ṅion(z) from Equation (2) to compute the hydrogen ionizing fraction

QHII from the evolution equation

Q̇HII =
Ṅion

n̄H
− QHII

trec
, (4)

that takes into account the competition between ionization and recombination processes [76,
81,101,102]. In the above, n̄H ≈ 2 × 10−7 (Ωbh2/0.022) cm−3 is the mean co-moving
hydrogen number density, and trec ≈ 3.2 Gyr [(1 + z)/7]−3 C−1

HII is the recombination
timescale for the case B coefficient and an IGM temperature of 2× 104 K. The quantity
CHII (appearing in the recombination time) is the clumping factor of the ionized hydrogen,
for which we adopt the redshift-dependent parameterization CHII ≈ min[1 + 43 z−1.71, 20]
by [103,104].

Finally, we compute the electron scattering optical depth out to redshift z from

τes(< z) = c σT n̄H

∫ z
dz′ fe QHII(z′)(1 + z′)2 H−1(z′) , (5)

where H(z) = H0 [ΩM (1 + z)3 + 1−ΩM]1/2 is the Hubble parameter, c is the speed of
light, σT the Thomson cross section, and fe ≈ 1 + η Y/4 X is the number of free-electron;
we adopt primordial abundances Y ≈ 0.2454 and X ≈ 1−Y, and complete double helium
ionization at z ∼ 4 so that η ≈ 2 for z . 4 and η ≈ 1 for z & 4.

2.2. A Constraint from Primordial Galaxy Formation

As mentioned in Section 1, we consider different DM scenarios alternative to CDM:
thermal warm dark matter (WDM) relics; fuzzy dark matter (ψDM); self-interacting dark
matter (SIDM); sterile neutrinos dark matter (νDM). In all these scenarios, the number of
small-mass halos is reduced relative to CDM; this is best specified in terms of the halo mass
function, namely the number density of halos per co-moving volume and halo mass MH
bins, which can be conveniently written in terms of the CDM one as

dNX
dMH dV

=
dNCDM

dMH dV

[
1 +

(
α

Mcut
H

MH

)β
]−γ

, (6)

where α, β and γ are shape parameters, and Mcut
H is a cutoff halo mass. We compute the

CDM halo mass function by exploiting the Python COLOSSUS package [105] and the fitting
formula by [106] for virial masses. The parameters (α, β, γ) in Equation (6) are instead
derived from fits to the outcomes of numerical simulations in the considered DM scenarios;
the related values of the parameters, and the literature works from which these are taken,
are reported in Table 1. We stress that for deriving robust constraints on different DM
scenarios based on the halo mass function it is extremely important to rely on the results
from detailed simulations (as done here), and not on semi-analytic derivations based on
the excursion set formalism, whose outcomes on the shape of the mass function for masses
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MH . Mcut
H are rather sensitive to several assumptions (e.g., the filter function used in

deriving the mass variance from the power spectrum, the mass-dependence in the collapse
barrier, etc.; e.g., [39,55]).

Table 1. Parameters describing the ratio of the halo mass function for different DM scenarios relative
to the standard CDM in terms of the expression [1 + (α Mcut

H /MH)β]−γ, where MH is the halo mass
and Mcut

H is a characteristic cutoff scale, see Section 2.2 for details. The values of the parameters
(α, β, γ), extracted from fits to the outcomes of numerical simulations in the considered DM scenarios,
are taken from the literature studies referenced in the last column.

Scenario α β γ Ref.

WDM 1.0 1.0 1.16 [107]
ψDM 1.0 1.1 2.2 [41]
SIDM 1.0 1.0 1.34 [35]
νDM 2.3 0.8 1 [43]

As to the cutoff mass Mcut
H , in WDM it is determined by free-streaming effects [107] and

reads Mcut
H ≈ 1.9× 1010 M� (mX/keV)−3.33 in terms of the particle mass mX . The quantity

Mcut
H for WDM is also referred to as the half-mode mass, representing the mass where the

amplitude of the WDM transfer function, i.e., the square root of the ratio between the WDM
and the CDM power spectra, is reduced to 50%. Note that this is substantially larger (a factor
of a few 103) than the free streaming mass, i.e., the mass related to the typical length-scale
for diffusion of WDM particles out of primordial perturbations. In ψDM, Mcut

H ≈ 1.6× 1010

M� (mX/10−22 eV)−1.33 is related to the coherent behavior of the condensate [41] for
axions with mass mX . In the SIDM scenario, Mcut

H ≈ 7× 107 M� (TX/keV)−3 can be linked
to the visible sector temperature TX when kinetic decoupling of the DM particles takes
place [35]. In the νDM scenario, Mcut

H depends not only on the particle mass mX but also
on the lepton asymmetry LX with which sterile neutrinos are generated out of thermal
equilibrium in the early Universe [43]. In this work, we actually set the sterile neutrino
mass to mX ≈ 7 keV since such a particle may constitute an interesting candidate to explain
the 3.55 keV line detected in stacked X-rays observations of galaxy clusters [108]. The
corresponding values of the cutoff mass as a function of LX are non-monotonic, starting
from Mcut

H ≈ 2.4× 109 M� for LX ≈ 1, then decreasing to a minimum ≈ 1.3× 108 M� for
LX ≈ 8 and then increasing again to ≈ 9.2× 108 M� for LX ≈ 11 up to 3.1× 109 M� for
the maximal LX ≈ 120.

In Figure 2, we illustrate the halo mass functions in the different DM scenarios, to
highlight the dependence on redshift and the particle property. For example, focusing on
WDM, it is seen that at a given redshift z ∼ 10 (solid lines with different colors) the halo
mass function progressively flattens with respect to that in standard CDM (black line); the
deviation occurs at smaller halo masses for higher WDM particle masses mX, so that the
CDM behavior is recovered for mX → ∞. At a given particle mass, mX ∼ 1 keV (red lines
with different line styles), the exponential cutoff of the mass function shifts to larger halo
masses for decreasing redshift, reflecting the hierarchical clustering of halos. In the other
DM scenarios, the behavior is similar, but the shape of the mass function past the low-mass
end flattening can be appreciably different; e.g., in the ψDM scenario the mass function is
strongly suppressed for small masses and actually bends downward rather than flattening,
implying a strong reduction or even an absence of low mass halos.

We are now left with an observed UV luminosity function that is required to be steep
down to Mlim

UV for reproducing the reionization history, and at the same time a halo mass
function that progressively flattens or even bends down for halo masses smaller than Mcut

H .
This necessarily implies that the relationship between UV magnitude and halo masses
must differ from the CDM case and depend on the DM scenario. Such a relationship may
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be derived via the standard abundance matching technique [109–112], i.e., matching the
cumulative number densities in galaxies and halos according to the expression∫ +∞

MH

dM′H
dNX

dM′H dV
(M′H, z|X) =

∫ MUV

−∞
dM′UV

dN
dM′UV dV

(M′UV, z) (7)

which implicitly defines a one-to-one monotonic relationship MH(MUV, z|X); here the
quantity X stands for the specific property of the DM scenario that determines the behavior
of the mass function for MH . Mcut

H : particle mass mX for WDM and ψDM, kinetic
temperature TX for SIDM, and lepton asymmetry LX for νDM. In Figure 3, we show the
outcome of this procedure in the different DM scenarios, highlighting its dependence on
redshift and the particle property. Focusing on WDM as a representative case, it is seen that
at a given redshift z ∼ 10 (solid lines with different colors) the MH(MUV|X = mX) relation
progressively steepens with respect to the standard CDM case (black line), and more for
smaller mX ; at the other end, the relation becomes indistinguishable from that in CDM for
particle masses mX & some keVs. At a given particle mass mX ∼ 1 keV (red lines with
different line styles), the relation MH(MUV, z|mX) barely depends on redshift, at least in the
range z ∼ 4–10 relevant to this work, because the cosmic evolution of the UV luminosity
function and the halo mass function mirror each other (see discussion by [70]). In the other
DM scenarios, the behavior of the MH(MUV, z|X) relation is similar but its shape for small
halo masses is appreciably different; e.g., in the ψDM scenario, the relation is substantially
steeper, reflecting the paucity of small halos in the mass function (see above)
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Figure 2. The halo mass function in different DM scenarios. Different line styles illustrate the
evolution with redshift (only plotted for one value of the astroparticle property), as reported in
the legend. Different colors illustrate the change in the mass function at z ∼ 10 as a function
of the astroparticle property, as detailed in the legend; for reference, the black line refers to the
standard CDM.

In all panels of Figure 3, the grey shaded area illustrates the region where the galaxy
formation is thought to become inefficient because of various processes [76,78,113,114]:
molecular cooling may be hindered and atomic cooling may be limited given the low
metallicities expected at high redshift; SN feedback can easily quench star formation
in low-mass halos; star formation may be photo-suppressed by the intense diffuse UV
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background; the formation of massive stars at low metallicities may originate additional
radiative feedback processes; etc. This inefficiency in galaxy formation is thought to occur
for halo masses smaller than a critical value MGF

H . a few 108 M� possibly dependent on
redshift, albeit with some uncertainties due to detailed modeling of the above processes.
Remarkably, it has also been pointed out that such a threshold can alleviate the missing
satellite problem, because the number density of small mass halos where galaxy formation
can take place becomes closer to the number of visible satellites in the Milky Way [17,53].
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Figure 3. Relationship between the halo mass MH and the UV magnitude MUV, derived from the
abundance matching of the observed UV luminosity function and the halo mass function (see text
for details) in different DM scenarios. Different line styles illustrate the evolution with redshift
(only plotted for one value of the astroparticle property), as reported in the legend. Different colors
illustrate the change in the mass function at z ∼ 10 when varying the astroparticle property, as
detailed in the legend; for reference, the black line refers to the standard CDM. In all panels, the
grey shaded area marks the region below the threshold halo mass MGF

H where primordial galaxy
formation becomes inefficient (see Section 2.2).

We conservatively adopt a threshold MGF
H ≈ 108 M� that is typically associated to

photo-suppression of galaxy formation due to the UV background [78]; other choices will be
explored in Section 3. We can now introduce the self-consistency galaxy formation constraint

MH(Mlim
UV, z|X) ≈ MGF

H (8)

i.e., the limiting UV magnitude down to which the UV luminosity function is steeply
increasing must correspond, in the given DM scenario, to the halo mass MGF

H (see also
Section 2.1); in other words, for halo masses MH . MGF

H , galaxy formation is hindered, and
this will imply that at magnitudes fainter than Mlim

UV the UV luminosity function will no
rise any longer. We allow for a 0.25 dex dispersion around Equation (8); this quantitatively
includes both the scatter in the abundance matching relation MH(Mlim

UV, z|X) associated
to the uncertainty in the UV luminosity functions determination (see also [109]), and the
theoretical uncertainty in the threshold halo mass MGF

H for galaxy formation (see [76,78]).
Note that the abundance matching procedure in Equation (7) automatically guarantees

to have, at any given redshift, the same number of halos hosting galaxies and of galaxies
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producing ionizing photons; in other words, the cumulative number of halos obtained
integrating the halo mass function down to MGF

H is approximately equal to the cumulative
number of galaxies obtained by integrating the UV luminosity function down to Mlim

UV.
Other investigations in the literature (e.g., [49,55,57,58]) have adopted conditions less
restricting than Equation (7), for example by requiring just to have a larger number of halos
hosting galaxies than of galaxies contributing to cosmic reionization.

2.3. Bayesian Analysis

The descriptions provided in the previous sections highlight that three basic param-
eters enter our framework: the escape fraction fesc of ionizing photons from primordial
galaxies, the limiting UV magnitude Mlim

UV down to which the UV luminosity function is
steeply increasing, and a quantity X specific to the DM scenario. To estimate such pa-
rameters, we adopted a Bayesian MCMC framework, numerically implemented via the
Python package emcee [115]. We used a standard Gaussian likelihood L(θ) ≡ −∑i χ2

i (θ)/2
where θ = { fesc, Mlim

UV, mX} is the vector of parameters, and the summation is over dif-
ferent observables; for the latter, the corresponding χ2

i = ∑j[M(zj, θ)−D(zj)]
2/σ2
D(zj)

is obtained by comparing our empirical model expectations M(zj, θ) to the data D(zj)

with their uncertainties σ2
D(zj), summing over the different redshifts zj of the datapoints

(when applicable).
Our overall data sample is constituted by (see summary in Table 2): robust obser-

vational measurements at z & 4 of the ionizing photon rate [116,117]; constraints on the
volume filling factor of ionized hydrogen provided by various astrophysical probes, in-
cluding Lyman-α emitters and Lyman-break galaxies luminosity functions, Lyman-α forest
dark pixels, and QSO damping wings [118–125]; latest constraints on the electron scat-
tering optical depth provided by the observations of the cosmic microwave background
from the Planck [13] mission. We also include the galaxy formation constraint provided
by a χ2

GF ∼ ∑j [MH(Mlim
UV, zj|X) − MGF

H ]2/σ2
GF, where we take zj = {4, 6, 8, 10} as refer-

ence redshifts (to avoid extrapolation at redshifts where the UV luminosity functions
are not well constrained) and σGF ≈ 0.25 dex as the typical uncertainty in the galaxy
formation constraint.

Table 2. Overview of the data considered in the Bayesian analysis of this work, referring to the
ionizing photon rate Ṅion, volume filling fraction QHII of ionized hydrogen, and optical depth τes for
electron scattering.

Observable [units] Redshifts Values Errors Ref.

log Ṅion [ s−1 Mpc−3]
{4.0, 4.8} {50.86, 50.99} {0.39, 0.39} [116]
{5.1} {51.00} {0.15} [117]

QHII
{7.0} {0.41} {0.13} [121]
{7.6} {0.12} {0.07} [123]

{6.6, 6.9, 7.3} {0.30, 0.50, 0.55} {0.20, 0.10, 0.25} [118,122]
{7.6} {0.83} {0.10} [124]
{7.3} {0.49} {0.11} [125]
{7.1, 7.5} {0.48, 0.60} {0.26, 0.22} [120]
{5.6, 5.9} {0.04, 0.06} (up.lim.) {0.05, 0.05} [119]

τes
{∞} {0.054} {0.007} [13]

We adopt flat priors π(θ) on the parameters within the ranges fesc ∈ [0, 1], Mlim
UV ∈

[−20,−8], and X ∈ [0, 15]. Note that the latter is the same for any DM scenario; it refers to
different units depending on the meaning of X; e.g., in the WDM scenario, X represents the
DM particle mass mX in units of keVs. We then sample the posterior distribution P(θ) ∝
L(θ)π(θ) by running emcee with 105 steps and 300 walkers; each walker is initialized
with a random position uniformly sampled from the (flat) priors. After checking the auto-
correlation time, we remove the first 20% of the flattened chain to ensure the burn-in; the
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typical acceptance fractions of the various runs are in the range 30–40%. Convergence
of the chains and decently shaped posteriors are attained in a reasonable computational
time, around 90–120 min on a laptop with an Intel i7-8565U CPU running the MCMC
algorithm parallelized over 8 cores.

3. Results and Discussion

In this section, we report and discuss our results for different DM scenarios, according
to the Bayesian procedure presented in Section 2.3. As a preliminary step, we analyze the
data without taking into account the galaxy formation constraint from abundance matching.
The result is shown by the grey contours/lines in Figure 4 (left panel). The marginalized
constraint on the escape fraction and the limiting UV magnitude read fesc ≈ 0.16+0.03

−0.01 and
Mlim

UV ≈ −15.6+1.7
−2.0. As expected these are rather loose, since there is a clear degeneracy be-

tween these two quantities: the data on reionization history can be reproduced in principle
by assuming a smaller fesc, i.e., decreasing the number of ionizing photons escaping from
each galaxy, while increasing the limiting UV magnitude Mlim

UV, i.e., enhancing the number
of galaxies that populate the faint end of the luminosity function and, hence, contribute to
the ionizing background.
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12 11
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Figure 4. MCMC posterior distributions in the standard CDM scenario for the escape fraction fesc of
ionizing photons and the limiting UV magnitude MUV,lim. In the left panel (grey contours/lines), the
galaxy formation constraint derived via abundance matching is not included in the likelihood (see
Section 2.3), while in the right panel (magenta contours/lines), this is taken into account. The contours
show 68% and 95% confidence intervals, the black cross shows the maximum likelihood position,
and the marginalized distributions are in arbitrary units (normalized to 1 at their maximum value).

Once the galaxy formation constraint MH(Mlim
UV, z|X) = MGF

H from abundance match-
ing is included in the statistical analysis, the result becomes sensitive to the DM scenario.
We illustrate the outcome for the standard CDM by the magenta contours/lines in Figure 4
(right panel). In this case, the DM particle is so cold (&GeV) that independently of its
precise value the threshold halo mass for galaxy formation MGF

H corresponds uniquely to a
faint Mlim

UV and correspondingly to a quite low fesc, see the solid black line in Figure 3. The
marginalized constraints for CDM turns out to be fesc ≈ 0.051+0.005

−0.005 and Mlim
UV ≈ −11.4+0.1

−0.1.
In the other DM scenarios, the situation is drastically different, because the galaxy

formation constraint from abundance matching depends crucially on the DM astroparticle
property X. The results for WDM are illustrated by the red lines/contours in Figure 5. For
such a case, it is seen from Figure 3 that the critical halo mass for galaxy formation MGF

H
corresponds to a UV-limiting magnitude Mlim

UV ≈ −15, appreciably brighter with respect
to CDM for particle masses mX ∼ keV, while it converges to the CDM value ≈ −11.5
for mX & some keVs. However, the MCMC algorithm, informed by the data on cosmic
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reionization, disfavor solutions with high values of mX that will correspond to very faint
limiting UV magnitude and small escape fraction, with respect to values of mX ≈ 1 keV,
which will instead maximize the likelihood in the subspace of the astrophysical parameters
fesc and Mlim

UV (see black crosses in the posterior contours). In all, for WDM, we find the
marginalized constraints to read fesc ≈ 0.12+0.02

−0.05, Mlim
UV ≈ −14.8+1.2

−1.2 and mX ≈ 1.3+0.3
−0.7 keV.

The added value of our estimate for mX appears evident when considered in compari-
son and/or combination with independent data from, e.g., the Lyman-alpha forest [29,46],
high-redshift galaxy counts [49,50], integrated 21cm emission [58–60], and Milky Way
satellite counts [66,68], as illustrated in Figure 6. These classic probes provide lower bounds
mX & 2–3 keVs at 2σ, which are only marginally consistent with the tail of our posterior
distribution. Note also that other numerical studies have shown that, to obtain the ob-
served kpc cores of dwarf galaxies, a thermal relic mass as low as mX ∼ 0.1 keV may be
needed [126], which is certainly excluded by our analysis and by the other probes listed
above. In all, the tensions among all these independent constraints tend to lower the case
for the keV-scale thermal WDM as a viable alternative to CDM.
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Figure 5. MCMC posterior distributions in the WDM scenario (red contours/lines), for the escape
fraction fesc of ionizing photons, the limiting UV magnitude MUV,lim, and the DM particle’s mass
mX . The dashed lines refer to a run where the escape fraction has been set to the redshift dependent
values from the radiative transfer simulations by [91]. The contours show 68% and 95% confidence
intervals, the black cross shows the maximum likelihood position, and the marginalized distributions
are in arbitrary units (normalized to 1 at their maximum value).
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Summary of DM constraints

Figure 6. Summary of the astroparticle constraints in different DM scenarios. The colored shaded
areas illustrate the constraints from this work for confidence intervals of 2σ, 3σ, and 5σ (from darker
to lighter shades). The black points show the literature constraints from independent observations:
for WDM (top left panel) from [46] (diamond), [50] (circle) and [68] (square); for ψDM (top right panel)
from [47] (diamond and circle) and [127] (inverted triangle); for SIDM (bottom left panel) from [46]
(diamond), [33] (inverted triangle) and [35] (square); for νDM (bottom right panel) from [128] (grey
shaded area), [46] (diamond), [129] (triangle) and [130] (square).

In Figure 5, we also illustrate the results (dashed lines) when the escape fraction is set
to the redshift-dependent value fesc(z) ≈ min[6.9× 10−5 (1 + z)3.97, 0.18], which increases
from ≈0.05 in the local Universe up to ≈0.2 at high redshift. This parameterization is based
on the radiative transfer simulations by [91], which have been gauged to reproduce the
evolution of the overall ionizing photon rate with cosmic time. At the redshifts relevant
for reionization fesc,. 0.2 appreciably exceeds the value obtained in the run with free
fesc, a smaller number of galaxies is needed to meet the reionization constraints. As a
consequence, we estimate a brighter value of Mlim

UV ≈ −16.4+0.3
−0.3 and correspondingly a

smaller mX ≈ 0.66+0.07
−0.08 keV.

The situation in other DM scenarios is somewhat similar to WDM. The main difference
resides in the behavior of the halo mass function (at small masses), which induces a
different shape of the relationship between MH and MUV, and in turn, this affects the
galaxy formation constraint. In the ψDM case, whose results are illustrated in Figure 7,
the MH(MUV, z|mX) relation is quite steep since the halo mass function bends down for
small masses. This implies that the galaxy formation constraint is tight, because a small
variation in the particle mass mX may induce MGF

H to correspond to appreciably different
Mlim

UV. As a consequence, the marginalized distribution of mX is extremely narrow. Our
posterior estimates for ψDM are found to be fesc ≈ 0.14+0.02

−0.02, Mlim
UV ≈ −15.8+0.3

−0.1 and
mX ≈ 2.09+0.09

−0.05 × 10−22 eV. The latter value is appreciably smaller than independent
constraints present in the literature (see Figure 6), which are somewhat in tension among
themselves, from high-redshift galaxy counts [41,45], ultra-faint dwarfs [127], and Lyα
forest [47]. Note also that galaxy scaling relations highlight the difficulties of ψDM in
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solving the small-scale problems of CDM [131]. Currently the evidence for ψDM as a viable
alternative to CDM is marginal and should be reconsidered in light of future data.
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Figure 7. MCMC posterior distributions in the ψDM scenario (blue contours/lines), for the escape
fraction fesc of ionizing photons, the limiting UV magnitude MUV,lim, and particle mass mX . The con-
tours show 68% and 95% confidence intervals, the black cross shows the maximum likelihood position,
and the marginalized distributions are in arbitrary units (normalized to 1 at their maximum value).

In the SIDM scenario, whose results are shown in Figure 8, the abundance matching
relation MH(Mlim

UV, z|TX) changes quite abruptly for small values of the temperature TX
at kinetic decoupling. In particular, temperatures TX . 0.2 keV correspond to limiting
UV magnitudes brighter than −17, which are excluded by the present data on the UV
luminosity function that steeply goes down to such values; this is why the posterior of
TX is somewhat truncated toward low values. The marginalized estimates for SIDM are
fesc ≈ 0.12+0.02

−0.05, Mlim
UV ≈ −14.8+1.1

−1.4 and TX ≈ 0.24+0.04
−0.13 keV. As shown in Figure 6, the latter

value is consistent within 3σ with that from Lyα forest [46], satellite counts [35] and dwarf
galaxies [33].

In the νDM scenario with a particle mass mX ∼ 7 keVs, whose results are shown in
Figure 9, the derived constraints are less sharp. This is because, as it can be seen from
Figure 3, the MH(MUV, z|LX) relation from abundance matching changes only slightly
for different lepton asymmetries LX , implying a quite broad posterior on such parameter.
Specifically, for νDM, we find marginalized estimates amounting to fesc ≈ 0.068+0.008

−0.008,
Mlim

UV ≈ −12.7+0.2
−0.4 and LX ≈ 10.7+1.4

−1.4. These constraints for 7 keV νDM are consistent with
those present in the literature (see Figure 6), satellite counts in the Milky Way [130], gravita-
tional lensing observations [128], X-ray non-detections [129], and Lyα measurements [46],
which concurrently place the lepton asymmetry in the range of LX ∼ 8–12.
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Figure 8. MCMC posterior distributions in the SIDM scenario (orange contours/lines), for the escape
fraction fesc of ionizing photons, the limiting UV magnitude MUV,lim, and visible sector temperature
TX at kinetic decoupling. The contours show 68% and 95% confidence intervals, the black cross
shows the maximum likelihood position, and the marginalized distributions are in arbitrary units
(normalized to 1 at their maximum value).

The marginalized posterior estimates in the different DM scenarios are summarized
in Table 3. Moreover, we show in Figures 10–13 the behavior of our best-fit models
on various observables, which include the cosmic SFR density, the ionizing photon rate
(the contribution of AGNs, illustrated in the inset, is shown to be minor for z & 6 and
subdominant at lower redshift), the volume filling factor of ionized hydrogen and the
electron scattering optical depth. Note that the cosmic SFR rate density has not been
exploited in building up the likelihood in Section 2.3 and thus it has not been fitted upon.
In fact, our best-fit models refer to the cosmic SFR rate density when the UV luminosity
function is integrated down to a magnitude Mlim

UV, which may be appreciably fainter than
the values corresponding to the observational determinations (e.g., the ones based on
current UV data refer to a limit MUV ≈ −17). Nevertheless, it is remarkable that our best-fit
models turn out to be consistent with the available observational constraints on the cosmic
SFR density from GRBs by [132], CII by [133], UV+FIR by [134], and (sub)mm by [135], at
least for z . 8. On the other hand, we stress that the predictions on the cosmic SFR density
for the non-standard DM scenarios tend to significantly deviate with respect to that of
CDM as soon as the redshift increases much beyond z & 8. Therefore, upcoming precision
determinations of the cosmic SFR at z & 10, as recently attempted with early JWST data
by [136], could provide relevant additional constraints on the DM scenario.
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Figure 9. MCMC posterior distributions in the νDM scenario (sterile neutrino DM with a mass of
7 keV), for the escape fraction fesc of ionizing photons, the limiting UV magnitude MUV,lim, and the
lepton asymmetry parameter LX . The contours show 68% and 95% confidence intervals, the black
cross shows the maximum likelihood position, and the marginalized distributions are in arbitrary
units (normalized to 1 at their maximum value).

Table 3. Marginalized posterior estimates of the parameters from the MCMC analysis for the different
DM scenarios considered in the main text. Specifically, fesc is the escape fraction, Mlim

UV is the limiting
UV magnitude, and the astroparticle quantity X in the third column stands for: mX is in units of keV
for WDM scenario, mX in units of 10−22 eV for the ψDM scenario, TX in units of keV for the SIDM
scenario, and LX for the νDM scenario. Mean and 1σ confidence limits are reported. The last column
refers to the value of the Bayes information criterion (BIC) for model comparison, see Section 3.

Scenario fesc MUV,lim X BIC

w/o GF 0.16+0.03
−0.01 −15.6+1.7

−2.0 − −
CDM 0.051+0.005

−0.005 −11.4+0.1
−0.1 − 53.8

WDM 0.12+0.02
−0.05 −14.8+1.2

−1.2 1.3+0.3
−0.7 36.7

WDM fesc(z) −16.4+0.3
−0.3 0.66+0.07

−0.08 −
ψDM 0.14+0.02

−0.02 −15.8+0.3
−0.1 2.09+0.09

−0.05 37.1
SIDM 0.12+0.02

−0.05 −14.8+1.1
−1.4 0.24+0.04

−0.13 36.9
νDM 0.068+0.008

−0.008 −12.7+0.2
−0.4 10.7+1.4

−1.4 39.6
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Figure 10. The cosmic SFR density as a function of redshift. Data are from GRBs (circles; see [132]),
CII (stars; see [133]), UV+FIR (triangles; see [134]), and (sub)mm (squares; see [135]). Lines illustrate
the best fits from the MCMC analysis in various DM scenarios: CDM (purple solid), WDM (red solid),
WDM with a redshift-dependent fesc(z) (red dashed), ψDM (blue solid), SIDM (orange solid) and
νDM (green solid). The typical 2σ credible interval from sampling the posterior distribution is shown,
for clarity, only in the WDM scenario, as a red shaded area. Note that the cosmic SFR density has
not been fitted upon, since the related measurements have not been exploited in constructing the
likelihood of our Bayesian analysis.

3 4 5 6 7 8 9 10 11 12
z

49.5

50.0

50.5

51.0

51.5

52.0

52.5

N
io

n
[s

1
M

pc
3 ]

BB13
Be+21

CDM
WDM
WDM fesc(z)

DM
SIDM
DM

CDM
WDM
WDM fesc(z)

DM
SIDM
DM

5 10
z

4

2

0

lo
gN

AG
N

io
n

/N
io

n

Ionizing photon rate

Figure 11. The ionizing photon rate as a function of redshift. Data are from [116] (circles) and [117]
(squares). Lines as in Figure 10. The inset illustrates the contribution of AGNs (see Equation (3)) to
the total ionizing photon rate as a function of redshift, in the various DM scenarios.
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Figure 12. The reionization history of the Universe, in terms of the volume filling fraction QHII of
ionized hydrogen as a function of redshift z. Data are from [121] (circle), [123] (hexagon), [118,122]
(inverted triangle), [124] (triangle), [125] (squares), [120] (pentagon), and [119] (crossed). Lines as in
Figure 10.
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Figure 13. The optical depth to electron scattering τes(< z) as a function of redshift z. Data are
from [13] (shaded area). Lines as in Figure 10.

As for the reionization observables Ṅion, QHII and τes, it is worth stressing that all our
best-fit models perform comparably well in reproducing the available data. This is also
highlighted by the 2σ credible interval from sampling the posterior distribution, which
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is shown only in the WDM case for clarity (red shaded area). In terms of projection on
these observables, the different DM scenarios are consistent with each other, approximately
within 2σ, while they differ appreciably from the standard CDM case. In the same vein,
we can also attempt a model comparison via the Bayes information criterion [137] defined
as BIC≡ −2 lnLmax + Npar ln Ndata in terms of the maximum likelihood estimate Lmax,
of the number of parameters Npar, and the number of data points Ndata. The BIC comes
from approximating the Bayes factor, which gives the posterior odds of one model against
another, presuming that the models are equally favored a priori. Note that what matters is
the relative value of the BIC among different models; in particular, a difference of around
ten or more indicates evidence in favor of the model with the smaller value. The values of
the BIC (for the different DM scenarios) are reported in Table 3. Taken at face value, the
BIC suggests evidence in favor of the scenarios alternative to CDM, though it is risky to
recognize a preference among them.

Finally, to test the robustness of our astroparticle posterior estimates, we vary some
of the assumptions made in our fiducial setup above, focusing on the WDM scenario for
definiteness; the impact on the marginalized distribution of the DM particles’ mass mX
is shown in Figure 14. In the top left panel, we change the threshold halo mass MGF

H of
galaxy formation; instead of our fiducial value 108 M� (red solid), we try with 107 M�
(dot–dashed yellow) , 106 M� (dashed green), and with the redshift-dependent atomic
cooling limit log MGF

H (z) [M�] ≈ 8.41− 0.092× (z− 4) + 0.0023× (z− 4)2 (dotted blue;
see [78,138]). Such smaller values of MGF

H could be possibly associated with star formation
in mini halos, although typically this occurs at redshifts z & 15− 20 higher than those
considered here when setting the galaxy formation constraint. The net effect of a smaller
MGF

H is to narrow somewhat the high-mass tail of the marginalized distribution and to
shift its maximum toward slightly smaller values; the overall constraints on mX are not
appreciably altered, since it can be seen from Figure 3 that for mX ∼ keV the magnitude
values corresponding to a given halo mass are very similar in the range MH ∼ 106−8 M�.

In the top middle panel of Figure 14, we explore the variations of other auxiliary
quantities: clumping factor CHII entering the recombination timescale in Equation (4);
CDM halo mass function entering in Equation (6); parameter κUV determining the relation
between UV luminosity and SFR (see Section 2.1). It is beyond the scope of the paper to
investigate all of the possible variations of these quantities in a systematic way, so we just
focus on other choices often exploited in the literature. Specifically, with respect to our
fiducial cases (red solid) we try the following: instead of the clumping factor2 by [103,104],
we used that by [140] (dot–dashed yellow); instead of the halo mass function from [106],
we used that by [141] (dashed green); instead of our fiducial value, we used that by [74] for
solar metallicity (dotted blue). Overall, the constraints on mX are not substantially affected
by these variations.

In the top right panel of Figure 14, we check the dependence of our results on the
set of data used to construct the likelihood in Section 2.3 and Table 2; in particular, with
respect to our fiducial case (solid red) we remove one-by-one the constraints from the
cosmic ionization rate Ṅion (dot–dashed yellow), from the evolution of the ionized fraction
QHII (dashed green) and from the optical depth τes (dotted blue). Not surprisingly, the
most stringent constraints on mX come from the data on the redshift evolution of QHII, in
absence of which the marginalized distribution would considerably widen. The data on
QHII tend to prefer slightly lower values of mX , while those on Ṅion tend to prefer slightly
higher values; interestingly, the combinations of these datasets produce a marginalized
distribution consistent with the constraints from the latest measurements of the optical
depth τes.

In the bottom panel of Figure 14, we present a summary plot showing the mean
and the 1σ dispersion of the posterior distributions from the top panels (as labeled in the
legend). It is seen that the outcome of our fiducial setup (illustrated by the red vertical line
and shaded area) is quite robust against all the different variations in the parameters and
assumptions considered above.
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Figure 14. Top panels: dependence of the posterior distributions (normalized to 1 at their maximum
value) for the DM particle’s mass mX in the WDM scenario on a few assumptions adopted in this
work; in all top panels the fiducial case is illustrated as a red solid line. Top left panel: effects of
changing the threshold halo mass MGF

H of galaxy formation from our fiducial value 108 M� to 107

M� (dot–dashed yellow), to 106 M� (dashed green), and to the redshift-dependent atomic cooling
limit MGF

H (z) (dotted blue). Top middle panel: effects of changing the clumping factor CHII from
our fiducial expression by [103] to that by [140] (dashed yellow), the CDM halo mass function from
our fiducial determination by [106] to that by [141] (dashed green), and the UV luminosity to SFR
conversion factor κUV from our fiducial value by [76] to the value by [74] (dotted blue). Top right
panel: effects of removing from the likelihood the dataset relative to the cosmic ionization rate Ṅion

(dot–dashed yellow), to the evolution of the ionized fraction QHII (dashed green) and the optical
depth τes (dotted blue). Bottom panel: summary plot showing the mean and the 1σ dispersion of
the posterior distributions presented in the top panels, as indicated in the legend; for reference, the
outcome in our fiducial setup is illustrated by the red vertical line and shaded area.

4. Summary and Outlook

In this work, we derived astroparticle constraints for different dark matter scenarios
alternative to standard cold dark matter (CDM): thermal relic warm dark matter, WDM;
fuzzy dark matter, ψDM; self-interacting dark matter, SIDM; sterile neutrino dark matter,
νDM. For this purpose, we relied on three main ingredients: updated determinations of
the high-redshift UV luminosity functions for primordial galaxies out to redshift z ∼ 10;
redshift-dependent halo mass functions in the above DM scenarios, as provided by state-of-
the art numerical simulations; robust constraints on the reionization history of the Universe
from recent astrophysical and cosmological datasets.

We built up an empirical model of cosmic reionization (see Section 2.1) characterized by
two basic parameters: the escape fraction fesc of ionizing photons from primordial galaxies,
and the limiting UV magnitude Mlim

UV down to which the extrapolated UV luminosity
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functions were steeply increasing. We performed standard abundance matching of the UV
luminosity function and the halo mass function (see Section 2.2), obtaining a relationship
between UV luminosity and halo mass whose shape depended on an astroparticle quantity
X specific to each DM scenario. We exploited such a relation to introduce in the analysis a
constraint from primordial galaxy formation, in terms of the threshold halo mass MGF

H above
which primordial galaxies could efficiently form stars. We performed Bayesian inference
on the three parameters fesc, Mlim

UV, and X via an MCMC technique (see Section 2.3 and
Figures 4–9).

The marginalized posterior estimates are discussed in Section 3, and summarized in
Table 3. As for the astroparticle property X, we found: WDM particle mass mX ≈ 1.3+0.3

−0.7
keV, ψDM particle mass mX ≈ 2.09+0.09

−0.05 × 10−22 eV, SIDM temperature at kinetic decou-
pling TX ≈ 0.24+0.04

−0.13 keV, and lepton asymmetry LX ≈ 10.7+1.4
−1.4 for a sterile neutrino of

mass mX ∼ 7 keV. A comparison with literature constraints from independent observations
(see Figure 6) seems to challenge thermal WDM and ψDM as viable alternatives to CDM,
while there is more room for SIDM and νDM. As for the astrophysical parameters, the
values of the escape fraction fesc were found to vary from 0.05 to 0.15, and those of the UV
limiting magnitude ranged from −12 to −16, depending on the DM scenario (see Table 3).
We performed a model comparison among the different DM scenarios, both in terms of
projection of our best-fit models on the reionization observables (see Figures 10–13), and in
terms of the Bayesian inference criterion; the latter indicates evidence in favor of non-CDM
scenarios, though it is risky to identify a clear preference among them.

Finally, we investigated the robustness of the estimates on the astroparticle property X
against educated variations of uncertain astrophysical quantities (e.g., clumping factor, halo
mass function, UV luminosity to SFR conversion factor), of the galaxy formation threshold
MGF

H , and of the datasets exploited to construct the likelihood in our Bayesian analysis (see
Figure 14).

From a future perspective, it is worth highlighting the impacts of the different DM sce-
narios on the ultra-faint end of the UV luminosity function at high redshift (see also [55,142]).
We can make specific predictions by reconstructing the luminosity function from the halo
mass function via

dN
dMUV dV

=
∫

dXP(X)
∫ ∞

MGF
H

dMH
dNX

dMH dV
δD[MUV −MUV(MH, z|X)] ; (9)

where δD[·] is a Dirac delta function centered on the inverse abundance matching rela-
tionship MUV(MH, z|X), MGF

H is the halo mass above which galaxy formation can take
place, and P(X) is the marginalized posterior distribution of the astroparticle property
X specific to each DM scenario. The outcome of this computation at z ∼ 10 is illustrated
in Figure 15. We expect the luminosity function at the ultra-faint end to deviate from the
steep behavior extrapolated from the currently observed magnitude range MUV . −17.
The limiting magnitude at which the deviation occurs could be seen, and the shape of
the luminosity function around that value crucially depends on the adopted DM scenario.
Future observations conducted by the James Webb Space Telescope [48,143–147], possibly
eased by gravitational lensing effects, could extend the observable magnitude range down
to MUV ∼ −13 or fainter, thus providing valuable information on astroparticle physics and
the astrophysics of primordial galaxy formation.
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Figure 15. Predicted ultra-faint end of the UV luminosity function at z ∼ 10 in different DM scenarios:
CDM (magenta), WDM (red), ψDM (green), SIDM (orange), and νDM (green). Data for MUV . −17
by [70,71] are also illustrated for reference (black circles).
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Notes
1 Free-streaming is the process through which small-scale perturbations can be erased if particles with residual thermal velocities

diffuse out of them before collapse.
2 Note that the clumping factor may actually depend on cosmology itself; in particular, as shown by [44], based on the model

by [139], for a WDM scenario in the relevant redshift range z & 6, the clumping factor tends to be slightly lower than our fiducial
case by [103]. We checked that adopting such a cosmology-dependent clumping factor has a minor impact on the mX posterior.
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