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Abstract: The dark energy from virtual gravitons is consistent with observational data on supernovas
with the same accuracy as the ΛCDM model. The fact that virtual gravitons are capable of producing
a de Sitter accelerated expansion of the FLRW universe was established in 2008 (see references).
The combination of conformal non-invariance with zero rest mass of gravitons (unique properties
of the gravitational field) leads to the appearance of graviton dark energy in a mater-dominated
era; this fact explains the relatively recent appearance of the dark energy and answers the question
“Why now?”. The transition redshifts (where deceleration is replaced by acceleration) that follow
from the graviton theory are consistent with model-independent transition redshifts derived from
observational data. Prospects for testing the GCDM model (the graviton model of dark energy where
G stands for gravitons) and comparison with the ΛCDM model are discussed.
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1. Introduction

As is known, more than 20 years ago, two research groups independently discovered
the accelerated expansion of the universe [1,2]. This effect was called dark energy (DE).
The nature of DE is still unknown. A big number of approaches were considered, including
quite unusual ones [3,4]. The most popular, apparently, is the hypothesis about scalar
fields of different kinds, filling the universe. A fairly complete bibliography (comprising
reviews) can be found, e.g., in [5–11]. One of the most popular theories based on the idea
of a scalar field is so-called quintessence [8,12–14]. The quintessence is dark energy in the
form of a time-varying scalar field which is slowly rolling down toward the minimum of
its potential. Another direction of the search attempted to generalize Einstein’s theory in
the classical and quantum way (see e.g., [11], and indeed an interesting attempt by [15]
to construct an emergent gravity in which “the space-time and gravity emergent together
from entanglement structure of an underlining microscopic theory”. Another interesting
direction of modern research is associated with attempts to construct a cosmology with a
variable cosmological constant [16].

For now, despite the large number of DE models, the community has settled on the
simplest choice, which is the hypothesis that the cause of acceleration is the cosmological
constant, which was introduced by Einstein himself into his theory more than 100 years
ago. Later, he gave up on it; however, after in [17] it was shown that the cosmological
constant is the energy of a non-gravitational vacuum, it again acquired the “rights of
citizenship”. In the last hundred years, the cosmological constant has appeared every time
astrophysics and cosmology have been faced with problems that, it seemed, could not be
solved otherwise. For example, at the end of 60-th, when quasars were discovered, and at
one time it seemed that they were concentrated near z = 2 [18–20], this effect was attempted
to be explained by the fact that there is a positive cosmological constant ([21–25]). Later,
quasars with large redshifts were discovered, and this hypothesis was dropped. As V.
Petrosian remarked [26]: “In the absence of strong evidence in favor of Lemaître models,
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we must again send back the Lemaître models and along with them the cosmological
constant until their next reappearance”. (page 28) 1 The next reappearance took place in
1998–1999 in connection with the discovery of dark energy. The next reappearance took
place in 1998–1999 in connection with the discovery of dark energy [1,2] 2. The community
has now opted for the ΛCDM model despite known problems with it. As is known, two
main problems with it are the 122 order of magnitude difference between the theoretical
and observational value of the cosmological constant and the coincidence problem (why
dark energy has appeared recently, why now?). A very significant argument in favor of
ΛCDM is the fact that it describes the observational data very well, despite these theoretical
contradictions. On the other hand, all observational data (with no exceptions) based on the
attempts to find the equation of state parameter w = p/ρ, where p and ρ are the pressure
and density of matter filling the universe. In the case of cosmological constant wΛ = −1,
all observational data show that w = −1, and this fact is considered by the community
as confirmation of the validity of the ΛCDM model; however, the virtual gravitons also
produce the de Sitter expansion with wG = −1 (Appendix B). To find the difference between
the models, it is necessary to measure w(z) (Section 5).

The dark energy at the epoch of last scattering can contribute to the observed CMB
anisotropies. We discuss it in Appendix E.

As we already mentioned, the goal of this paper is to compare the ΛCDM model
with the GCDM model where G stands for gravitons. To do so, we are going to calculate
distance modules for both models and compare them (Sections 3 and 4). We will see that
the GCDM model is consistent with SNe Ia observations with the same accuracy as the
ΛCDM model. At the same time, the GCDM model is free from the contradictions that the
ΛCDM model encounters.

2. Dark Energy from Virtual Gravitons

A graviton theory of dark energy was presented in [27]. A rigorous mathematical
foundation of the theory was given in [28,29]. The present paper is dedicated to the com-
parison of graviton theory with supernova observations only, so we do not touch upon any
theoretical problems. Nevertheless, we believe that it is necessary to remind the reader of at
least basic information of graviton theory. It was shown in [28] that quantum fluctuations
of the metric (gravitons) and their back reaction on the isotropic and homogeneous (on
average) background provide the mechanism for cosmological acceleration (Appendix A).
The dark energy effect is a consequence of the vacuum polarization and graviton creation
by the non-stationary gravitational field of the Universe. The energy density of gravitons is
a functional of the background geometry. In the non-empty Universe, the background ge-
ometry is defined by all contributing cosmological subsystems—by gravitons, matter, and
radiation. The combination of conformal non-invariance with zero rest mass of gravitons
(unique properties of the gravitational field) leads to a macroscopic quantum effect: con-
densation of gravitons in a quantum state with the wavelength of the order of the distance
to the horizon. The same unique properties of the gravitational field are the causes for the
appearance of dark energy in our era (Appendix D), and it answers the old unanswered
question “Why now?”.

In the process of the evolution of the Universe, the density of gravitons, because of their
condensation, starts dominating over the sum of the energy density of other subsystems
of the cosmological media. The self-consistent state of background and gravitons, which
evolves asymptotically, represents a self-polarized vacuum in the de Sitter space. The
regime of the de Sitter-like expansion is beginning to form in the current Universe. Three
new exact solutions for the one-loop quantum gravity were presented in [28]. The de Sitter
solution is one of these. All exact solutions can be found when the theory is presented as
Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy equations for moments of
the graviton spectral function (Appendix B).

In this paper, we show that dark energy of graviton origin, with the case of a zero
cosmological constant, is consistent with SNe Ia observational data with the same accuracy
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as the ΛCDM model. In terms of observational data, the difference between these models
lies beyond the accuracy of observations (Section 4). We show also that the appearance of
graviton DE during the modern epoch of the Universe evolution is a direct consequence
of the combination of conformal non-invariance with zero rest mass of gravitons, which
are unique features of the gravitational field (Appendix C). In Sections 5 and 6, we discuss
observational tests that might distinguish GCDM and ΛCDM models.

3. Distance Modules

To fit supernova data, we use distance modulus as follows

µ(z, h, Ω0) = 25 + 5 log(
3000

h
(1 + z)R(z)) (1)

R(z) =
z∫

0

dz′
_
H(z′)

(2)

_
H(z) = [Ωm(1 + z)3 + Ω(z)]

1/2
(3)

where µ(z, h) is distance modules, the Hubble constant H = h · 100 km/s ·Mpc. The first
term in Formula (3) represents the energy density of non-relativistic matter, and the second
one represents the energy density of DE as a function of z. In the case of cosmological
constant, Ω(z) =Ω0 = ΩΛ= const. In the case of DE, Ω(z) is the fraction of DE in the
total energy balance. Let us denote distance modules for the cosmological constant case
as µΛ(z, h, Ω0) Our program is to compare runs for µG(z, h, Ω(z)) and µΛ(z, h, Ω0) to
show that the difference between them is smaller than observational errors. We do not
include CMB input into Formula (3). The input of radiation into the current energy balance
is very small, it is of the order of Ωγ = 5.38 · 10−5 [30]. For example, for the Planck case
with ΩDE = 0.685 the input of radiation to the region z = 1000 is about 8%; it is reasonable
to assume that the effect of radiation on the dynamics of expansion can be neglected when
its contribution to the dynamics becomes no more than 8%.

The usual practice is to use the parameter of the equation of state w and determine
it from the observational data (see e.g., [1]). The equation of the state of dark energy is
unknown, therefore for lack of a better option, the dark energy equation of state can be taken
in the p = wε form (sometimes in more general forms such as p/ρ= w0+w1 · f(a)). After
that, one can look for the w parameter which provides the best fit. Usually, the supernova
data are used in combination with other data. All of them show that w ≈ −1, and this fact,
as it is generally accepted, leads to the idea that the DE effect is due to the cosmological
constant. In the case of dynamical DE (and in the case of gravitons, particularly), the second
term of Formula (3) must follow from the solution of Einstein’s equations for the model. In
the case of cosmological constant, the Friedmannian equations for the flat Universe have a
well-known exact analytical solution (see e.g., [31])

a(t) =(Ωm/ΩΛ)
1/3
(

sin h
[
3
√

ΩΛHt/2
])2/3

This allows us to calculate all values of interest analytically. Unlike the cosmological
constant case, there is no exact analytical solution to the system consisting of gravitons
and non-relativistic matter; thus, we must go for the numerical integration of Einstein’s
equations (in our case they are the equations of the BBGKY chain) for the graviton model.

4. GCDM vs. ΛCDM

In this section, we will show that the difference between µΛ(z, h, Ω0) and µG(z, h, Ω(z))
for all cases of interest is less than the observational errors in SNe Ia database. In other
words, we will show that both ΛCDM and GCDM are statistically indistinguishable. As it
was mentioned by the Planck team [32], there is a “tension” between WMAP and Planck
data. In accordance with WMAP, today’s value of DE is Ω0 = 0.721 [33]; meanwhile, Plank’s
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data give Ω0 ≈ 0.685 [32]. Recent data obtained from the analysis of the large-scale structure
give Ωm= 0.339± 0.032/0.031 for the ΛCDM model [34]. The combination of these data
with available baryon acoustic oscillation, redshift space distortion, SNe Ia data and with
Planck CMB lensing leads to the following content of the nonrelativistic matter and Hubble
constant in the universe for ΛCDM model [34] Ωm= 0.306± 0.004/0.005; h = 0.680±
0.004/0.003; this leads to the following DE contents, which we need for our calculations:
Ω0= 0.694. We consider three cases Ω0 = 0.721 (Bennett et al., 2012), Ω0 = 0.685 [32]
and Ω0 = 0.694 [34]. In this work, we use Union 2.1 compilation from the Supernova
Cosmology project [35,36]. A direct link to the observed supernova data used in calculations
is shown in the reference [35].

We calculate distance modules µ(z, h, Ω0) using Formula (3). As we already men-
tioned, in the distinction of the generally accepted method of calculation of µ(z, h, Ω0)
which uses the hypothesis on the equation of state parameter of DE p = wε, with the
following determination of w, we calculate Ω(z) directly by numerical integration of Ein-
stein equations presented in the form of BBGKY chain (Equations (A7) and (A8)). In such
an approach, the cosmological constant case corresponds to Ω(z) =Ω(0) =Ω0= const in
Formula (3); thus, we must compare µΛ(z, h, Ω0) calculated for Ω(z) =Ω0= const (cos-
mological constant) with µG(z, h, Ω(z)) calculated for Ω(z), i.e., graviton dark energy.

Our computational model has only one free parameter Ω0
DE which is a fraction of the

graviton energy in the total energy balance at the start of the calculation run, (Appendix C).
Each run started from some value of Ω0

DE and finished when Ω(z) becomes equal to Ω0.
Attention. In our calculations, the scale factor is increasing from the past to the future, i.e.,
from a = 1 to a = atoday, where atoday corresponds to the observed today DE fraction of the
full energy, which we denote as Ω0 ≡ ΩDE(z = 0). First, we conducted a series of runs to
localize the interval of Ω0

DE where the statistical deviation between calculated distance
modulus and their values from the database for SNe Ia (Formulas (1)–(3) above) is minimal.
We found that the interval 0.000125 < Ω0

DE < 0.000162 provide the statistical deviation
is about 1 sigma. Second, we found the best fitting Ω0

DE separately for the three cases
Ω0 = (0.721, 0.694, 0.685).

We ran our numerical simulations for the following initial conditions, Ω0
DE= 0.000162;

0.000154; 0.000142; 0.000125; these runs automatically lead to the following initial z0 for
all Ω0 chosen (see Table 1).

Table 1. Calculated Ω0 and z0 for different initial Ω0
DE.

Ω0
DE Ω0 z0

0.000162
0.721 1058
0.694 1000
0.685 982.6

0.000154
0.721 1106–1108
0.694 1047–1048
0.685 1028–1029

0.000142
0.721 1211–1212
0.694 1145–1146
0.685 1124–1125

0.000125
0.721 >1318
0.694 1297–1298
0.685 1272–1275

The SLS is situated at z ≈ 1100 with the width of this region ∆z = 90 [37]; thus, we
get the initial conditions for such runs in the following regions of interest.

The right column in the Table 1 shows what the initial values are for the observational
values of dark energy (second column). The first column shows four randomly selected
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EDEs, each markedly less than 0.009. We present here the results of numerical simulation for
the Ω0

DE= 0.000154 for all three cases Ω0= 0.685, Ω0= 0.721 and Ω0= 0.694. The results
for all three other cases are similar.

To start with, we choose the initial value of the energy density of DE as Ω0
DE= 0.000154

at the initial point z0 ≈ 1028 for Ω0= 0.685. Such a run produces Ω(z) shown on the
Figure 1. For all figures below Ω(z) is the fraction of DE in the total energy balance.
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Graviton DE as a function of z is shown in Figure 2 for the region of interest, i.e., from
z = 0 to z = 2, where supernovas observed are situated:
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Figure 2. Graviton DE as a function of z for Ω0= 0.685 in the region 0 ≤ z ≤ 2.

To compare Ω(z), obtained by numerical integration of BBGKY chain Equations (A7)
and (A8) with the observational data, a high accuracy analytical approximation of it in the
whole interval 0 ≤ z ≤ 1028 was obtained in the form of

Ω(z) =
α + γz + εz2 + ηz3 + ιz4

1 + βz + δz2 + ςz3 + θz4 ,

where
α = 0.685, β = 0.62974, γ =−0.046398, δ = 0.10038, ε = 0.109381, ς = 0.115417, η = 0.0058062,

θ = 0.0057869, ι = −4.135292 × 10−6

Such Ω(z) generates distance modules which are showed together with the observa-
tional errors in Figure 3.
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Figure 3. Solid curve is the distance modules µG(z, h) for graviton DE run with h = 0.7 for the case
Ω0= 0.685. The blue bars show supernova positions together with observational errors.

The Figure 4 below visually demonstrates the fact that the difference ∆ between
ΛCDM and GCDM models is less than observational errors. The same fact follows from
the consideration of statistical sums (chi-square criterions). The fit proceeds by minimizing
the χ2 statistical criterion

χµ
2 =

N

∑
i=1

(µi − µi
obs)

2

σµ,i
2

where the sum is over all supernova defined in the Union 2.1 compilation [35,36]; µi
obs is

the ‘observed’ distance modulus to the i-th supernova in the Union 2.1 of supernovas; σµ,i is
the observational error (standard deviation) in the value estimation µi

obs; µi is a theoretical
estimation for the same distance as µi

obs. The statistical sum S is defined as

S =χµ
2/2
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Figure 4. The solid curve ∆(z) =µG(z, h)−µΛ(z, 0.685 , h) is difference between distance modules
of GCDM and ΛCDM models for Ω0= 0.685. The circles are the observational errors. One can see
that the difference between these models is below all observational errors. The distance modules for
the cosmological constant µΛ(z, 0.685 , h) and for gravitons were calculated by Formulas (1)–(3) for
h = 0.7 3.

If the theoretical estimation is correct, and experimental errors of observed values
µi

obs are also correct (being independent of each other), and normally distributed, then
χµ

2 follows the Chi-squared distribution [38]. When the number of members in the sum
is equal N, the average (mean) value of χµ

2 is equal to N, and the variance is equal to
2 N [39]. Practically, if N ≥ 50, at its extremum, the Chi-squared distribution becomes very
close to the normal distribution. In other words, the probability that the estimated χµ

2 will
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deviate from the average value, N, on more than three-sigma, ±3·sqrt (2 N), is about 100%
− 99.7% = 0.3%. Mostly, with the probability 68%, the deviation should be observed within
one-sigma interval about the mean value. To be exact, when one is fitting experimental
data with a model having m free parameters, the value of χ2 in average reduces by the
factor (N − m)/N [40]. In our case we used models with only one fitting parameter (m = 1)
and many observations (N = 580), so we can safely neglect this factor in the chi-squared
statistics. For the Ω0= 0.685 case of cosmological constant we get the minimal statistical
sum S0.685

Λ = 284.52 for h = 0.7.
In this case the standard deviation of the statistical sum for ΛCDM model is equal to

σΛ
0.685 =

√
S0.685

Λ = 16.87

The calculated statistical sum for GCDM model and its standard deviation here are

S0.685
DE = 283.68 andσ0.685

DE = 16.84

The difference SΛ
DE − S0.685

DE = 0.84 << σ0.685
DE , σ0.685

Λ . In other words, these two models
(ΛCDM and GCDM) are indistinguishable, so that the visual result shown on the Figure 5
is confirmed by direct calculation of statistical sums.
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Figure 5. Statistical sum S(h) as a function of h. The minimal statistical sum for DE in this case is
S0.685

DE = 283.68 with h = 0.709. Such h occupies an intermediate position between the typical values
of h given in the Hubble tension problem [32,41,42].

The best fit to the cosmological constant model Ω0 = 0.721 and h = 070 4 leads to
statistical sum and the standard deviation as follows:

S0.721
Λ = 281.125 (4)

σ0.721
Λ =

√
S0.721

Λ = 16.77 (5)

For the Ω0= 0.721 case, the calculations started at the point z0= 1106. Numerical
integration leads to the dark energy distribution showed on the Figure 5.

Graviton DE if Figure 6 shown for the same region of interest 0 < z < 2 as in Figure 4
but for Ω0= 0.721; this dependence obtained by numerical integration of the BBGKY chain
may be described by the following simple approximation

Ω(z) = 1
α+βz+cz2

α = 1.389213, β = 0.9601587, c = 0.00370186
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The dependence of the statistical sum on the Hubble constant is illustrated in Figure 8 for
the Ω0 = 0.721 case.
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In this case, we get
σ0.721

DE = 17.03 (6)

Comparing Formulas (4) and (5) with Formula (6), we get an expected result of

S0.721
DE − S0.721

Λ = 8.825 < σ0.721
DE , σ0.721

Λ

Again, the difference between statistical sums less than standard deviations which
means that both cases statistically indistinguishable. Visually, this fact can be seen in
Figure 9.
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Figure 9. Same as in Figure 3 but for case of Ω0 = 0.721. Again, one can see that the difference
between graviton and cosmological constant distance modules is less than observational errors.

Similar to the Figure 9, in the Figure 10 below shown the case Ω0= 0.694 from the
Table 1, corresponding to z0= 1047–1048, Again the difference between ΛCDM and GCDM
models is less than the observational errors shown as circles.
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Figure 12. Same as Figure 11 but a zoom-in for the area of interest 0 < z < 3 for Ω0= 0.694.

The behavior of Ω(z) on the interval 0 ≤ z ≤ 3 is shown in Figure 12.
The minimal statistical sums for the case Ω0= 0.694 are S0.694

DE = 284.9 and S0.694
Λ = 283.0,

respectively. Obviously, S0.694
Λ − S0.694

DE = 1.9� 1σ, where 1σΛ = 16.8 and 1σDE= 16.9. Thus,
in this case we also have observational errors greater than the difference between models.

Thus, the results of this section confirm the fact that ΛCDM and GCDM models are
statistically indistinguishable; moreover, they show that the Hubble constants h providing
minimums for statistical sums are 0.709, 0.711, 0.714 for the cases considered which are
close to the [43] result Ho = 69.8 ± 0.6 (stat) ± 1.6 (sys) km/s Mpc.

5. What Are the Prospects for the GCDM Testing and Comparison with
ΛCDM Model?

We see at least two possible ways to test the difference between GCDM and ΛCDM
models in the frame of supernova data. One of them is comparison of equations of state for
GCDM and ΛCDM models. And the second one is comparison of transition redshifts at
which the deceleration of expansion changes to acceleration.

Our program computes both energy density and pressure of GCDM from the start z0
to the end when Ω(z) =Ω0. So, we can get the dependence p(ρ) for GCDM and compare
it with p = −ρ for ΛCDM model. Figure 13 shows this comparison for the Planck case
Ω0= 0.685.
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Figure 13. Statistical sum S(h) as function of h for the case of Ω0= 0.694. Here, minimal value of the
statistical sum S0.694

DE = 284.862 located at h = 0.711.

Below, in the Figure 14 shown the differences in the equation of state between GCDM
and ΛCDM models.
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Figure 14. The solid line is the equation of the state of the GCDM model and dash-line is that for
ΛCDM model. Both start from the same point where p = −ρ (in accordance with our choice of
initial conditions).

Obviously, to compare these two models we must have w(z) determined observa-
tionally. Usual practice is to suggest that w = const and to look for this constant from
observational data.

In attempt to consider w 6= const, Planck Collaboration [32] tested the model
w = w0+wa(1− a) where a is a scale factor [44]. In z terms it reads

w = w0+wa(1− a) = w0+wa ·
z

1 + z
(7)

It was found in [32] that

w0 = −1.04−0.69
+0.72; wa< 1.32 (95%; Planck + WP + BAO) (8)

As we see from Equation (8), w(0) can significantly differ from −1. Thus, even light
modification of the model Equation (7) can be used for the successful determination w(z)
and comparison GCDM and ΛCDM models.

6. Transition Redshifts

Recall that the Friedmannian equation for deceleration/acceleration in our case reads

q = −
aH2 =

κ

6H2

[
ρde+3pde + ρm

( atoday

a

)3
]

(9)
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In the case of cosmological constant, κρde = Λ, κpde= −Λ, Equation (9) leads to the
well-known result that the redshift zq=0 where deceleration is changed for the acceleration,
i.e., where q = 0 reads

1 + zq=0 =

(
2ΩΛ

1−ΩΛ

)
1/3

For parameters ΩΛ= 0.72 that we use in our simulations one gets zq=0 ≈ 0.73. For the
Planck parameters ΩΛ= 0.685, we obtain zq=0 ≈ 0.63. So, for the ΛCDM model one gets
zq=0 ≈ 0.63–0.73 considering a tension between WMAP and Planck data. For the GCDM
model we have to expect [28]

1 + zq=0 ≈
(

Ω0

1−Ω0

)1/3

Which leads to zq=0= 0.37 for WMAP data and zq=0 = 0.29 for the Planck data. Now
what we get from our numerical simulations. Figure 15 shows the case Ω0= 0.72.
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Below, in Figure 16 shown the case Ω0= 0.685.
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Direct measurements of the transition point parameter zq=0 were made by several
authors (see below). All these works must be divided into two categories. The first
group of authors directly used the ΛCDM model in their studies. The second group of
authors considered the model-independent approach. As expected, the first group have
obtained zq=0 close to numbers following from [45] zq=0 < 0.7; ref. [46] found 0.82 ± 0.08;
ref. [47] zq=0 = 0.74± 0.05; ref. [48] zq=0 = 0.7; ref. [49] zq=0 = 0.7; ref. [50] zq=0 = 0.65;
ref. [51] zq=0 ≈ 0.78+0.08

−0.27. The second group of authors (model-independent results)
found that zq=0 is much closer to our numbers; they are [52] zq=0 = 0.35± 0.07; ref. [53]
zq=0 ≈ 0.29+0.07

−0.06; ref. [42] zq=0 ≈ 0.43± 0.07; ref. [54] zq=0 ≈ 0.3; ref. [55] zq=0 = 0.4± 0.1
(99.9% confidence level).
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The observational determination of transition redshifts is an ill-defined problem due to
the necessity to measure the second derivative of scale factor

..
a. Such a procedure produces

significant errors that can be seen from the above references. Nevertheless, the increase in
accuracy with the model-independent approach to measuring transition redshifts can help
to make a choice between these models.

7. Conclusions

The GCDM model of graviton dark energy is consistent with the supernova obser-
vational data with the same accuracy as the ΛCDM model. The graviton DE naturally
explains the reason why the DE appears during the matter dominated era. The transition
redshifts that follow from graviton theory are consistent with the model independent
transition redshifts found from observational data. The way to find out which of the
models (GCDM or ΛCDM) better fits the observational data lies in the need to abandon the
practically standard assumption that w = const and consider w = w(z) when analyzing
observational data. Another prospect for evaluating the GCDM model and comparison
with ΛCDM lies in increasing the accuracy of transition redshifts measurements.
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Appendix A. Outline of Graviton Theory of Cosmological Acceleration

We operate in the framework of one-loop quantum gravity because the theory cannot
be renormalized in higher loops; however, the effect of condensation of gravitons is created
by general properties of gravitational field (conformal non-invariance and zero rest mass of
gravitons) 5. The results of one-loop theory in which only a gravitational field is considered,
are mathematically robust due to the finiteness of one-loop quantum gravity. In our case,
the finiteness is provided by the compensation of diverged contributions of gravitons and
ghosts to observable quantities [27].

Our original model of the empty Universe consists of the background and gravitons
only 6. In the self-consistent theory of gravitons, the macroscopic metric is described by
regular Einstein equations

Rk
i −

1
2

δk
i R = κ < Ψ

∣∣∣∣T̂k
i(grav) + T̂k

i(ghost)

∣∣∣∣Ψ > . (A1)

The energy momentum tensor (EMT) of gravitons T̂k
i(grav) and ghosts T̂k

i(ghost) should be
obtained by solving operator equations of motion and averaging over a quantum ensemble
|Ψ > . Note that the average EMT of nontrivial ghost fields interacting with gravity must
appear in the right-hand side Equation (A1) because there are no gauges that eliminate
the diffeomorphism group degeneracy in the General Relativity. Our gauge selection was
based on two principles. First, both background and gravitons should be considered in
the same reference frame. Second, the gauge should provide automatically the one-loop
finiteness. We found the only gauge that satisfies both conditions come from the set of
synchronic gauges.
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Our calculations were done in the frame of one-loop approximation over quantum
fields. In the flat isotropic Universe, Equation (A1) read

3H2 = ρg ≡
1
16

D +
1
4

W1, −2
.

H − 3H2 = pg ≡
1

16
D +

1
12

W1, (A2)

where H =
.
a/a is the Hubble function and a(t) is the scale factor. Here D and W1 are

moments of the spectral distribution function of gravitons that is renormalized by ghosts.
The moments are:

D =
..

W0 + 3H
.

W0,

Wm = ∑
k

k2m

a2m

(
∑
σ

< g
∣∣∣∣_ψ+

kσ

_
ψkσ

∣∣∣∣g > − < gh
∣∣∣∣θkθk

∣∣∣∣gh >

)
, m = 0, 1, 2, . . . , ∞.

(A3)

Here and later, the dots are time derivatives. Heisenberg’s equations for Fourier
components of the transverse 3-tensor graviton field and Grassman ghost field are:

..
_
ψkσ + 3H

.
_
ψkσ +

k2

a2

_
ψkσ = 0 (A4a)

..
θk + 3H

.
θk +

k2

a2 θk = 0 (A4b)

Considering of normalization of fields in accordance with Equations (A2) and (A3),
canonical commutation relations for gravitons and anticommutation relations for ghosts read

a3

4 [

.
_
ψ

+

kσ,
_
ψk’σ′ ]− = −ih̄δkk’ δσσ′ ,

a3

8 [
.
θk, θk’ ]+ = − a3

8 [
.
θk, θk’ ]+ = −ih̄δkk’ .

(A5)

Equations (A2)–(A4) and quantization rules Equation (A5) have been obtained by
the path integral [56,57]; they have been obtained from the class of synchronic gauges
that automatically provide one-loop finiteness of observables. One-loop effects of vacuum
polarization and particle creation by background field are contained in Equation (A4) for
gravitons and ghosts; these equations are linear in quantum fields, but their coefficients
depend on the non-stationary background metric. Correspondingly, in the background
Equation (A2) we keep the average values of bilinear forms of quantum fields only. In this
model, quantum particles interact through a common self-consistent field only.

In this work, we are examining self-consistent theory of gravitons and ghosts with the
wavelengths of the order of distance to the horizon, i.e.,

k2

a2 ≈ H2, k2

a2 ≈
∣∣∣ .
H
∣∣∣. (A6)

Here H =
.
a/a is the Hubble function, a(t) is a scale factor, and upper dotes denote time

derivatives. When describing modes Equation (A6), one should keep in mind two things.
First, in the area of the spectrum Equation (A6), there are no reasonable approximations,
which could be used to solve Friedmannian equations, if the law of cosmological expansion
a(t), H(t) is not known in advance. Second, the quantum gravity processes of vacuum
polarization, spontaneous graviton creation by self-consistent field and graviton–ghost
condensation are the most intensive in this region of spectrum. From Equation (A6) it is
also obvious that the threshold for quantum gravitational processes involving zero rest
mass gravitons and ghosts is absent; these processes at the scale of horizon occur at any
stage of evolution of the Universe, including the modern Universe. The theory that allows
quantitatively describe such quantum gravitational effects is constructed by creation of
the Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy (BBGKY-chain). Now, the BBGKY
chain can be created for the moments a(t)Wn of spectral function Wk.
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Appendix B. Bogoliubov–Born-Green–Kirkwood–Yvon Hierarchy (BBGKY Chain)

In the presence of non-relativistic matter M it reads [27,28]

.
D + 6HD + 4

.
W1 + 16HW1 = 0, (A7)

...
W n + 3(2n + 3)H

..
Wn + [ 1

16 (4n2 + 6n + 3)D + (n + 1)2W1 + (8n2 + 18n + 9) M
2a3 ]

.
Wn

+ n
3

{
1
2

.
W1 + H

[
n2

2 D + (2n2 + 3n + 3)W1 + (8n2 + 18n + 9)M
a3

]}
Wn

+4
.

Wn+1 + 8(n + 2)HWn+1 = 0,

(A8)

n = 1, . . . , ∞. (A9)

where M is mass of the non-relativistic matter in the Universe. Equations (A7) and (A8)
form the BBGKY chain; each equation of this chain connects the neighboring moments.
Equations (A7) and (A8) must be solved jointly with the Einstein Equation (A2). The set of
Equations (A2), (A7) and (A8) (to which the definition

.
a/a = H is added) can be solved

numerically with initial conditions determined by the scale factor, moments of the spectral
function and their derivatives

D(0); Wn(0);
.

Wn(0);
..

Wn(0) n = 1, . . . , ∞. (A10)

The initial condition for the Hubble function is calculated via the equation of the
constraint following from Equations (A7) and (A8)

H(0) = +

√
1

48
D(0) +

1
12

W1(0) +
M
3

(A11)

As follows from Formula (A9), in a general case we must have an infinite array of
initial conditions to solve the BBGKY chain. We can, however, use one of the exact solutions
(see below) which allows us to reduce the problem of initial conditions to just one parameter
which is initial value for the energy density of DE (Section 5). For the empty space (M = 0),
the BBGKY chain has three exact solutions, which are the attractors [27]. One of these
attractors is the exact de Sitter solution to Equations (A7) and (A8) for the empty (M = 0)
space; it reads

H2 = 1
36 W1, D = − 8

3 W1, Wn+1 = − n(2n+3)(n+3)
2(n+2) H2Wn, a = a0eHt n ≥ 1 (A12)

where H = const, Wn = const, D = const.
The substitution of Equation (A12) to Equations (A7) and (A8) leads to the equation of

state of GCDM model, which reads

−pg = ρg =
W1

12κ
i.e., wG =

pg

ρg
= −1 (A13)

The explicit form of the equation of state reads [27]

−pg = ρg =
3h̄NgH4

8π2 (A14)

Here Ng is the number of gravitons in the modern Universe 7. Note also that as was
stated above we deal with the horizon size wavelengths. From Equation (A12) we get
Equation (A15) below (see the details in [27])

λ ∼ a
k
∼
√

W1

|W2|
=

√
0.3
H

(A15)
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The important consequences follow from Equation (A14). The equation of state (A14)
is invariant with respect to Wick rotation t = iτ; it follows from the fact that RHS of
Equation (A14) depends on the fourth degree of Hubble constant H4 and the equation
of state −pg = ρg is the invariant with respect to the transition from Lorentzian space of
our space-time to the Euclidian spacetime and vice versa; this invariance underlies the
instanton theory of dark energy [57].

Appendix C. Integration of BBGKY Chain

As was shown by [27], the virtual gravitons produce the de Sitter expansion of
the empty (with no matter) space (see also Appendix A). To investigate the model of
the Universe filled with the matter we have to numerically integrate the BBGKY chain
(Appendix B).

When the BBGKY chain is numerically integrated, we face two problems. The first
is that the chain is infinite (i.e., in Equations (A7) and (A8) n→ ∞ ), so we should cut the
BBGKY chain at some n ≤ N. The second problem is that the initial conditions needed to
integrate Equations (A7) and (A8) are unknown, so here we inevitably face the challenge of
having to make a physical hypothesis about the initial conditions. When the BBGKY chain,
Equations (A7) and (A8), is numerically integrated we need define the initial conditions at
t = 0, which comes to 3 N + 1 free parameters (the set of differential Equations (A7) and
(A8) requires 3 N + 1 initial conditions). Even with N = 5 (our choice for the cutoff), it is an
exceptionally large space to explore to find the best fit with observations. We decided to
solve the problem of the large number of initial conditions by utilizing the exact de Sitter
solution for the empty space, Equation (A12), for which the BBGKY chain has only one free
parameter ΩEDE due to the recurrence in Equation (A12). As we will see further the EDE
number is the only one initial condition that the computational program use for integration
of Equations (A7) and (A8). We modified the BBGKY for the empty space, introducing a
matter component as it can be seen from Equation (A8). We do not know the exact solution
of the BBGKY chain with the matter component included, but we can integrate the chain
numerically and see the result. The computer calculation shows that the model with the
matter included still produces de Sitter-like behavior at small z, regardless of the small
variations in initial matter component; thus, the de Sitter behavior acts as an attractor, and
this result is understandable, because the end state is a state where the matter is no longer
a significant player.

Regarding the choice of the number of terms in BBGKY chain, we found that the
calculation of the N = 5 is no longer much different from the calculation for the N = 6 (the
difference is about 2–3% which is much less than observational errors). That is why we’re
cutting off the integration chain on the N = 5. We start calculations at the moment t = 0 and
take the initial scale factor a(t = 0) ≡ a(0) = 1. As we mentioned above, we continue the
calculation until the calculated value of dimensionless energy density of DE, Ω(z), becomes
equal to the current observational value of the energy density of DE Ω(z = 0) = Ω0. In
what follows we omit the DE index, so that by the letter Ω0, we denote the dimensionless
content of DE at the end point of given calculation, and Ω(z) denotes the dimensionless
content of DE at the current point z. Respectively, the energy density of nonrelativistic
matter today is Ωm = 1−Ω0. In accordance with Equation (A13), the energy density of DE
is defined by the value of W1= 12κρg. So, variations of W1(0) are in fact variations of Ω0

DE.
So that variations in EDE are the variations in the initial conditions for the integration of
the set of differential Equations (A7) and (A8). As it can be seen from Section 4, the initial
value of W1(0) providing the best fit for the supernova observations for all cases of interest
corresponds to such value of the EDE which is consistent with CMB anisotropy and located
in the vicinity of SLS. The time in formulas above is defined in the time unit of the Hubble
constant. We used time step of 4 years in the numerical integration, comprising about
3 billion steps.
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Appendix D. Why Now? Why the Dark Energy of Graviton Origin Should Appear in
the Matter-Dominated Era?

The answer to the question “Why Now?” follows directly from the unique features of
gravitational field, conformal non-invariance and zero rest mass of graviton ([45]).

We first need to go back to Equation (A4a), which must be rewritten in terms of proper
time η =

∫
dt/a. In the terms of proper time, Equation (A4a) takes the form

φ′′ +
(

k2 − a′′/a
)

φ = 0 where φ = ψ/a (A16)

Prime symbol defines d/dη and for simplicity kσ indexes operator signs were omitted

in ϕkσ and
_
ψkσ. There exist only two states of substances filling the Universe, the difference

between which is not “felt” by the graviton. The first substance is the modern matter,
the equation of state of which is p = 0 and its expansion law is a = const ∗ η2. The
second substance is the dark energy with the equation of state p = −ρ and expansion
law a = −1/(Hη). Only in these two substances a′′/a are the same: in both cases they
are a′′/a = 2/η2; this means the graviton Equation (A16) is the same for both p = 0 and
p = −ρ substances. The two solutions form the basis of all solutions for the second order
differential Equation (A16); this fact might explain why DE of graviton origin with the
equation of state p = −ρ “prefers” to appear in the modern universe filled with a matter
with the equation of state p = 0. Only from the present state of the universe with the
equation of state p = 0 do gravitons “freely pass” into the state of the de Sitter expansion
with the equation of state p = −ρ, without “feeling” the difference between the regimes.

Note that the term a′′/a is a consequence of conformal non-invariance of gravitational field.
As it was described by [58,59], the Hubble tension “might be explained by the presence

of an exotic dark-energy density in the early Universe of the type that might arise in some
of these ax verse scenarios”. Note that the graviton dark energy can appear exactly at
the “right time” when “the exotic dark energy” must appear to solve the Hubble tension
problem. Therefore, for now, our choice is to limit ourselves to the EDE estimates based on
the Ω0

DE < 0.009 limit.

Appendix E. About Early Dark Energy

The cosmological history of the Universe is well-known. In accordance, e.g., to [31],
the Universe has gone through three distinct eras: radiation dominated, z ≥ 3000; matter-
dominated 3000 ≥ z ≥ 0.5 and dark energy dominated z ≤ 0.5. In terms of z, this means
that the appearance of the “pure” matter-dominated era one can expects by z ≤ 1000. In
other words, the birth of DE takes place in the modern era of the evolution of the Universe
and probably near z ≈ 1100; however, there is nothing to prevent the DE from appearing
anywhere in between 1100 ≥ z ≥ 3.5 (at z0 < 3.5, the change in the sign of deceleration to
acceleration ceases to satisfy the observational data, see Section 6). The following idea may
serve as some argument in favor of the appearance of DE in the region z ≈ 1100. There is
no reason why DE should not appear at the first opportunity, i.e., in the area of z ≈ 1100;
moreover, note that z ≈ 1100 is a special place because the surface of the last scattering
(SLS) is situated at the same place [37]. Thus, we can expect of the appearance of graviton
DE in the vicinity of SLS; it is here the appearance of a noticeable amount of DE should be
observable due to appearance of anisotropy in CMB. The following citation is from [32]:
“The presence or absence of dark energy at the epoch of last scattering is the dominant
effect on the CMB anisotropies”. Such early dark energy was named by EDE (see [60]).
The analysis of CMB anisotropies produces the most precise bounds on EDE [61–66]. As
noted by [32], the upper limit on the EDE is ΩEDE < 0.009 (95%; Plank + WP + highL).
Obviously, the initial value of DE that we use in our calculations Ω0

DE corresponds in its
meaning to the concept of early dark energy (EDE) introduced hypothetically in the listed
above works. Therefore, we start our calculation assuming that the initial condition for DE
at the start is below of 0.009. We start our numerical integration with the initial scale factor
a0= 1. As calculation progresses, the scale factor is increasing. The computer “stops” when
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DE is equal to its present value ΩDE(0) =Ω0. At this moment, the scale factor is equal to
its modern value a = atoday, and this means that the initial z0 is equal to atoday − 1. While
taking the estimation of Ω0 from different groups of observers [32–34], we found that the
initial z0 are always grouped near the region of SLS (see Table 1 in Section 4).

Notes
1 Quoted from [67].
2 In fact, the history of the cosmological constant from its inception in 1917 to the present day is an exciting “astronomical adventure

novel,” detailed in a beautifully written historical and astronomical study [67].
3 It worth to note that even big enough Ω0

DE= 0.01Ω0 at the point z0= 3.6 leads to a picture similar to Figure 4.
4 The tension between numerical value of Hubble constant H was a subject for intense discussion between two research groups [68,69].

The last publication of Freedman [43] shows that the last measurement of h gives H0 = 69.8 ± 0.6 (stat) ± 1.6 (sys) km/s/Mpc.
Note that we obtained h = 0.71 as a number minimizing the statistical sums for the cosmological constant for all three cases,
which is closed to Freedman’s h = 0.698.

5 Hypotheses on the possibility of graviton condensate formation in the Universe was proposed in [70,71] in a general form. A
description of these effects by an adequate mathematical formalism is the problem at the present time.

6 In our current paper, we added the non-relativistic matter with the equation of state p = 0 (see below).
7 This equation of state is superficially similar to what comes from conformal anomalies. As was shown in [72], quantum corrections

to the Einstein equations due to zero oscillations can provide a self-consistent de Sitter solution in the vicinity Planck’s value
curvature (see also [73]).
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