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Abstract: The overall characteristics of the solar and atmospheric neutrino oscillations are approx-
imately consistent with a tribimaximal form of the mixing matrix U of the lepton sector. Exact
tribimaximal mixing leads to θ13 = 0. However, the results from the Daya Bay and RENO experi-
ments have established, such that in comparison to the other neutrino mixing angles, θ13 is small.
Moreover, the atmospheric and solar mass splitting differ by two orders of magnitude. These sig-
nificant differences constitutes the great enthusiasm and main motivation for our research herein
reported. Keeping the behavior of U as tribimaximal, we would make a response to the following
questions: at some level, whether or not the small parameters such as the solar neutrino mass splitting
and Ue3, which vanish in a new framework, can be interpreted as a modified FL neutrino mass model?
Subsequently, a minimal single perturbation leads to nonzero values for both of them? Our minimal
perturbation matrix is constructed solely from computing the third mass eigenstate, using the rules of
perturbation theory. Let us point out that, unlike other investigations, this matrix is not adopted on
an ad hoc basis, but is created following a series of steps that we will describe. Also in compared to
the original FL neutrino mass model which generalize it by inserting phase factors, our work is more
accurate. Subsequently, we produce the following results that add new contributions to the literature:
(a) we obtain a realistic neutrino mixing matrix with δ 6= 0 and θ23 = 45◦; (b) the solar mass splitting
term is dominated by an imaginary term, which could induce the existence of Majorana neutrinos,
along with explaining a large CP violation in nature; (c) the ordering of the neutrino masses is normal;
however, at the end of the allowed range, it becomes more degenerate (97%); (d) we also obtain the
allowed range of the mass parameters, which not only are in accordance with the experimental data
but also allow falsifiable predictions for the masses of the neutrinos and the CP violating phases
which none of these results has been achieved in the original FL neutrino mass model. Finally, let
us emphasize that the results obtained by our framework here are much more efficient compared to
those obtained in previous works in terms of currently available experimental data (namely, the best
fit column).

Keywords: neutrino masses; Friedberg-Lee model; perturbation theory; CP violation

1. Introduction

One of the remarkable observational achievements associated with neutrinos has been
reported by neutrino oscillation experiments [1–5], which establish the non-zero neutrino
masses. Concretely, that data yields information regarding neutrino masses and mixing,
which can be summarized as in Table 1 [5].
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Table 1. The experimental data for the neutrinos mixing parameters. When multiple sets of allowed
ranges are stated, the upper row corresponds to normal hierarchy and the lower row to inverted
hierarchy.

Parameter The Experimental Data 3σ Range The Best Fit (±1σ)

∆m2
21[10−5 eV2] 6.94–8.14 7.30–7.72

|∆m2
31|[10−3 eV2]

2.47–2.63 2.52–2.57
2.37–2.53 2.42–2.47

sin2 θ12 3.02–3.34 0.292–0.317

sin2 θ23
0.434–0.610 0.560–0.588
0.433–0.608 0.561–0.568

sin2 θ13
0.02000–0.02405 0.02138–0.02269
0.02018–0.02424 0.02155–0.02289

δ
128◦–359◦ 172◦–218◦

200◦–353◦ 256◦–310◦

In the standard parametrization, the lepton mixing matrix is given by [6–8],

UPMNS =

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 eiρ 0 0
0 1 0
0 0 eiσ

, (1)

where cij ≡ cos θij and sij ≡ sin θij [for i, j = (1, 2), (1, 3) and (2, 3)]. The phase δ is called
the Dirac phase, analogous to the CKM phase, and the phases ρ and σ are called the
Majorana phases and are relevant for Majorana neutrinos.

Experimental results have therefore shown that θ13 does not vanish but is very small
in comparison to the other neutrino mixing angles. This recent observation ushered the
possibility of leptonic CP violation, although the CP violating phase δ is not a well measured
quantity. Furthermore, there is not any data about the magnitude of the Majorana phases
ρ and σ. Moreover, as it has been shown, the solar mass splitting is about two orders
smaller than the atmospheric one. The sign of the atmospheric mass splitting has not
been determined yet. Therefore, the query is that whether the neutrino mass spectrum
either does respect the normal ordering or does obey the inverted ordering. Moreover,
the absolute neutrino mass scale is unknown. Theoretically, an important question is
that how we can define this distinguished neutrino mixing pattern such that it would be
perfectly feasible to obtain probable values of unknown parameters along with the other
measured ones.

The tribimaximal neutrino mixing matrix UTBM is one of the well-known neutrino
mixing matrices [9–11], which is given by

UTBM =


−
√

2
3

1√
3

0
1√
6

1√
3
− 1√

2
1√
6

1√
3

1√
2

. (2)

The general exact tribimaximal mixing matrix UTBM, regardless of the model, fixes the
element (Ue3)TBM = 0. It is important to note that, with the exception of θ13, the values of
the mixing angles associated with the matrix UTBM are consistent with the data of Table 1.
The role of a non-zero θ13, or equivalently Ue3, is rather relevant to many concepts in the
lepton sector. It is necessary for CP violation in neutrino oscillations and may be necessary
to explain leptogenesis. For CP violation, of course, both θ13 and the complex phase δ
should be non-zero. Moreover, θ13 6= 0 mirrors an equivalent feature present in the quark
sector, where mixing between all three generations is a confirmed result, although the
mixing angles in the two sectors are very different. However, the discovery of the θ13,
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whose smallness (in comparison to the other mixing angles) proposes to modifythe the
neutrino mixing matrix by means of a small perturbation about the basic tribimaximal
structure. Consequently, it can lead to a realistic neutrino mixing matrix. There are many
neutrino mass models [12–17] which can assist us to obtain the tribimaximal neutrino
mixing matrix. In order to produce θ13 6= 0 starting from an initial tribimaximal structure,
different approaches have been investigated: In [18–20], a perturbative analysis has been
examined, from UTBM. In [21], an alternative method has been proposed in which a
sequential ‘integrating out’ of heavy neutrino states is involved. The authors of [22–26]
have employed the approach of parametrizing the deviation from the tribimaximal form.
In [27–31], the deviations from tribimaximal mixing due to charged lepton effects and
Renormalization Group running have been the direction of study. Alternative explorations,
based on the A(4) symmetry, have been carried out in [15,16,32–34], while in [14,35–38],
other discrete symmetries have been the basis for investigations.

The mixing parameters and the mass ordering in Table 1 are required inputs for
recognizing viable models associated to the neutrino masses. A natural option could be
to take the mixing angles as either θ13 = 0 or θ23 = π

4 , such as those taken to obtain UTBM
in Equation (2), and the solar mass splitting is missing. In this regard, one proposal is
provided as: which the atmospheric mass splitting and the maximal mixing (of this sector)
arise from a unperturbed mass matrix while the smalle solar mass splitting and realistic
U13 , (θ13 and δ), are generating by a perturbation. Moreover, it applies minor amendments
to θ12. By employing different methods in widely contexts, a lot of endeavors have been
pursued to generate some of the neutrino parameters in perturbation theory [30,39,40].

The purpose of our work is to introduce a framework, that constitutes a modification
of the neutrino mass setup proposed by Friedberg and Lee (FL) [41]. The FL setting1 can be
regarded as a successful phenomenological neutrino mass model with flavor symmetry,
which can be appropriately and equivalently employed for both Dirac and Majorana
neutrinos.2

However, in our work, we will employ instead a fundamental approach, which is
different from that used in [42]. Let us be more precise. In our herein paper, the perturbation
mass matrix will not be added by hand, but in contrast, it will be thoroughly computed
within a series of steps. To this aim, we will be using the third perturbed mass eigenstate
within perturbation theory methods. More concretely, the perturbation mass matrix will
be thus constructed. We proceed as follows: (i) By employing perturbation theory in the
mass basis with real parameters, we obtain the elements of the perturbation matrix which
breaks the µ− τ symmetry. It will be seen that we get θ13 6= 0, but we do not have CP
violation yet. (ii) We extend our work to the case with CP violation, and show that a
complex perturbation matrix will be generated. In this case we have nonzero values for
both θ13 and δ. We also investigate the solar neutrino mass splitting in which an imaginary
term will be dominant and lead to the generation of the Majorana phases. Consequently, we
obtain CP violation along with a realistic neutrino mixing matrix. (iii) Finally, by comparing
our phenomenological results with the corresponding experimental data, we will set up
allowed parameter ranges, along with neutrino masses and CP violation phases.

This paper is organized as follows. In the next section we briefly introduce our
(modified FL) model, and then present the results of the real and complex perturbation
analysis described above in two subsections, separately.

Moreover, for the complex case we compute the perturbation mass matrix generating
CP violation and we get a realistic neutrino mixing matrix. In Section 3, we map two of the
experimental data onto the allowed region of our parameter space. Thereafter, we find the
presently allowed ranges for all the parameters (especially perturbation parameters) of the
model. Finally, not only do we check the consistency of all of the results with the available
experimental data, but we also present our predictions for the actual masses and CP
violation parameters. In Section 4 we summarize and analyze the results. In Appendix A,
we briefly introduce the FL model.
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2. Modified Friedberg-Lee Model

In this section we construct our model, within the FL framework, based on the basic
tribimaximal neutrino mixing matrix. We compute the minimal neutrino mass perturbation
matrix, along with a realistic neutrino mixing matrix. It is important to note that the inno-
vative distinguishing characteristic of the preset work is that a neutrino mass perturbation
will be erected from the minimal principle of the perturbation theory. Namely, we will not
add a neutrino mass perturbation from any ad hoc assumptions, whilst in [42], the neutrino
mass perturbation was added by hand by considering a few symmetries. It is important to
note that, according to the experimental data reported in Table 1, the results of our herein
improved model indicate an efficiency fitting increase of about 30 percent in contrast to
those presented in [42]. In Section 3, we will further elaborate with more detail concerning
this result. The tribimaximal neutrino mixing is a natural consequence of the MFL mass ma-
trix in the case of µ− τ permutation symmetry (namely, the neutrino mass matrix remains
invariant under interchanging indices µ and τ [43–45]). From Equation (A2) it is apparent
that MFL possesses exact µ− τ symmetry only when b = c. The magic property3 of MFL
obviously remains under exact µ− τ symmetry. Setting b = c and using the hermiticity of
MFL, a straightforward diagonalization procedure yields UT MFLU = M̃, where

M̃ =

 3b + m0 0 0
0 m0 0
0 0 2a + b + m0

 and U = UTBM. (3)

Also, we should notice that in the pure FL model one of the neutrino masses is exactly
zero. Moreover, just as in the general FL setting m0 must be positive [41].

The reported experimental results have shown that the solar neutrino mass difference
is tiny and the inequality ∆m2

21 > 0 is confirmed [5]. Considering the experimental data,
Equation (3) yields b < 0, and |b| � m0. Therefore, we can set λ = −b in Equation (A3)
and employ the transformations a → α = a− b and b → 0. Consequently, in the flavor
basis, the unperturbed neutrino mass matrix is a magic µ− τ symmetry4 and given by

M0
ν '

 m0 0 0
0 α + m0 −α
0 −α α + m0

, (4)

which has only two parameters α and m0. Of course, the diagonalized matrix which
obtained from the mass matrix M0

ν, Equation (4), is a special case of the mass matrix
Equation (3), which has three parameters a, b and m0. It is of interest that they shares the
same neutrino mixing matrix given by Equation (2)5, UTBM [41].

The mass spectrum of M(0)
ν is6

m(0)
1 = m(0)

2 = m0, and m(0)
3 = 2α + m0. (5)

Here m(0)
1 and m(0)

2 are real and positive numbers, but at this stage, the sign of m(0)
3 is

unknown. In the next section, by comparing the results of our model with the experimental
data, we will see that the sign of m(0)

3 as well as the ordering of it (with respect to m(0)
1

and m(0)
2 ) will be specified. We should mention that, up to now, the shortcomings are:

(i) the absence of the solar neutrino mass splitting, (ii) the ordering of neutrino masses
is unknown and (iii) the mixing matrix is still UTBM. Thus, the main objective will be to
obtain the solar mass splitting by means of a mass perturbation, which is the cause of
θ13 6= 0 and CP violation. Moreover, CP violation conditions necessarily mandate that
µ− τ symmetry should be broken. An interesting question is: after the µ− τ symmetry
breaking, will θ23 = 45◦ remain valid or not?
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In summary, up to now, we have proposed that the modified FL neutrino mass matrix
in Equation (4) has a combination in which ∆m2

12 and θ13 are vanishing, while θ23 = π
4 .

Moreover, the atmospheric mass splitting ∆m2
31 does not vanish. Furthermore, the solar

mixing angle θ12 can be selected as chosen by the popular mixing matrix as UTBM. This
is a good estimate of the observed data although small characteristic are missing here.
Therefore, the neutrino mass matrix in Equation (4) has two mass eigenvalues, m(0)

1 and

m(0)
2 , which are degenerate, hence it is highly distinctive from the original FL model,

in which all neutrino masses are different [41]. Moreover, to the best of our knowledge,
such kind of FL modification has not been performed in the literature yet.

In the next stage, we will consider the attendance of a small contribution, which
can be obtained by employing the perturbation theory, which generates small parameters
in the neutrino mixing component, namely, U13, (θ13 and δ), ∆m2

21 and provides minor
amendments to θ12 (but not to θ23). CP violation will be investigated. As previously
mentioned, because of small θ13 and ∆m2

21, we believe that the perturbative treatment is a
more precise method than others for getting the correction of the UTBM. In our point of view,
our work is special even in the perturbative treatment, because our minimal perturbation
matrix is constructed solely from computing the third mass eigenstate, using the rules of
perturbation theory, see Sections 2.1 and 2.2. Therefore, this perturbation matrix could
induce both U13 and ∆m2

21. It is worth mentioning, in the original FL model, by inserting
phase factors in the neutrino mass matrix, the CP violation incorporate [41].

In order to establish the structure of the neutrino mass matrix, as noted before, our strat-
egy is to employ the perturbation theory. Thus, we set Mν = M0

ν + M′ν where M′ν << M0
ν.

In general, M0
ν and M′ν are symmetric and complex. However, as seen from Equation (4),

in this case M0
ν is symmetric and real, i.e., it is Hermitian. In the following two subsections

we will consider first the case where M′ν is real and then the case where it is complex,
respectively. In either situation we have θ13 6= 0, but CP is conserved when M′ν is real.
Furthermore, in the complex case the solar neutrino masses are split and CP is violated.

In the mass basis the eigenstates of M0
ν (the unperturbed mass eigenstates) are

as follows:

|ν(0)1 〉 =

 1
0
0

, |ν(0)2 〉 =

 0
1
0

, |ν(0)3 〉 =

 0
0
1

, (6)

in which the first two mass eigenstates are degenerate. We choose M′ν such that ν1 and
ν2 are its nondegenerate eigenstates, namely, 〈ν(0)i |M

′
ν|ν

(0)
j 〉 = m(1)

i δij where (i, j = 1, 2),

with m(1)
1 6= m(1)

2 . Then we take (M′ν)33 = 0 and consequently need to consider only (M′ν)13
and (M′ν)23. Therefore, in order to reproduce the correct solar mixing, the basis vectors ν1
and ν2 are chosen, while the physical basis is fixed by the perturbation. It is straightforward
to show that by expressing the mass eigenstates given by Equation (6) in terms of the flavor
basis, we can get the columns of UTBM as given by Equation (2). Consequently, in the flavor
basis, the eigenstates are given by

|ν(0)1 〉 =

 −
√

2
3

1√
6

1√
6

, |ν(0)2 〉 =


1√
3

1√
3

1√
3

, |ν(0)3 〉 =

 0
− 1√

2
1√
2

. (7)

2.1. CP Conservation

In this subsection, our aim is to determine the third perturbed mass eigenstate in
the CP conserving case. When this eigenstate is expressed in the flavor basis, we must
obtain the third column of the neutrino mixing matrix, given by Equation (1). Thus we
can compute the elements of the perturbation matrix which will also be employed in the
next subsection. Again, it is necessary to mention that in this method, we do not pick up
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a perturbation mass matrix by hand; instead, we compute it using of the third perturbed
mass eigenstate, which is an unique feature and distinguishable from that used in [42].
As stated previously, here we assume M′ν, which is symmetric, to also be real, and therefore
Hermitian. Hence, while it may generate a nonzero θ13, it necessarily yields δ = 0, and so
leads to no CP violation. For the perturbation expansion we keep terms up to linear order
in s13. To first order we have

|ν3〉 = |ν
(0)
3 〉+ ∑

j 6=3
C3j|ν

(0)
j 〉 , (8)

where,
C3j = −Cj3 = (m(0)

3 −m(0)
j )−1< ν

(0)
j |M

′
ν|ν

(0)
3 >, (j 6= 3). (9)

In this case, the coefficients C3j are real and proportional to the elements (M′ν)3j in the
mass basis.

Obviously, |ν3〉 in Equation (8) Should be equal to the third column of the mixing
matrix UPMNS (with δ = 0) of Equation (1). In the flavor basis, by using Equation (8), we
can easily determine C31 and C32. We obtain the matrix equation

 s13
s23c13
c23c13

 =


−
√

2C31+C32√
3

− 1√
2
+ C31√

6
+ C32√

3
1√
2
+ C31√

6
+ C32√

3

 (10)

To linear order in s13, we obtain C31 = −
√

2
3 s13 and C32 =

√
1
3 s13, where we have

used maximality of the 2–3 mixing angle, (θ23 = 45◦). Therefore, in the mass basis, by using

Equations (5) and (9), we have (M′ν)13 = −2α
√

2
3 s13 and (M′ν)23 = 2α

√
1
3 s13.

Briefly, in the CP conserving case, we calculate solely

U = UTBM +

 0 0 s13
−s13√

3
s13√

6
0

s13√
3

−s13√
6

0

, Mν = M0
ν +


0 0 −2α

√
2
3 s13

0 0 2α
√

1
3 s13

−2α
√

2
3 s13 2α

√
1
3 s13 0

 (11)

U is unitary up to order s13.

2.2. CP Violation

In this subsection, let us proceed our discussion, now addressing CP violation. We now
assume M′ν to be a complex symmetric matrix, thus not Hermitian; then this is also true for
the total mass matrix Mν = M0

ν + M′ν. This is accomplished by considering nonzero values
for both sin θ13 and δ. The columns of the mixing matrix U in Equation (1) are eigenvectors
of M†

ν Mν = M0†
ν M0

ν + M0†
ν M′ν + M′†ν M0

ν, where we have dropped the term O(M′ν)2. We
should mention that the unperturbed term M0†

ν M0
ν is Hermitian, its eigenstates are the

columns of UTBM [in Equation (2)], and its eigenvalues are |m(0)
1 |2, |m(0)

2 |2, and |m(0)
3 |2.

Instead of Equation (9), we now have

C3j = −C∗j3 =
(
|m(0)

3 |
2 − |m(0)

j |
2
)−1
Mj3, (j 6= 3) (12)

where Mj3 = < ν
(0)
j |(M0†

ν M′ν + M′†ν M0
ν)|ν

(0)
3 > and |ν3〉 is reproduced, to first order,

by substituting the expressions associated to C3j from Equation (12) into Equation (8).
Consequently, by using an appropriate variant of Equation (10) for this case, we get

C31 = −
√

2
3 s13e−iδ and C32 =

√
1
3 s13e−iδ. It is important to note that, in the mass ba-
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sis, due to the symmetric nature of M′ν , it is easy to relate C31 and C32 to the elements of
M′ν as

C3j

(
|m(0)

3 |
2 − |m(0)

j |
2
)

= < ν
(0)
j |(M0†

ν M′ν + M′†ν M0
ν)|ν

(0)
i >

= m(0)
j (M′ν)j3 + m(0)

3 (M′ν)
∗
j3, (j 6= 3) . (13)

Employing Equation (13), we get (M′ν)13 = −
√

2
3
|∆m2

31| s13
g(η) eiη and (M′ν)23 =

√
1
3

|∆m2
31| s13

g(η) eiη , where ∆m2
31 = (m(0)

3 )2 − (m(0)
1 )2 is the atmospheric mass splitting, (consider-

ing the expressions for m(0)
1 , m(0)

3 from Equation (5)),

η = tan−1
(

α + m0

α
tan δ

)
, (14)

and
g(η) =

[
m2

0 + (2α + m0)
2 + 2m0(2α + m0) cos 2η

]1/2
. (15)

and the allowed range for both of η and δ is {0, 2π}. From Equation (15), it can be seen that
|m(0)

3 | − |m
(0)
1 | ≤ g(η) ≤ |m(0)

3 |+ |m
(0)
1 |.

Up to now, by using Equation (13) and C31, we have focused on deriving θ13 6= 0 via
a perturbation analysis starting from an FL setting and the basic tribimaximal neutrino
mixing matrix. Now, we investigate the solar neutrino mass splitting. In our framework
of minimal perturbation we take (M′ν)12 = (M′ν)21 = 0. The first order corrections to
the neutrino masses are obtained from m(1)

i δij = < ν
(0)
i |M

′
ν|ν

(0)
j >. We consider these

first-order mass corrections as

m(1)
1 = m(1)

3 = 0 and m(1)
2 6= 0. (16)

Therefore, in the mass basis, (16) implies that only (M′ν)22 6= 0 whilst other diagonal
elements of the perturbation matrix vanish. Such a correction displays a nonzero solar
neutrino mass splitting in which m(1)

2 = m2−m1, and ∆m2
21 = (m2)

2− (m1)
2 takes positive

values. Consequently, in the mass basis, we obtain the final perturbation matrix as

M′ν =


0 0 −

√
2
3 s13F

0 m(1)
2

√
1
3 s13F

−
√

2
3 s13F

√
1
3 s13F 0

, (17)

and

F =
|∆m2

31|
g(η)

eiη . (18)

Now from the elements of M′ν in Equation (17), let us define a dimensionless parameter

as7 ε ≡ m(1)
2 g(η)
|∆m2

31|s13
, which relates the solar mass splitting, m(1)

2 , to sin θ13. In the next section,

we will employ this parameter to obtain the order of sin θ13. In general, the solar mass
splitting can take complex values, so let us mention that the Majorana mass is given by
m(1)

2 ≡ |m(1)
2 | exp(iϕ). If we write m2 = m(0)

2 + m(1)
2 ≡ |m2| exp(iφ), we obtain

|m2| =
[
(m(0)

1 )2 + (|m(1)
2 |)

2 + 2m(0)
1 |m

(1)
2 | cos ϕ

]1/2
, φ = tan−1

[
|m(1)

2 | sin ϕ

m(0)
1 + |m(1)

2 | cos ϕ

]
. (19)



Universe 2022, 8, 448 8 of 17

Therefore, in the Majorana case, φ is the origin of the Majorana phases which arise
from the perturbation. In the next section, we obtain interesting results associated to ϕ and
φ, namely, that m(1)

2 is dominated by its imaginary part, and so φ can take large values.
In order to relate our perturbation mass matrix to the FL model, let us rewrite M′ν,

[which is given by Equation (17) and it was calculated in the mass basis, see Equation (6)] in
the flavor basis. Therefore, employing relation between mass and flavor basis and rewrite
M′ν, as

M′( f )
ν =

F s13√
2

 0 −1 1
−1 0 0
1 0 0

+
m(1)

2
3

 1 1 1
1 1 1
1 1 1

. (20)

We observe that the first and the second terms on the right-hand side are responsible
for θ13 and for ∆m2

21, respectively. Notice that M′( f )
ν in Equation (20) violates both µ− τ

symmetry and the magic feature of the total mass matrix. Using degenerate perturbation
theory [48], to linear order in s13, and the relation associated to C3j given by Equation (12),

and aware of Cij = 0 if i 6= 3, which we know from the elements of M′( f )
ν according to

Equation (17), we obtain the neutrino mixing matrix, with δ 6= 0, as

U = UTBM +


0 0 s13e−iδ

−
√

1
3 s13eiδ

√
1
6 s13eiδ 0√

1
3 s13eiδ −

√
1
6 s13eiδ 0

. (21)

The nonzero δ indicates CP violation in the lepton sector.
In [49], with a different motivation in view, this same form for U has been discussed

and the consistency with the observed mixing angles noted.
A rephasing-invariant measure of CP violation in neutrino oscillation is the universal

parameter J [50] [given in Equation (A4)], where its form is independent of the choice of
the Dirac or Majorana neutrinos.

Using Equations (14) and (21), the expression for J can be simplified as

J = − 1
3
√

2
s13 sin δ

= − 1
3
√

2
s13

(
α

α+m0

)
sin η√

cos2 η +
(

α
α+m0

)2
sin2 η

. (22)

We should notice that in order to have CP violation in the lepton sector, both s13 and η
must take nonzero values.

3. Comparison with Experimental Data

In this section, we compare the results obtained through our (modified FL) model with
the experimental data [5]. It is important to note that in the original FL model [41] almost
there is no numerical prediction for neutrino parameters. Therefore, in this section, we
compare our herein results with the corresponding ones obtained in [42]. Let us perform
this in two steps.

In the first step, we obtain the allowed ranges for the parameters of the neutrino
mass matrix along with the perturbation term. We do this by mapping neutrino mass
constraints obtained from the experimental data for ∆m2

31 and ∆m2
21 onto our parameter

space. In Figure 1, we have shown the limits imposed by ∆m2
31 on the α and m0 parameter

space space8 of our model. However, as seen from Equation (5), ∆m2
31 = (2α + m0)

2 −m2
0.

The values of α, coming from Equation (23), are

α± = −1
2

m0 ±
1
2

√
m2

0 + |∆m2
31|, (23)
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where we have denoted these two solutions with upper (plus) and lower (minus) signs.
As we see, we always have α+ > 0 and α− < 0. In order to visualize the results of
Equation (23), in Figure 1 we have plotted α versus m0. We see that we can have m3 > 0
or m3 < 0, corresponding to α+ and α−, respectively. The range of m0 is very impressible
and important because when m0 > 0.197 then we get α+ → 0 which yields m+

3 → m0
and α− → −m0 which yields m−3 → −m0. Such that for both of the cases, the results are
unacceptable by comparing with the experimental data. The interesting point is that these
results show that the physical mass spectrum is identical for both cases, the green and
magenta curves, corresponding to m+

3 and m−3 respectively. These curves are symmetric
about the m0 axis which is implying phase choice for the m3s, as it is seen in Table 2. Namely,
the Majorana phases are different for each case. Hence |m+

3 | = |m
−
3 |, and the value of m3s

in both case is the same. Naturally, the physics in the perturbation matrix elements does
not depend on the chosen solution. We can see no reason to prefer either specific solution.
For both values of α, our model has normal hierarchy, the same result as in [42].

alpha+

alpha -

m_3 +

m_3 -

0.00 0.05 0.10 0.15 0.20

-0.2

-0.1

0.0

0.1

0.2

m0

Α

Figure 1. Allowed range of α in (α, m0) parameter space. Two symmetric spaces are associated to
m3 > 0 and m3 < 0 which yield two different results for α.

In Figure 2 we have plotted the overlap of ∆m2
21, by using Equations (5) and (19),

∆m2
21 = |m(1)

2 |2 + 2m0m(1)
2 cos ϕ with the results obtained in our model along with the

allowed ranges of m0 onto the |m(1)
2 | and ϕ perturbation parameter space in comparison

with experimental data. In Figure 2, each colored curve implies a value of m0 in the equation
∆m2

21 in our model. All these curves overlap with each other in a narrow area in the plane

of |m(1)
2 | and ϕ. Therefore, in Figure 3, we have depicted the contour plot of Figure 2 such

that we could clearly show the boundaries of |m(1)
2 | and ϕ. Our results for the mass matrix

parameters are given by

m0 ≈ (0−−0.197) eV,

α− ≈ −(0.0245−−0.2) eV,

α+ ≈ (0.0245−−0.0033) eV,

|m(1)
2 | ≈ (0.00862−−0.00883) eV,

ϕ ≈ (89.98◦ −−90.10◦). (24)
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Table 2. The available experimental data for neutrinos for the case of normal mass hierarchy and
the predictions of our model. These predictions are obtained from our parameters as shown in
Equation (24).

Parameter bfp (±1σ) Predictions of Our Model

∆m2
21(10−5 eV2) (7.30–7.72) (7.43–7.49)

∆m2
31(10−3 eV2) (2.52–2.57) (2.40–2.52)

δ 172◦–218◦ (21.48◦–92.29◦) . δ . (267.71◦–338.52◦)

|J| ... .(0.012–0.035)

... m1 ≈ (0–0.197) eV,
〈mνe 〉 ≈ (0.00386–0.20162) eV

masses
... |m2| ≈ (0.00862–0.19719) eV,

φ ≈ (2.6◦–89.98◦)
〈mνµ 〉 ≈ (0.02737–0.20243) eV

... m3∓ ≡ |m3| ≈ (0.0490–0.2033) eV,
〈mντ 〉 ≈ (0.02743–0.20248) eV

ρ and σ
... m3 < 0, ρ . −(1.3◦–44.99◦),

σ . (88.70◦–45.01◦)
m3 > 0, ρ = σ . −(1.3◦–44.99◦)

〈mνββ 〉 ... 〈mνββ 〉 ≈ (0.0028–0.12) eV

Figure 2. In this figure, the whole region of the |m(1)
2 |-ϕ plane which is allowed by our model along

with the allowed range of m0 is shown. Each color curve implies a value of m0 in the rang (0–0.197) eV

in the |m(1)
2 |2 + 2m0m(1)

2 cos ϕ in our model. The overlap region of the experimental values for ∆m2
21

with our model are two tiny regions. These regions are the semi-symmetry of each other.

Note that the value of ϕ in Equation (24) shows that m(1)
2 , the solar neutrino mass

splitting term, is dominated by its imaginary part. Therefore, due to the allowed range of ϕ
[according to (24)], the origin of the Majorana phases, φ [in Equation (19)], can take large
values. This seems to suggest that the Majorana nature of neutrinos can be responsible for
a large value of CP violation in nature [51].

We expect that the different nonzero components of the perturbation matrix

Equation (17) are roughly of similar order. We may then expect ε ≡ m(1)
2 g(η)
|∆m2

31|s13
∼ O(1),

and could predict the order of sin θ13 in ε. Therefore, by using the order of α and |m(1)
2 |
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from the previous stage, we obtain sin θ13 ∼ O(10−1). Moreover, employing Equation (21),
and considering only the order of sin θ13, we obtained the allowed range of sin2 θ23:

sin2 θ23 =
|U23|2

1− |U13|2
≈ (0.505−−0.549), (25)

which agrees well with the experimental data.

0 1 2 3 4 5 6

0.000

0.002

0.004

0.006

0.008

0.010

j

 m
2

H1
L  

1.3 1.4 1.5 1.6 1.7 1.8

0.0085

0.0086

0.0087

0.0088

0.0089

0.0090

Figure 3. In this figure, the contour plot of Figure 2, the entire region of the |m(1)
2 |-ϕ plane with the

allowed range of m0 are shown. In the zoomed box we have magnified the right overlap region.

In the second step, we obtain the allowed ranges for δ and J, the Jarlskog parameter,
as in Equation (A4) and for this we must first determine the allowed range of η. For this
we use the expression of g(η) in Equation (15). Recalling |m1| − |m3| < g(η) < |m1|+ |m3|,
and so 0.049 < g(η) < 0.400, we obtain the allowed range of η as |η| . 92.29◦. In the
limit m0 → 0, we get η → δ and g(η) → |m3|. In order to get the allowed values of δ,
we substitute the allowed ranges of m0, α and η into the expression associated to δ in
Equation (14). The results are

(21.48◦ −−92.29◦) . δ . (267.71◦ −−338.52◦), (26)

|J| . (0.012−−0.035). (27)
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Not only we have obtained all the parameters of the model [according to (24)], but now
we can also make predictions for the masses of the neutrinos as well as the phases, see
Equation (28). We emphasize that we have made predictions that correspond to physical
quantities for which there is yet no experimental data. These predictions include

m1 ≈ (0−−0.197) eV,

|m2| ≈ (0.00862−−0.19719) eV and φ ≈ (2.6◦ −−89.98◦),

|m3| ≈ (0.0490−−0.2033) eV,

∆m2
21 ≈ (7.43−−7.49)× 10−5 eV,

∆m2
31 ≈ (2.40−−2.52)× 10−3 eV. (28)

As mentioned, φ is the origin of the Majorana phases which is retrieved from the
perturbation. We could dispense with the overall phase, exp(iφ), and therefore we would
have two phases that appear in the mass eigenvalues shown in Equation (28). As we noted,
these phases are not the same for |m3| ≡ m3∓. Namely, for m3− we have ρ = (− φ

2 ) and
σ = (π

2 −
φ
2 ). Whereas, for m3+, ρ = σ = (− φ

2 ). For the Dirac neutrinos, these phases
can be removed, and for the Majorana neutrinos, these phases remain as Majorana phases
and contribute to CP violation [52]. Therefore, all of our model predictions for Dirac and
Majorana neutrinos (but not for Majorana phases in general) are the same, so no case (Dirac
or Majorana) differs from the other so far.

As mentioned, in the Appendix A, in the FL setting m0 6= 0, while the magnitude
of the lower bound in Equation (28) is about m0 = 0. These predictions are compatible
with the neutrino mass predictions in [42]. However, it is important to note that the
results in this work (such as ∆m2

21 and ∆m2
31), established by means of a different approach,

fit the experimental data much better than those reported in [42] especially the best fit
column in Table 1. In order to compare our methodology and approach to that in [42]

and employing the current experimental data, the ratio ∆m2
21

∆m2
31

can be considered as an

appropriate parameter. For instance, herein we obtain ∆m2
21

∆m2
31
≈ (2.97–3.09) × 10−2, which

is closer and more consistent with the best fit experimental data, ∆m2
21

∆m2
31
≈ (2.99–3.02) ×

10−2, than the corresponding result reported in [42]. Namely, the agreement rate using our
improved framework regarding the best fit experimental data is about 30 percent better
than in [42]. Moreover, in [41], the phenomenological calculations associated to the CP
violation case have not been compared with the corresponding experimental data. In
Table 2, we have displayed all of the relevant experimental data presented at Table 1 along
with the predictions of our model. As is shown in Table 2 we have predictions for some
physical quantities for which there are not any experimental data.

In this model, the magnitude of degeneracy associated with the neutrino masses is
defined by m3−m1

m3
. Hence, the limit m1 → 0 (m3) means 0% (100%) degeneracy among

the neutrino masses [53]. We should note that by using the allowed ranges of m1 and
m3 in Equation (28) the magnitude of degeneracy of the neutrino masses in our model is
≈(0–97%).

For the flavor eigenstates, we can just calculate the expectation values associated to
the masses. Therefore, we can use

〈mνi 〉 =
3

∑
j=1
|Uij|2|mj|, (29)

where i = e, µ, τ. Our predictions for these quantities are as follows, 〈mνe〉 ≈ (0.00386–
0.20162) eV, 〈mνµ〉 ≈ (0.02737–0.20243) eV and 〈mντ 〉 ≈ (0.02743–0.20248) eV. The Majo-
rana neutrinos can violate lepton number, for example in neutrinoless double beta decay
(ββ0ν) [54]. Such a process has not yet been observed and an upper bound has been set
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for the relevant quantity, i.e., 〈mνββ
〉. Results from the first phase of the KamLAND-Zen

experiment sets the following constraint 〈mνββ
〉 < (0.061–0.165) eV at 90% CL [55]. Our

prediction (better than those in [42]) for this quantity is 〈mνββ
〉 ≈ (0.0028–0.12) eV which is

consistent with the result of kamLAND-Zen experiment.
One of the main experimental result is the sum of the three light neutrino masses which

has just been reported by the Planck measurements of the cosmic microwave background
(CMB) at 95% CL [56] as

∑ mν < 0.12 eV (Plank + WMAP + CMB + BAO). (30)

In our model, we obtain ∑ mν ≈ (0.058–0.597) eV, which is in agreement with (30).

4. Discussion and Conclusions

In the next stage, we will consider the attendance of a small contribution, which
can be obtained by employing the perturbation theory, which generates small parameters
in the neutrino mixing component, namely, U13, (θ13 and δ), ∆m2

21 and provides minor
amendments to θ12 (but not to θ23). CP violation will be investigated.

We should emphasize that in our present work, the method for retrieving the minimal
perturbation mass matrix is completely different from those present in the literature (see,
e.g., [42] and references therein) and it can be considered as a more fundamentally based
approach. The distinguishing features of our herein model are: (i) solely from using the
third perturbed mass eigenstate and by employing the rules of the perturbation theory,
we constructed the minimal perturbation matrix of the basic tribimaximal mixing matrix,
producing a modified Friedberg-Lee model. Therefor, it was produced from the rules of
perturbation theory.9 (ii) the perturbation mass matrix is simultaneously responsible for the
solar neutrino mass splitting and CP nonconservation in the lepton sector. Consequently,
due to these two initiatives and distinctive consideration, our modified framework regard-
ing the best fit experimental data is 30 percent better than in [42]. The model is based on the
tribimaximal mixing matrix in which the experimental data of mixing angles (except θ13) is
well approximated. Therefore, by employing the Friedberg-Lee neutrino mass framework,
we obtained the tribimaximal structure which led us to produce a mass matrix constrained
by the elements of the TBM mixing matrix and the experimental data. The mass matrix
thus obtained (unperturbed mass matrix) loses the solar neutrino mass splitting whilst it
remains as a magic and symmetric matrix under µ− τ symmetry. At this level, by employ-
ing perturbation theory, we generate a perturbation matrix which breaks softly both the
µ− τ symmetry and the magic feature, and consequently causes CP violation.

Our investigation proceeded in two stages [of Section 2]: CP conservation and CP
violation. In the first stage, we obtained the elements of the perturbation matrix in a non CP
violation case. In this case, the elements of the perturbation matrix are real, and therefore
δ = 0 while θ13 6= 0.

In the second stage, we extended our study to the case of CP violation, and we
obtained the complex elements of the perturbation matrix in both the flavor and mass
bases. Moreover, (a) We retrieved a realistic mixing matrix with δ 6= 0. However, in this
case, the µ− τ symmetry is softly broken, but still we have θ23 = 45◦. (b) We obtained
the solar neutrino mass splitting dominated by an imaginary term. Therefore, the most
important corresponding results or claims are: there is a possibility that Majorana neutrinos
exist. According to the results of our herein model, the Majorana phases have been given
large values. Hence, it could be a justification for the large leptonic CP violation in nature.
Therefore, it is more likely that the neutrinos are of the Majorana type.

In order to get valuable predictions concerning neutrino masses, δ, the origin of the
Majorana phases and J, we compared the results of our phenomenological model with
experimental data. We have shown that how our phenomenological model whether or
not is consistent with experimental data. Mapping two sets of experimental data, namely,
the allowed ranges of ∆m2

21 and ∆m2
31 onto the allowed region of our parameter space can
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determine valid values for our parameters. The consistency of experimental data with the
allowed ranges of our parameters shows that our model has normal hierarchy. We then
predict the perturbation mass matrix and the values of three masses, m1 ≈ (0–0.197) eV,
|m2| ≈ (0.00862–0.19719) eV, and m3 ≈ ∓ (0.0490–0.2033) eV. Therefore, the magnitude of
degeneracy for neutrino masses at the end of the allowed ranges is about 97%. We have
shown that the order of sin θ13, which is estimated from the order of the mass parameters,
is consistent with the experimental data. We also obtain predictions for the CP violation
parameters δ, J, ρ and σ. These are |δ| . (21.48◦–92.29◦), |J| . (0.012–0.035), while the
values of the Majorana phases depend on the sign of m3: for m3 < 0, ρ . −(1.3◦–44.99◦),
σ . (88.70◦–45.01◦), while for m3 > 0, ρ = σ . −(1.3◦–44.99◦). Our predictions for the
neutrino masses and CP violation parameters could be tested in future experiments such
as the upcoming long baseline neutrino oscillation ones. Moreover, our predictions are
entirely consistent with the constraints reported by Planck, WP and high L measurements
and the KamLAND-Zen experiment [54,56].

In our model, the minimal perturbation matrix was obtained by means of a funda-
mental process, and not merely added by hand. Therefore, we can claim that the model
presented here can be regarded as presenting a more comprehensive scenario. Another
important point is that although our predictions are in correspondence with those in [42],
we should emphasize that our outcomes (such as ∆m2

21 and ∆m2
31), constitute with the best

fit experimental data reported in Table 1. Last and not least to emphasize, the consistency
fitting rate concerning the best fit experimental data is about 30 percent more efficient
trough the framework introduced in this paper rather than in [42].

Finally, we plan to subsequently proceed and investigate a 6× 6 neutrino mass matrix,
by using the same methodology, to obtain the corresponding perturbation mass matrix and
CP violation.
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Appendix A. The Fridberg-Lee Model

In the FL model, the mass eigenstates of the three charged leptons are the same as
their corresponding flavor eigenstates. Therefore, the neutrino mixing matrix is simply
the 3× 3 unitary matrix U, which transforms the neutrino mass eigenstates to the flavor
eigenstates (νe, νµ, ντ). The neutrino mass operator can be written as [41]

MFL = a
(
ν̄τ − ν̄µ

)(
ντ − νµ

)
+ b
(
ν̄µ − ν̄e

)(
νµ − νe

)
+ c(ν̄e − ν̄τ)(νe − ντ)

+ m0
(
ν̄eνe + ν̄µνµ + ν̄τντ

)
. (A1)

All the parameters (a, b, c and m0) are assumed to be real. In the original FL setup,
also known as the pure FL model, m0 = 0 and consequentlyMFL admits the following
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symmetry νe → νe + z, νµ → νµ + z, and ντ → ντ + z [41], where z is an element of the
Grassman algebra. When z is a constant, this is called the FL symmetry [41], and the kinetic
term is also invariant, but the other terms of the electroweak Lagrangian do not exhibit
this symmetry. The m0 term breaks this symmetry explicitly. However, we may add that
the FL symmetry leads to a magic matrix [46] and this property is not spoiled by the m0
term [41]. It has also been argued that the FL symmetry is the residual symmetry of the
neutrino mass matrix after the SO(3)×U(1) flavor symmetry breaking [57]. The mass
matrix can be displayed as [41]

MFL =

 b + c + m0 −b −c
−b a + b + m0 −a
−c −a a + c + m0

, (A2)

where a ∝
(
Yµτ + Yτµ

)
, b ∝

(
Yeµ + Yµe

)
and c ∝ (Yτe + Yeτ) and Yαβ denote the Yukawa

coupling constants [41]. Notice that MFL in Equation (A2) is symmetric, and therefore
could be used for Dirac or for Majorana neutrino mass terms. The proportionality constant
is the expectation value of the Higgs field. As mentioned, it is clear that the first three
terms in Equation (A1) are invariant under the transformation να → να + z (for α = e, µ, τ).
The same invariance can also be expressed in terms of the transformation between the
constants, a, b, and c, with

a→ a + λ, b→ b + λ, and c→ c + λ. (A3)

Therefore, under the transformations (A3), the form of the neutrino mixing matrix U
remains unchanged [41].

In order to have CP-violation, within the standard parametrization given by
Equation (1), the necessary condition is δ 6= 0 and θ13 6= 0. There are four independent
CP-even quadratic invariants, which can conveniently be chosen as U∗11U11, U∗13U13, U∗21U21
and U∗23U23 and three independent CP-odd quartic invariants [58],

J = Im(U11U∗12U∗21U22)

I1 = Im[(U∗11U12)
2]

I2 = Im[(U∗11U13)
2]. (A4)

The Jarlskog rephasing invariant parameter J [50] is relevant to CP violation in lep-
ton number conserving processes like neutrino oscillations. I1 and I2 are relevant to CP
violation in lepton number violating processes like neutrinoless double beta decay. Os-
cillation experiments cannot distinguish the Dirac from the Majorana neutrinos [59,60].
The detection of neutrinoless double beta decay would provide direct evidence of lepton
number non-conservation and the Majorana nature of neutrinos. Many theoretical and
phenomenological investigations have discussed neutrino mass models which break µ− τ
symmetry as a prelude to CP violation [61–63].

Notes
1 A short review of the Fridberg-Lee model is presented in Appendix A.
2 To our knowledge, there is no strong evidence regarding the identity of neutrinos, which could be of the Majorana or the Dirac

type.
3 The sum of elements whether in every row or in every column of the neutrino mass matrix is identical [46].
4 A magic µ− τ symmetry for the mass matrix is synonymous to a TBM mixing structure [41,46].
5 M0

ν mass matrix in Equation (4) with µ− τ symmetry and magic symmetry can be diagonalized by UTBM. Because of UTBM is a
effect of µ− τ and magic symmetries in the neutrino mass matrix. Therefore UTBM is in itself a mixture of those symmetries [47].

6 Naturally, if α� m0, the neutrino masses would approach the quasi-degenerate regime.
7 We define ε as the ratio of the solar mass splitting, m(1)

2 , to the different nonzero terms of the perturbation matrix, i.e., Equation (17).
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8 Notice that the parameters space are the products of the Yukawa coupling constant and the vacuum expectation value of the
Higgs boson. We should note that their ranges are important. However, these investigations do not fall within the scope of the
present work.

9 As it is usual, in the most of the perturbative analysis, together with some assumptions, a perturbation matrix is added by hand.
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