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Abstract: Relativistic plasma can be formed in strong electromagnetic or gravitational fields. Such
conditions exist in compact astrophysical objects, such as white dwarfs and neutron stars, as well as
in accretion discs around neutron stars and black holes. Relativistic plasma may also be produced in
the laboratory during interactions of ultra-intense lasers with solid targets or laser beams between
themselves. The process of thermalization in relativistic plasma can be affected by quantum degen-
eracy, as reaction rates are either suppressed by Pauli blocking or intensified by Bose enhancement.
In addition, specific quantum phenomena, such as Bose–Einstein condensation, may occur in such
a plasma. In this review, the process of plasma thermalization is discussed and illustrated with
several examples. The conditions for quantum condensation of photons are formulated. Similarly,
the conditions for thermalization delay due to the quantum degeneracy of fermions are analyzed.
Finally, the process of formation of such relativistic plasma originating from an overcritical electric
field is discussed. All these results are relevant for relativistic astrophysics as well as for laboratory
experiments with ultra-intense lasers.

Keywords: relativistic plasmas; relativistic kinetic equation; quantum degeneracy

1. Introduction

Quantum electrodynamics is the most successful theory of elementary interactions,
confirmed by a large variety of experiments and verified to an astonishingly good precision.
Its effects can be broadly divided into two classes: perturbative and non-perturbative ones.
The first class, given the smallness of the interaction constant (fine structure constant α), is
vast and comprises all atomic physics and essentially interactions between the elementary
quanta of electromagnetic and electron-positron fields. The second class is much less
explored, as it requires extremely high electromagnetic fields with an electric field strength
comparable to the critical value named after Schwinger [1]

Ec =
m2

e c3

eh̄
∼ 1018 V/m, (1)

where me is the electron mass, e is its charge, c is the speed of light and h̄ is the reduced
Planck constant. At such field strength, QED predicts vacuum breakdown with the oc-
currence of a number of phenomena, such as vacuum birefringence predicted [2] and
observed [3], nonlinear Compton scattering, predicted [4,5] and observed already in un-
dercritical electric fields [6,7], elastic photon–photon scattering [8] and non-perturbative
electron–positron pair production [1,9,10].

Considerable effort has been made over the last two decades in increasing the intensity
of high power lasers in order to explore these high field regimes. Yet, the Schwinger field
Ec is far from being reached; see [11,12] for recent reviews. There are indications that such
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technology is limited to undercritical fields due to the occurrence of avalanches [13,14]
which deplete the external field faster than it can potentially be increased. With this in
mind, there are claims [15] that “the critical QED field strength can be never attained for a
pair creating electromagnetic field”.

While reaching such extreme conditions in laboratory appears very challenging, they
might very well occur in astrophysical environments; see [16] for review. Dynamical
mechanisms involving the increase in the initially small electric field toward its critical
value appear problematic due to the occurrence of avalanches or other backreaction effects,
which deplete the field energy and thus self-regulate the electric field; see [17]. In contrast,
an overcritical electric field does exist in microphysical conditions, in particular around
heavy nuclei, and is enhanced during heavy ion collisions [18,19], but these processes occur
on too short of a time scale to be able to produce electron–positron pairs [20].

An overcritical electric field is hypothesized in quantum degenerate systems at high
density, in which pair production is blocked due to the unavailability of the phase space of
electrons, being completely occupied [21]. Such systems are discussed in the astrophysical
context in compact stars, e.g., hypothetical quark stars [22] and neutron stars [23]. Pair
production in such an overcritical field may occur either due to heating [24] or due to the
gravitational collapse of a compact object [25,26]. Moreover, electron–positron pairs in this
case are produced out of equilibrium, see [27], and their dynamics should be described
using kinetic equations. It is well known that reaction rates are affected by the quantum
degeneracy. Therefore, it is of primary interest to study the kinetics of high density quantum
degenerate plasma, both in the presence and absence of external electromagnetic fields.

This review is organized as follows. In Section 2, we discuss the physical and astro-
physical conditions under which degenerate plasmas can be produced. In Section 3, we
derive relativistic kinetic equations accounting for plasma degeneracy and discuss binary
and triple interactions. Then we review some recent results obtained in the analysis of
relativistic kinetics of nonequilibrium electron–positron–photon plasma. We focus on the
strong degeneracy effects both for the photon component in Section 4 and for the electron–
positron component in Section 5. We also consider pair creation in a strong homogeneous
electric field in Section 6. Conclusions follow.

2. Conditions for Formation of Relativistic Degenerate Plasma

In this section, we discuss conditions under which degenerate relativistic plasma
can be formed and sustained. These conditions require the presence of either strong
gravitational or strong electromagnetic fields. In many cases, such degenerate plasma is
in thermodynamic equilibrium, for example, in white dwarfs or neutron stars. However,
when plasma is generated rapidly or any other nonequilibrium processes are present,
for instance, during the interaction of ultrastrong laser beams with solid targets, or in
relativistic shock waves in gamma-ray bursts or supernova, the plasma may go out of
thermodynamic equilibrium. In such conditions, the description of particle interactions and
plasma dynamics requires a kinetic approach. In what follows, we introduce relativistic
kinetic equations to describe basic interactions between electrons, positrons and photons.

2.1. Degenerate Plasmas in Compact Astrophysical Objects

Strong gravity provides confinement for matter, creating macroscopic objects with the
highest possible density. A white dwarf is a textbook example of a star which counteracts
its own gravity by the highly degenerate electron gas pressure. They form at the end of
thermonuclear evolution of stars similar to our Sun, when fusion reactions in its interiors
cease. They have no internal source of energy, and hence, isolated white dwarfs can only
cool down emitting electromagnetic radiation. High thermal conductivity of degenerate
electrons makes white dwarfs isothermal, and the energy loss occurs from the photosphere
at a very low rate, due to the large opacity. Therefore, degenerate plasma in isolated white
dwarfs is maintained in almost perfect thermal equilibrium.
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Neutron stars represent even more extreme class of astrophysical objects, much denser
than white dwarfs. Electrons cannot provide sufficient pressure at larger densities, so
their stability is due to degenerate neutron gas pressure. Similar to white dwarfs, isolated
neutron stars cool down by emitting electromagnetic radiation. The density at the surface
of the bare neutron star decreases sharply, on the length scale determined by the nuclear
forces. The density of electron gas decreases on a scale hundred times larger. Hence, on
the surface of bare neutron stars, a strong electric field may develop, reaching overcritical
values [23], provided that it is not buried under the thick crust. Such an electric field is not
producing electron–positron pairs, as electrons are completely degenerate and their phase
space is blocked due to the Pauli principle. A similar surface structure, called electrosphere,
characterizes also hypothetical quark stars [22].

Relativistic plasma is formed in accretion discs around compact astrophysical sources.
Nonequilibrium plasma may also form in relativistic shock waves [28] and outflows in
supernovae and gamma-ray bursts [29].

2.2. Strong Electromagnetic Fields in Astrophysical Sources

In magnetospheres of white dwarfs and especially neutron stars, the strength of the
electromagnetic field may be very large, leading to the formation of electron–positron pairs
and their acceleration to ultrarelativistic energies. Much attention has been attracted by
the systems with ultraintense magnetic fields [30], such as magnetars and central engines
of supernovae and gamma-ray bursts. In such systems, the magnetic field strength may
exceed the Schwinger limit, namely Bc > Ec. For such magnetic field strength, the quantized
cyclotron energy becomes comparable to the electron rest emergy h̄ωc ∼ mec2. These field
strengths correspond to very high energy density on the order of 1026 erg/cm3, which in
turn corresponds to electromagnetic radiation with a temperature on the order of MeV.
Therefore, often, high density hot plasma is present in these sources, with typical kinetic
energies of electrons ε ∼ mec2, which means that positrons can be present in abundance,
and the role of electron–positron pairs becomes important.

Within the magnetospheres, intense particle beams propagate along the magnetic field
lines from one footpoint to another: once they hit the surface, energy dissipation occurs,
resulting in the strong heating of the surface and as a result in intense and variable X-ray
radiation, observed from magnetars [31]. Giant γ-ray flares in soft gamma repeaters [32]
are thought to be produced by magnetic field reconnection events, which create plasma fire-
balls [33]. These are optically thick electron–positron plasma blobs, which expand until they
become optically thin and emit previously trapped radiation. The same phenomena but on
a larger energy scale occur in gamma-ray bursts that emit up to 1054 erg in γ-rays within
seconds [34]. Some inner engine models propose that the overcritical magnetic field may
generate electron–positron plasma either via Poynting flux and magnetic reconnection [35],
or in strong electric field [36].

2.3. Pair Creation in Ultraintense Lasers

A strong electric field represents a testbed for experiments aiming at the study of
nonperturbative effects in quantum electrodynamics. The possibility to obtain an electric
field strong enough to produce electrons and positrons is offered by the mechanism of
dynamical amplification of counter-propagating laser beams. It is now possible, thanks
to the chirped pulse amplification (CPA) technique [37], whose development allowed
the design of petawatt lasers generating pulses with intensity up to 1022 W/cm2 [38];
see also [39]. For this reason, large efforts are being devoted to generate it, in particular
using the counter-propagating laser beams of ultrastrong intensity. Electric fields up
to a few percentage points of the critical value will be reached using these advanced
technologies in laboratory experiments [40–42]. The flagship projects in this direction
are X-ray free electron laser facilities, such as XFEL1, optical high-intensity laser facilities
such as extreme light infrastructure (ELI)2 and Exawatt Center for Extreme Light Studies
(XCELS)3. While direct observation of the electron–positron pair creation in vacuum is not
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yet possible, many other nonlinear phenomena, including multiphoton Compton scattering
and multiphoton pair creation have already been observed, in particular in the famous
SLAC E144 experiment [6,7]. In fact, the interaction between high energy electron beam
and intense laser creates the conditions for high Lorentz transformed electromagnetic
fields, capable of multiple pair production [43]. Moreover, intense laser fields are powerful
accelerators of particles [44].

The direct Schwinger process of pair production has not yet been observed in the
laboratory; for recent reviews see [11,16]. It is likely that the technology described above is
limited to undercritical fields. This is because of cascades and avalanches depleting the
field energy [13,14,45] faster than the electric field is amplified.

In all of the mechanisms described above, the pair creation process introduces the
back reaction onto the external field. Accounting for such back reaction is a very difficult
task. Therefore, it is of crucial importance to have theoretical tools for description of the
particle and field interactions in strong electromagnetic fields.

2.4. Fermion Critical Density

First let us discuss the physical conditions for quantum degeneracy of plasma. The
degree of plasma degeneracy is characterized by the parameter [46,47]

D =
1

nλ3
th

, (2)

where n is number density of particles in plasma, λth =
ch̄
kT

is the thermal wavelength, k

is the Boltzmann constant, T is the temperature, and h̄ = h/(2π), h is the Planck constant.
In thermal equilibrium, the total energy density of plasma is a function of temperature only
ρ = ρ(T). The number density—energy density diagram for relativistic electron–positron
plasma is presented in Figure 1. Here, the black line corresponds to the degeneracy condition
D = 1. Plasma is nondegenerate for D > 1 and degenerate otherwise. The green curve
represents thermal equilibrium states. The red curve shows the fully degenerate state for
electron-positron pairs.
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Figure 1. Number density-energy density diagram of a photon–electron–positron plasma. Green
curve corresponds to thermal equilibrium state. Black curve shows the transition from nondegenerate
D > 1 to degenerate D < 1 plasma, where D is defined by Equation (2). Red curve corresponds to
fully degenerate pair state defined by Equation (3). Vertical line on the left corresponds to the transition
from nonrelativistic to relativistic pair plasma (θ = 0.3). Vertical line on the right corresponds to
relativistic pair plasma with θ = 1.
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Note that for fermions only (electrons and positrons without photons) both ther-
mal and fully degenerate states have similar number density of particles at relativistic
temperatures, see bottom Figure 1. The number density for the fully degenerate state is

ncr =
8π

3h3c3 ε3
F, (3)

and the thermal number density in the ultrarelativistic limit is

nth =
12πζ(3)

h3c3 (kT)3, (4)

where εF is the Fermi energy, which plays a role of an upper particle energy boundary, and
ζ(s) is the Riemann ζ-function.

The occupation number of pairs is

< n >=
h3

g
f , (5)

where g is the number of helicity states and f is the distribution function. In Figure 2, we
show the occupation number for selected temperatures (top), along with the corresponding
spectral energy density dρ/dε (bottom). It is clear that for ε� kT in thermal state, one has
〈n〉 ' 1/2.
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Figure 2. Thermal average occupation numbers (top) and thermal spectral energy density (bottom)
of pairs as function of their kinetic energy for selected temperatures: θ = 0.5 (blue), θ = 10 (orange),
θ = 100 (green). The limiting spectral density for pairs according to Pauli principle is shown in red.

The amount of pairs in the relativistic regime becomes comparable to that of photons.
Therefore, the thermal equilibrium state becomes degenerate at relativistic temperatures.

3. Relativistic Kinetic Equations
3.1. Derivation of Relativistic Kinetic Equations from Quantum Theory

The kinetic equation which takes into account quantum statistics of particles, the
Uehling–Uhlenbeck equation [48], can be derived from the quantum Bogolyubov hier-
archy [49]. Quantum mechanical Bogolyubov hierarchy is based on quantum Liouville
equation (Liouville–von Neumann equation) for the average value of product of creation
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and annihilation operators. The quantum Liuville equation for any operator A is (in this
section, we put h̄ = 1):

i
∂

∂t
〈A〉 = 〈[A, H]〉 (6)

where angle brackets mean quantum averaging, H is the total Hamiltonian of a system,
and square brackets [·, ·] denote the commutator of operators.

In the case of binary interactions, the Hamiltonian of a system has the form [50]:

H2p = ∑
i

εia+
i ai + ∑

ijkl
Φijkla+

i a+
j akal , (7)

where Φijkl = 〈ij|U|kl〉 are matrix elements of binary potential U, and εi are particle
energy eigenvalues.

We will consider the first equations of the hierarchy and we need to introduce the
averaging of linear, squared and cubic product of creation and annihilation operators.
They are as follows:

F(1)
ij = 〈a+

i aj〉, F(2)
ijkl = 〈a+

i a+
j akal〉, F(3)

ijklmn = 〈a+
i a+

j a+
k alaman〉, (8)

Additionally, it is convenient to reduce high-order products of creation and annihila-
tion operators to sums of products of pairs of these operators and correlation terms. This
procedure can be performed using Wick’s theorem [51]:

F(2)
ijkl = F(1)

il F(1)
jk ± F(1)

ik F(1)
jl + G(2)

ijkl , (9)

F(3)
ijklmn = ±F(1)

il F(1)
jm F(1)

kn + F(1)
il F(1)

jn F(1)
km + F(1)

im F(1)
jl F(1)

kn ± F(1)
im F(1)

jn F(1)
kl ± F(1)

in F(1)
jl F(1)

km

±F(1)
in F(1)

jm F(1)
kl ± F(1)

il G(2)
jkmn ± F(1)

im G(2)
jkln + F(1)

in G(2)
jklm ± F(1)

jl G(2)
ikmn

±F(1)
jm G(2)

ikln ± F(1)
jn G(2)

iklm + F(1)
kl G(2)

ijmn ± F(1)
km G(2)

ijln ± F(1)
kn G(2)

ijlm + G(3)
ijklmn.

(10)

where G(2) and G(3) are binary and triple correlation terms. Here and below, the sign “±”
denotes “+” for bosons and “−” for fermions.

For simplicity, we assume that the functions fi(t, pi) do not depend on space coordi-
nates x. This means that F(1)

ij = niδij, where ni = 〈a+
i ai〉 is the occupation number of state

with energy εi. The first equation of the hierarchy is the following:

i
∂ni
∂t

= ∑
jkl

Φijkl F
(2)
ijkl −ΦklijF

(2)
klij = i ∑

jkl
2ΦijklImG(2)

ijkl , (11)

while the second equation is

i
∂

∂t
F(2)

ijkl = (εk + εl − εi − εj)F(2)
ijkl ±∑

mn
ΦklmnF(2)

ijmn −ΦmnijF
(2)
mnkl ± ∑

mnr
ΦkmnrF(3)

ijmlnr −ΦimnrF(3)
klmjnr. (12)

To derive the Uehling–Uhlenbeck equation, one should keep only linear terms on
coupling constant. Considering that both Φ and G(2) have the first order on the coupling
constant, we obtain from the second equation the following expression:

i
∂

∂t
G(2)

ijkl = (εk + εl− εi− εj)G(2)
ijkl− 2Φijkl [nknl(1± ni)(1± nj)− ninj(1± nk)(1± nl)], (13)

or denoting terms in square brackets as nijkl :

i
∂

∂t
G(2)

ijkl = (εk + εl − εi − εj)G(2)
ijkl − 2Φijklnijkl . (14)
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this linear differential equation has the following solution:

G(2)
ijkl(t) = eit(εi+εj−εk−εl)G(2)

ijkl(0) + 2iΦijkl

∫ t

0
dτeiτ(εi+εj−εk−εl)nijkl(t− τ) (15)

Finally, we should apply key principal assumptions. The first one is that the initial cor-
relations of the system are vanishing, which allows to neglect the first term in Equation (15).
The second one is that the system is Markovian (has no memory of the previous state),
which allows to set the upper limit in the integral to infinity and remove the integration
variable in nijkl . Thus, Equation (15) becomes

G(2)
ijkl(t) = 2iΦijkl

∫ ∞

0
dτeiτ(εi+εj−εk−εl)nijkl(t) = 2iΦijklnijklπδ(εi + εj − εk − εl) (16)

Inserting expression (16) in the first Equation (11), we have

∂ni
∂t

= ∑
jkl

4Φ2
ijklπδ(εi + εj − εk − εl)[nknl(1± ni)(1± nj)− ninj(1± nk)(1± nl)] (17)

In the semiclassical (large occupation number) limit, the discrete spectrum becomes
continuous, and one can replace discrete sums with integrals over the particle momentum.
Then Equation (17) finally becomes

∂ni
∂t

=
∫

d3 pjd3 pkd3 pl w(pi, pj, pk, pl)[nknl(1± ni)(1± nj)− ninj(1± nk)(1± nl)]. (18)

This is the Uehling–Uhlenbeck equation for occupation number ni(t, pi). Using
Equation (5), it can be rewritten for the distribution function and has the same form. One
can derive this equation for any type of interaction characterized by the corresponding
Hamiltonian of the system.

3.2. Collision Integrals in the Relativistic Kinetic Equation

In order to study kinetic evolution of optically thick electron–positron–photon plasma,
taking into account the quantum degeneracy, one has to solve relativistic kinetic equations,
derived in the previous section. In this paper, we assume the plasma is homogeneous in
space, thus transport terms are dropped from the kinetic equations. We will adopt the
radiative transport form of kinetic equations of electrons e−, positrons e+ and photons γ;
see [47].

1
c

∂ fi
∂t

= ∑
q

(
η

q
i − χ

q
i fi

)
, (19)

where fi(ε, t) are their distribution functions, index i denotes the sort of particles, ε is their
energy, and η

q
i and χ

q
i are the emission and the absorption coefficients of a particle of type

“i” via the physical process labeled by q.

3.3. Binary Interactions

The emission and absorption coefficients for the particle I in a binary process
I + I I ↔ sI I I + IV have the following form:

η
2p
I =

∫
d3 p2d3 p3d3 p4 W(3,4|1,2) f I I I f IV (20)

× (1 + ξ f I)(1 + ξ f I I),

χ
2p
I f I =

∫
d3 p2d3 p3d3 p4 W(1,2|3,4) f I f I I (21)

× (1 + ξ f I I I)(1 + ξ f IV),
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where we defined the following transition rates: W(3,4|1,2)d3 p3d3 p4 = Vdw(3,4|1,2) and
W(1,2|3,4)d3 p1d3 p2 = Vdw(1,2|3,4), V is the normalization volume, dw is the differential
reaction probability per unit time, ξ = ψh3/2 and ψ is +1, −1, 0 for Bose–Einstein, Fermi–
Dirac, Maxwell–Boltzmann statistic, respectively. In what follows, we refer to these cases
as quantum (ψ = ±1) and classical (ψ = 0), respectively, and h is Planck’s constant.

3.4. Triple Interactions

The emission and absorption coefficients for the particle I in a triple process
I + I I ↔ sI I I + IV + V have the following form:

η
3p
I =

∫
d3 p2d3 p3d3 p4d3 p5 W(3,4,5|1,2) f I I I f IV fV (22)

× (1 + ξ f I)(1 + ξ f I I),

χ
3p
I f I =

∫
d3 p2d3 p3d3 p4d3 p5 W(1,2|3,4,5) (23)

× f I f I I(1 + ξ f I I I)(1 + ξ f IV)(1 + ξ fV),

where W(3,4,5|1,2)d3 p3d3 p4d3 p5 = Vdw(3,4,5|1,2) and W(1,2|3,4,5)d3 p1d3 p2 = V2dw(1,2|3,4,5). The
expression for dw is given in QED as

dw = c(2πh̄)4δ(εin − ε fin)δ(pin − p fin)|M f i|2V (24)

×
(

∏
in

h̄c
2εinV

)(
∏
fin

d3 p fin

(2πh̄)3
h̄c

2ε fin

)
,

where p fin and ε fin are, respectively, the momenta and energies of outgoing particles, pin
and εin are the momenta and energies of incoming particles, M f i is the corresponding
matrix element, and δ functions stand for energy–momentum conservation. The collision
integrals on the right-hand side of Equation (19), are integrals over the phase space of
interacting particles. These integrals contain the matrix elements of the corresponding
QED processes. For binary interactions, the matrix elements are given in most textbooks;
see [47,52]. For triple interactions, these matrix elements can be found in the literature:
Ref. [53] for double Compton scattering, Ref. [54] for relativistic bremsstrahlung. Finally,
matrix elements for all the other triple interactions can be found from the above two using
the substitution rules [55]. All binary and triple interactions between electrons, positrons
and photons, considered in this work, are listed in Table 1.

Table 1. Binary and triple QED processes in the pair plasma.

Binary Processes Triple Processes

Møller, Bhabha Bremsstrahlung
e±e±′ ↔ e±′′e±′′′ e±e±′ ↔ e±′′e±′′′γ

e±e∓ ↔ e±′e∓′ e±e∓ ↔ e±′e∓′γ

Single Compton Double Compton
e±γ ↔ e±γ′ e±γ ↔ e±′γ′γ′′

Pair production and annihilation Radiative pair production, triplet production and three
photon annihilation

γγ′ ↔ e±e∓ γγ′ ↔ e±e∓γ′′

e±γ ↔ e±′e∓e±′′

e±e∓ ↔ γγ′γ′′
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Details of numerical integration scheme, which solves the coupled system of integro-
differential Equation (19) on the grid in the phase space using a finite difference method is
presented in [56–61], see also [47].

3.5. Kinetic versus Thermal Equilibrium

It was established [47] that the relaxation of non-equilibrium relativistic plasma with
arbitrary initial conditions may proceed in two steps. If detailed balance is established
first for all binary interactions, a metastable state is formed. This state is called kinetic
equilibrium, and it is characterized by the following quantities: temperature Tk and nonzero
chemical potentials µi of particles. The distribution function of particles with energy E in
the kinetic equilibrium is

f =
2

(2πh̄)3
1

exp
(

E−µi
kTk

)
± 1

, (25)

where signs “+” and “−” correspond to Fermi–Dirac and Bose–Einstein statistics, respec-
tively. The characteristic timescale of the kinetic equilibrium can be estimated as

tk ' A(σTnec)−1, (26)

where σT is the Thomson cross section, ne is the electron number density, and the coefficient
A ' 20 [56]. The chemical potential of particles (including photons) do not vanish since
binary interactions conserve the number of particles.

Triple interactions, which change the chemical potential of particles, can bring the
system to thermal equilibrium. The characteristic timescale for establishing thermal equi-
librium can be estimated as tth ∼ (ασTnec)−1, where α is the fine structure constant.

It was found [60] that kinetic equilibrium is formed only in nonrelativistic plasma. In
relativistic plasma Tth > 0.3 mec2/k, the reaction rates of binary and triple interactions are
comparable, and hence the thermal equilibrium is established directly.

After introducing the general formalism, we now consider specific effects occurring in
degenerate plasmas. First, we turn to photons.

4. Bose–Einstein Condensation of Photons in Relativistic Plasma

One of the interesting phenomena in nonequilibrium relativistic optically thick plas-
mas is the occurrence of Bose–Einstein condensation (BEC) [62,63]. This phenomenon was
first observed by cooling alkali atoms to nanokelvin degrees [64–66] and it is traditionally
associated with low temperatures.

The possibility of condensation of photons in kinetic equilibrium state occurs if the
initial number density of photons nγ exceeds the one given by Equation (25) with zero
chemical potential of photons µγ = 0, namely

nγ >
2ζ(3)

π2

(
h̄

mc

)−3( kTk
mec2

)3
, (27)

where Tk is the temperature in kinetic equilibrium. Since binary interactions do not change
the number of photons, these particles may accumulate in low energy states and form
an excess over the Planck distribution. This is possible as long as the kinetic equilibrium
is maintained. Triple interactions reduce the photon number, leading eventually to the
disappearance of this excess, as plasma relaxes to the thermal equilibrium.

In a pure photon gas, quantum condensation does not occur since photons are massless
particles and cooling leads to their disappearance. What was shown in [63] is the possibility
of this phenomenon to occur as a transient state during thermalization of the plasma.
In particular it was shown that photon condensation may appear at any temperature,
including relativistic one. Here we will report only the nonrelativistic case. We present
the result of computations with total energy density ρtot = 8.7× 1020 erg cm−3. The final
equilibrium temperature is then θ = kBT/mec2 = 0.1. The initial particle number density
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is five time larger than the thermal one, nin
tot = 5n fin

tot , where n fin
tot = 3.5× 1027 cm−3. We

take the Wien distribution centered at the energy ε = 0.06 mec2 as the initial energy density
spectrum for photons, and a δ function for pairs with kinetic energy ε = 0.001 mec2. Clearly,
the energy density and particle number density of pairs are much smaller than those of
photons.

In Figure 3, we show the time evolution of energy density and particle number density
in the system. In Figure 4, we show the spectral energy density and reaction rates at specific
time moments.
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Figure 3. Time evolution of energy density (top) and particle number density (bottom) of photons
(blue), electrons/positrons (orange), all together (green) in nonrelativistic case. Black line represents
the final equilibrium quantity. Final equilibrium temperature is θ = kBT/mec2 ' 0.1.
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Figure 4. Top: The spectral energy density (dots) with the associated Planck fit (solid) for selected
time moments from left to right: 10−15, 10−11, 10−8 s, in nonrelativistic case. Bottom: emission
and absorption coefficients for photons (binary reactions: emission (blue) and absorption (cyan);
triple reactions: emission (purple) and absorption (red). The left panel represents initial distribution
of photons; the middle one shows photon condensation, while the right one corresponds to the
final state.
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The total energy density is constant. The total particle number density changes only
due to the imbalance in the triple processes, which is relevant only for 10−12 < t < 10−8 s.
For shorter times, triple interactions are slow enough; for larger times, thermal equilibrium
is established.

After the time moment t ' 10−12 s, the total particle number (mainly photon number)
starts to decrease. As a result, at the time moment t ' 10−11 s, binary processes are balanced
in a broad energy region, and we have ntot ' nγ ' 1.85 n fin

tot . Photons are described by the
distribution function (25). However, the number of photons supported by the equilibrium
given by Equation (27) is 3.8× 1027cm−3, while we have ntot ' 6.5× 1027 cm−3. So photons
in excess with the density 2.7× 1027cm−3 form a condensate. This excess is visible in the
middle panel of Figure 4. The steep decrease in the spectrum at low energies is due to faster
triple interactions. This quantum condensation of photons persists until ∼ 10−8 s, when
the thermal equilibrium is finally established.

We also studied the development of photon condensation for different degrees of
initial degeneracy by increasing the initial photon number density, which exceeded the
equilibrium value by factors of 3, 5, 7 and 10. We found that the system loses memory of the
initial distribution at the moment when the number density starts to change due to triple
interactions, at 10−11, 10−12, 5× 10−13, 2× 10−13 s, correspondingly. At this moment,
called pre-condensation, the photon distribution functions still have a non-equilibrium
shape, but the power law excess over the Planck spectrum appears already. In all cases, the
condensation occurs at about 10−11 s, and it disappears at about 10−8 s, independent of the
degree of degeneracy.

We find that the low energy distribution can be fit as

dρ/dε ∼ εa, (28)

with
a(t) ' 2(t/t0)0.187, (29)

where the Rayleigh–Jeans value a = 2 is reached at t0 = 4.90× 10−9 s. The values of the
spectral index a and its fit a(t) are shown in Figure 5.

1 ×10 -11 5 ×10 -11 1 ×10 -10 5 ×10 -10 1 ×10 -9

0.6

0.8

1.0

1.2

1.4

t, sec

a

Figure 5. The time evolution of the spectral index of the power law distribution of photons below the
peak, starting at the moment when it is first established.

It is interesting to note that there are well-known solutions of kinetic equations with
sources in the form of power law distributions, relevant for the theory of wave turbulence;
see [67]. Within the theory of quantum systems out of equilibrium, which has a wide
range of applications, ranging from high energy particle physics to ultracold quantum
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gases [68], and to cosmology [69,70], a universal behavior was found due to the existence
of nonthermal fixed points [71–73]. The scaling law (29) can be a manifestation of this
universality. However, the values of the power law index a are always larger than the
values predicted for stationary solutions [67].

The details of computations and additional results can be found in [63]. Now we turn
to the case of degenerate fermions.

5. Thermalization of Superdegenerate Plasma

The Pauli principle plays a crucial role in a dense matter state [74]; it affects conduc-
tivity in a dense Coulomb plasma [75], and for extreme plasma densities, it leads to the
depression of ionization potential [76]. Thus, it is crucial in many nuclear physics prob-
lems [77–80]. As discussed in the introduction, the effects of fermionic quantum degeneracy
are essential in preventing compact astrophysical objects from gravitational collapse.

In what follows, we discuss kinetic effects in degenerate fermion plasma [81]. Recall,
that the probability of creation of electron–positron pairs from photons at a nonrelativistic
temperature is exponentially suppressed. As a result, Pauli blocking may become important
for the thermalization process.

Considering the thermalization process of relativistic plasma with an initially strongly
degenerate distribution of fermions, we require that the initial conditions correspond to the
condition D � 1. It is clear that the density of photons in such a state should be larger than
the density of pairs, and the energy density of photons should be smaller than the energy
of pairs. The latter condition arises because the contribution of photons to the total energy
density should be minimized, while their density should be maximized. Such conditions
are called the superdegenerate state [60].

In order to demonstrate the effect of the quantum degeneracy of electrons, we focus on
the case of relativistic electron–photon plasma. The positive charge, needed to compensate
for electron charge, is assumed to be present, in the form of protons or ions. It is assumed
that positively charged particles are cold, and their presence does not affect the electron
degeneracy.

We consider the initial state containing a large number of degenerate electrons (when
nin

e ' n fin
e ) and low energetic photons. The following initial conditions are chosen for

the simulation: total energy density is ρtot = 2.1× 1027 erg cm−3 corresponding to a final
equilibrium temperature θ fin = 1.9, total initial particle number density is nin

tot = 40n fin
tot ,

where n fin
tot = 3.2× 1032 cm−3. Thermalization dynamics is shown in Figure 6. As the

energy of the initial photons is much less than mc2, the pair creation process is suppressed,
and the initial degenerate electron state can be preserved until photons acquire energy
above mc2.

One can see a sharp decrease in thermodynamic quantities at the time moment
t ∼ 2 × 10−19 s; the degenerate electron spectrum is preserved until the same time.
The creation of positrons starts at the same moment. The thermalization process has
an avalanche-like character. For the sake of comparison, we show also the simulation with
nondegenerate initial electrons, which present a smooth monotonic thermalization process
(dashed curves in Figure 6), which starts much earlier (solid curves on Figure 6).

We conclude that in superdegenarate electron–photon plasma, thermalization is de-
layed due to the Pauli blocking of interactions with electrons. Once reactions are unblocked,
thermalization proceeds in an avalanche-like manner. This is because the initial state is
preserved until photons can scatter degenerate electrons above their Fermi energy, where
the states are not degenerate any more. Details of the calculations and additional results,
also for nonrelativistic plasma, are presented in [60].
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Figure 6. Time evolution of energy density (top) and particle number density (bottom) for relativistic
photon-electron plasma with degenerate initial pair state (solid) and nondegenerate initial electron
state (dashed). Blue: photons, orange: electrons, red: positrons and green: total. Final equilibrium
temperature is θ fin = 1.9.

6. Phase Space Evolution of Pairs Created in Strong Electric Fields

In this section, we review the results obtained for pair production in a strong homo-
geneous electric field. Due to the complexity of the problem, particle degeneracy is not
accounted for. Moreover, only 2-particle QED interactions are considered, and therefore,
the system may relax only to a kinetic equilibrium.

The momentum space is axially symmetric, with the preferred direction determined
by the direction of the electric field. The momentum vector has, therefore, the following
components: parallel one (p‖) and orthogonal one (p⊥) to the direction of the electric field.
The azimuthal angle (φ) describes the rotation of p⊥ around p‖. The momentum space is
confined to the following intervals: p‖ ∈ (−∞, +∞), p⊥ ∈ [0, +∞), φ ∈ [0, 2π]. The integral

over the momentum space is defined as
∫

d3p →
∫ 2π

0 dφ
∫ +∞
−∞ dp‖

∫ +∞
0 dp⊥ p⊥, and

the relativistic energy is

ε =
√

p2
‖ + p2

⊥ + m2. (30)

In this equation and hereafter we set c = h̄ = 1.
The number density is given by its integral over the entire momentum space

ni =
∫

d3p fi = 2π
∫ +∞

−∞
dp‖

∫ +∞

0
dp⊥ p⊥ fi . (31)

Due to the assumed axial symmetry, f does not depend on φ. It is only a function of
the two momentum components fi = fi(p‖, p⊥) . The Boltzmann–Vlasov equations can be
written in conservative form [27,57] for the quantity Fi = 2πε fi. The energy density is

ρi =
∫ +∞

−∞
dp‖

∫ +∞

0
dp⊥ Fi . (32)



Universe 2022, 8, 473 14 of 20

The kinetic evolution of the system is described by the relativistic Boltzmann–Vlasov
equation for pairs

∂F±(p‖, p⊥)

∂t
± e E

∂F±(p‖, p⊥)

∂p‖

= ∑
q

(
η
∗q
± (p‖, p⊥)− χ

q
±(p‖, p⊥) F±(p‖, p⊥)

)
+ S(p‖, p⊥, E) , (33)

where η
∗q
± , χ

q
± are the emission and absorption coefficients due to the interaction denoted

by q, and the source term S, representing the pair production rate. In this equation, Pauli
blocking and Bose enhancement factors are neglected. In particular, the electron–positron
distribution functions in Equation (33) vary due to the acceleration by the electric field, the
creation of pairs by the electric field, and the interactions with photons. Indeed, the Vlasov
term describes the mean field produced by all particles, and the external field. Particle
interactions, including Coulomb ones, are taken into account by collision terms. Particle
motion between collisions is assumed to be subject to the external field only.

Pair creation introduces the specific distribution of particles in the momentum space [16]

S(p‖,p⊥, E) = − |e E|
m3

e (2π)2
ε p⊥

× log

[
1− exp

(
−π(m2

e + p2
⊥)

|e E|

)]
δ(p‖) . (34)

Indeed, pairs are produced with nonzero orthogonal momentum, up to about me (E/Ec).
However, along the direction of the electric field, the momentum component is zero. Notice
that for E < Ec, the rate is exponentially suppressed.

Time evolution of the photon distribution function is described by the Boltzmann equation

∂Fγ(p‖, p⊥)

∂t
= ∑

q

(
η
∗q
γ (p‖, p⊥)− χ

q
γ(p‖, p⊥) Fγ(p‖, p⊥)

)
. (35)

Notice, that both the acceleration and pair creation terms in Equation (33) operate on
a much shorter time scale than interactions with photons described by collision terms in
Equations (33) and (35) [82,83]. For this reason, we perform two classes of simulations: in
the first class, referred to as “collisionless”, particle interactions are neglected; interactions
are accounted for in the second class, called “interacting”.

First we present the results for collisionless simulations. In the initial state, electric
field E0 and distribution function Fi0(p‖, p⊥) are specified as{

E0 = ξ Ec , ξ = {1, 3, 10, 30, 100}
Fi0(p‖, p⊥) = 0 , p⊥ ∈ [0, +∞) , p‖ ∈ (−∞, +∞) .

In other words, we assume no particle is present at the beginning: electrons and
positrons are produced from the electric field only. If particles are present from the begin-
ning [84], the qualitative results are similar.

Initially, the energy is stored only in the electric field, with energy density

ρ0 =
E2

0
8π

. (36)
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The final state of the equilibrated thermal electron–positron–photon plasma is charac-
terized by only one parameter: temperature

Teq = 4

√
ρ0

4σ
' 1.7

√
E0

Ec
MeV, (37)

where σ is the Stefan–Boltzmann constant. The energy conservation law implies that the
total energy density of pairs ρ± and photons ργ are related to the actual and initial electric
fields, E and E0 as

ρ± = ρ+ + ρ− =
E2

0 − E2

8π
− ργ . (38)

The maximum achievable pairs number density [84] is

nmax =
E2

0
8 π me

, (39)

which corresponds to the full conversion of the whole initial energy into electron–positron
rest energy

ρ±rest = (n− + n+) me , (40)

where n− and n+ are the electron and positron number densities, respectively. From
the electron and positron distribution functions, we can extrapolate their bulk parallel
momentum 〈p‖〉, and the symmetry of our problem implies that 〈p‖−〉 = −〈p‖+〉. We
make use of this identity to define the kinetic energy density of pairs

ρ±kin = ρ±rest


√√√√( 〈p‖±〉

me

)2

+ 1− 1

 . (41)

Therefore, ρ±kin is the energy density as if all particles are put together in the mo-
mentum state with p‖ = 〈p‖〉 and p⊥ = 0, while their rest energy density is ρ±rest. The
difference between the total energy density and all the others defined above is denoted as
the internal energy density

ρ±in = ρ± − ρ±rest − ρ±kin . (42)

The term “internal” refers here to the dispersion of the distribution function around a
given point with coordinates (〈p‖〉 , 〈p⊥〉) in the momentum space.

In Figure 7, we show the time evolution of the pairs and photons energy densities for
E0 = 100 Ec. From this plot, we can understand the hierarchy of time scales associated to
the distinct physical phenomena. Electron–positron pairs are produced in a strong electric
field, in the shortest time according to Equation (34). As soon as they are created, electrons
and positrons are accelerated toward opposite directions as the back reaction effect on the
external field. Hence, plasma oscillations are initiated [83,84]. The characteristic duration
of the back reaction corresponds approximately to the first half of the oscillation period.
The larger the electric field, the higher the rate of pairs production and consequently their
number density. The process of pair production proceeds in this oscillating manner, until
the electric field reduces to undercritical values.

Now we turn to the dynamics of our system on much larger time scales, described by
simulations with interactions taken into account. Since the interaction rate is proportional
to particle number densities, they turn relevant sooner for a higher initial field.

After hundreds of oscillations, the energy density carried by the electric field is a small
fraction of the pairs and photons energy densities. Due to this fact, the acceleration of
electrons and positrons does not any more affect their distribution functions. Hence, we
neglect the presence of the electric field.
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Figure 12.3 Energy densities of pairs and photons obtained from the nu-
merical solution of Eqs. (12.12) and (12.14) with initial field E0 = 100Ec.
Reprinted from [289] c©2013, with permission from Elsevier.

the presence of the electric field hereafter. To do that the DF is used at this

instant as initial condition for a new computation in which the condition

E = 0 is imposed. By neglecting oscillations induced by the electric field the

constraint on the time step of the numerical calculation is released, and it

is now determined by the rate of the interactions.

In Fig. 12.3 the time evolution of the pairs and photons energy densities

for E0 = 100Ec is shown. From this figure one can understand the hierarchy

of time scales associated to the distinct physical phenomena. In presence

of an overcritical electric field, electron-positron pairs start to be produced

in a shortest time according to Eq. (12.13). As soon as they are created,

electrons and positrons are accelerated toward opposite directions as the

back reaction effect on the external field. The characteristic duration of this

back reaction corresponds approximately to the first half oscillation period.

At early times, even after many oscillations, the energy density of photons is

negligible compared to that of pairs, meaning that interactions do not play

any role. Such a starting period, during which the system can be considered

truly collisionless, exists independently on the initial electric field, even if its

duration depends on it. From Fig. 12.3 it is clear that the photons energy

density increases with time as a power law approaching the pairs energy

density.

Only when hundreds oscillations have taken place, interactions start to

affect the evolution of the system appreciably and can not be neglected

any further. The slope of the photons curve in 12.3 reduces indicating that

Figure 7. Energy densities of pairs and photons obtained from the numerical solution of
Equations (33) and (35) with initial field E0 = 100 Ec.

Due to interactions, the photon energy density increases with time as a power law
approaching the pairs energy density; see Figure 7. Then the slope of the photons curve
in Figure 7 reduces, indicating that pairs annihilation has become less efficient than the
inverse process. The main effect of collisions is the isotropization of particle distributions
in the momentum space. After some time, the photons energy density becomes equal
and then overcomes the pairs energy density. This growth continues until the equilibrium
between pairs annihilation and creation processes is established e−e+ ↔ γγ. However, at
this point, the distribution function is not yet isotropic in the momentum space, indicating
that the kinetic equilibrium condition is not yet satisfied. In fact, kinetic equilibrium is
achieved only at later times when other binary interactions come to the detailed balance as
mentioned above.

In Figure 8, we present the momentum density plots of f− and fγ on the left and right
columns, respectively, for the simulation with E0 = 100. Their time evolution is from the top
to the bottom, corresponding to three different times. On top, after 2.3 tc, both distribution
functions are highly anisotropic as indicated by the ratio R =

√
〈p2
‖〉±/〈p2

‖〉± = 0.06. At

this stage, the electric field is still overcritical, and a very small fraction of initial energy
has been converted into pairs. They are accelerated up to relativistic velocities, indicated
by the electron distribution function shifted on the right side of the phase space plane
characterized by p‖ > 0. Electrons are ultrarelativistic with a bulk Lorentz factor of about
170. In the middle, the time is 2.3× 102 tc, and the distribution functions are still anisotropic.
However, the situation is different because the electric field is only slightly overcritical and
many more pairs and photons have been generated. Here, interactions start to play a role.
Both the electric field and collisions prevent particles to reach ultra-relativistic velocities,
and for this reason, the electron distribution function is already symmetrical with respect to
the plane p‖ = 0. Finally, at the bottom, for 4.6× 106 tc, collisions dominate the evolution
of the system, whereas the presence of the electric field can be neglected. The distributions
are almost isotropic with R ' 0.23.

It remains to be seen how the effects of quantum degeneracy modify the dynamics
described above.
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Figure 12.4 Phase space distributions of electrons (left column) and
photons (right column) for the initial condition E0 = 100Ec. Top:
2.3 · 102 tc, middle: 2.3 · 102 tc, bottom: 4.6 · 106 tc. Reprinted from [289]
c©2013, with permission from Elsevier.

pairs annihilation has become less efficient than the photons annihilation

process. Now the evolution of the system is mostly governed by interactions.

Möller, Bhabha and Compton scatterings give rise to momentum and energy

Figure 8. Phase space distributions of electrons (left column) and photons (right column) for the
initial condition E0 = 100 Ec. Top: 2.3× 102 tc, middle: 2.3× 102 tc, bottom: 4.6× 106 tc.

7. Conclusions

The study of nonequilibrium relativistic plasma requires the use of kinetic equations.
Previous work was mostly focusing on various aspects of plasma kinetics without account-
ing for quantum degeneracy. Recent progress in the inclusion of Pauli blocking and Bose
enhancement factors in relativistic kinetic equations resulted in the discovery of a number
of new phenomena.

Firstly, the quantum condensation of photons in relativistic plasma was predicted to
occur as a transient phenomena during its thermalization, provided that the number of
photons in its initial state is exceeding the number of photons in the thermal equilibrium
and that binary interactions prevail over triple ones.

Secondly, avalanche thermalization was predicted to occur in superdegenerate rela-
tivistic plasma when electrons and positrons are entirely degenerate and a large number
of low energy photons is present. Since such photons are not able to produce pairs, the
process of thermalization is delayed until photons are upscattered to high enough energy to
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produce pairs so that the phase space of the electrons opens up, and quantum degeneracy
is released.

These phenomena may be potentially observed in the laboratory in future experiments
with ultraintense lasers interacting with solid targets or even in crossed laser beams. At the
same time, the main arena for such phenomena is relativistic astrophysics, where strong
gravitational fields provide confinement, and strong electromagnetic fields may generate
such plasma via non-perturbative quantum electrodynamical processes.

As demonstrated above, the Bose condensation of photons can occur when a large
number of photons is produced, and it interacts essentially via Compton scattering with
cold electrons. This can happen in compact astrophysical sources, especially during their
transient activity, for example in gamma-ray bursts. Avalanche thermalization may happen
when the phase space of fermions suddenly opens up in such completely degenerate
systems as white dwarfs or neutron stars, for example, during their gravitational collapse
or merging.
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