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Abstract: The SU(N) invariant model of matrix theory that emerges as the regularization of the
11-dimensional super membrane is studied. This matrix model is identified with M theory in the
limit N → ∞. It has been conjectured that matrix models are also relevant for finite N where several
examples and arguments have been given in the literature. By the use of a Dirac-like formulation
usually developed in finding solutions in Supersymmetric Quantum Cosmology, we exhibit a method
that could solve, in principle, any finite N model. As an example of our procedure, we choose
a reduced SU(2) model and also show that this matrix model contains relevant supersymmetric
quantum cosmological models as solutions. By these means, our solutions constitute an example in
order to consider why the finite N matrix models are also relevant. Since the degrees of freedom of
matrix models are, in some limit, identified with those of Super Yang Mills Theory SYM with a finite
number of supercharges, our methodology offers the possibility, through some but yet unspecified
identification, to relate the quantization presented here with that of SYM theory for any finite N.

Keywords: quantum cosmology; supersymmetry; matrix theory

1. Introduction

In the realm of String theory, which is considered a unified theory of fields including
gravity, we find a formalism known as M Theory intended to relate a single theory with
all five string theories and 11 dimensional supergravity, all of these connected with duali-
ties [1]. There exist particular matrix models with finite degrees of freedom particularly
related to M Theory [1–11]. These matrix models are intrinsically supersymmetric and
they also have an additional SU(N) symmetry as a remanent symmetry which has its
origin in area preserving diffeomorphisms (APD). It has been conjectured that the N → ∞
limit of this matrix models is related to M theory. This statement was also conjectured
for finite N, where it was shown that the discrete light cone quantization of M theory
offers a consistent finite N matrix model where important symmetries and dualities are
preserved [2–4]. Compactified M-theory through the matrix models includes the dynamics
of Dp branes of different dimensionalities p = 1, 2, . . . etc. It seems that by considering the
dynamics of some of these degrees of freedom, it is possible to access at least to some part
of the physics of M-Theory.

The search for the ground state solution of matrix models in the general case, exactly
and with approximation methods, has been studied in [2,8,12–19]. We propose here another
method of approach to find the ground state solution to this matrix model. One of the
novel characteristics of our method is the particular matrix representation for the fermionic
degrees of freedom which changes the wave function of superspace variables [20–24] to a
multicomponent wave eigenvector state function of spacetime variables [25,26]. We will
expose our procedure for a particular reduced SU(2) model that could be further applied to
any other invariant symmetry with finite N. The degrees of freedom of compactified M
theory are related to finite N matrix models as the one we attempt to solve here [2]. Also,

Universe 2022, 8, 418. https://doi.org/10.3390/universe8080418 https://www.mdpi.com/journal/universe

https://doi.org/10.3390/universe8080418
https://doi.org/10.3390/universe8080418
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0003-1038-3968
https://doi.org/10.3390/universe8080418
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe8080418?type=check_update&version=1


Universe 2022, 8, 418 2 of 12

finite N matrix theories are related to SYM Theory with finite degrees of freedom. Such
relation makes us to suspect that it will be possible to relate the degrees of freedom of the
solutions obtained by our procedure and the ones of SYM theory. This will be however a
matter of future work and as a first step, we will attempt here to find an analytic way to
solve a reduced model.

We will show also, as a byproduct of the methodology used, that relevant supersym-
metric quantum cosmological solutions arise in the SU(2) invariant matrix model. It has
been found that the Hamiltonian for the bosonic sector of matrix theory contains, by the
use of a particular Ansatz, the Hamiltonian of some classical non-supersymmetric cosmo-
logical models [27,28]. Since the supermembrane has a close relation with supergravity, the
question whether the quantum matrix model is also related to Supersymmetric quantum
cosmology arises naturally. Since the matrix models are inherently supersymmetric, it
could exist a non-trivial connection between matrix models and supersymmetric quantum
cosmology. We will obtain, in the particular finite N matrix model we solve with our
formalism, relevant supersymmetric quantum cosmological solutions, hence our results
strengthen the relation between matrix models and cosmology [27], extend it to the quan-
tum supersymmetric realm, and show that solutions to this reduced matrix model contain
relevant physical information for finite N as it has been previously conjectured [3,4]. More
importantly, our procedure offers the possibility to solve the matrix model for any finite N.
An important difference between the type of truncations previously implemented on the
matrix model [2,5] and our work, is that we make additional assumptions on the bosonic
variables, by fixing classically some of them and solving for the remaining Hamiltonians
and their corresponding supercharges. These simplifications allow to have non-trivial
and normalizable solutions. The type of truncations made are similar to those used to
quantize cosmological models by imposing symmetries [29]. The solutions to our simplified
models do not allow to infer any other information about the existence of non-trivial and
normalizable solutions to more general models, but otherwise they only show that finite N
simplified models could have non-trivial and normalizable solutions. It will happen also
that these will be physically relevant.

The work is organized as follows. First in Section 2 we describe the elements of
the SU(N) supersymmetric matrix model, in Section 3 we define the relevant elements
in a 2-dimensional reduced model and for the SU(2) group. We justify the fact that a
simultaneous solution to all the supercharges of the model is the vacuum solution to the
Hamiltonian and use this fact to search for ground state solutions. In Section 4 we solve the
supercharges by making further reductions in the bosonic degrees of freedom and solve
for the ground state wave function and at the same time, we show how supersymmetric
quantum cosmology solutions emerge. Section 5 is devoted to conclusions and discussions
about the results of the work.

2. Matrix Model

The Hamiltonian of the matrix model we will use in this work was constructed in
detail in [12] and is given by

H =
1
2

πm
a πm

a +
g2

4
gabcφm

b φn
c gadeφm

d φn
e −

igh̄
2

gabcΛaα(Γm)αβφm
b Λcβ, (1)

m, n = { 1, 2, . . . , 9} , a, b, c = { 1, 2, . . . , N2 − 1} ,

α, β = { 1, 2 . . . ,N} .

In these expressions φm
a are the bosonic degrees of freedom and πm

a are their related
momenta. gabc correspond to the structure constants of the SU(N) symmetry group. For
N = 2 and N = 3 we have for instance that fabc = εabc the antisymmetric symbol and
gabc = fabc the structure constants of the Lie algebra of the Gell-Mann matrices respectively.
The fermionic degrees of freedom are represented by the Λaα variables and Γm are m Dirac
matrices obeying the Clifford algebra {Γm, Γn} = 2δmn. It also should be understood
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from the expression (1) that m, n are dimension indexes, hence this Hamiltonian can be
constructed up to d = 9 dimensions. As a matter of an example, it will be constructed for a
reduced d = 2 model. a, b, c are group indexes and α, β are fermionic indexes.

The Hamiltonian in (1) can be expressed as function of its supercharges and constraint
operators through the supersymmetric algebra

{ Qα, Qβ} = 2δαβH + 2g(Γn)αβφn
a Ga, (2)

Qα = (ΓmΛa)απm
a + ig fabc(Σ

mnΛa)αφm
b φn

c .

The operators Ga are the constraint operators related to the SU(N) invariance and in
the explicit definition of Qα, Σmn = − i

4 [Γ
m, Γn]. We are interested in the ground state wave

function |Ψ〉 obeying H|Ψ〉 = 0. In supersymmetric models, the wave function satisfying
this is automatically the ground state as the Hamiltonian is positive definite. We notice in
Equation (2) that H|Ψ〉 = 0 can be in general satisfied if Qα|Ψ〉 = 0 and Ga|Ψ〉 = 0 and
in the process of construction of bosonic and fermionic operators it should be taken care
that the commutator and anticommutator relations for bosonic and fermionic degrees of
freedom will be given by

[φm
a , πn

b ] = ih̄δabδmn, { Λaα, Λbβ} = δabδαβ. (3)

It should be noticed that the election of the SU(N) group and the dimension d, will be
related to the dimensional representation of the fermionic variables Λaα, supercharges and
Hamiltonian. The bigger the group, the dimensional representation of those operators will
also be larger. This will define the dimensions of the wave vector solution.

In order to exemplify the methodology of solution of this quantum system we will
use the SU(2) group and a d = 2 dimensional model. Even though this system will be in
principle easier to solve, the general methodology does not depend on the election of N and
the procedure to solve a bigger system will follow basically the same kind of calculation.
For the SU(2) invariant model, the values of the group indexes a, b, c and dimension indexes
m, n are; a, b, c = 1, 2, 3. m, n = 1, 2. In two dimensions the supersymmetry indexes
α, β are fixed to the values α, β = 1, 2. Once we have defined the group symmetry and
dimensionality in which we will attempt to solve for the ground state, it should be defined
the particular representation for bosonic and fermionic variables. These definition and the
corresponding solutions will be worked out in the next section.

3. Ground State Wave Functions

The representation of the canonical momenta corresponding to φm
a is, as usual,

πm
a = −ih̄ ∂

∂φm
a

. One key step in the procedure to find ground state solutions is the use
of a matrix representation for the fermionic variables Λaα [25]. These matrices must obey
the algebra (3) and by these means, |Ψ〉 becomes a multicomponent wave function. As we
mentioned above, we will work in the SU(2) invariant 2-dimensional model and in this
case the algebra (3) for Λαβ can be achieved by six (8× 8)-dimensional matrices. These
matrices are given by

Λ11 = ±1√
2
(γ0 ⊗ σ1), Λ12 = ±i√

2
(γ1 ⊗ σ1),

Λ21 = ±i√
2
(γ2 ⊗ σ1), Λ22 = ±i√

2
(γ3 ⊗ σ1), (4)

Λ31 = ±i√
2
(I ⊗ iσ2), Λ32 = ±i√

2
(I ⊗ iσ3),

where σi (i = 1, 2, 3) are the Pauli Matrices, γµ (µ = 0, 1, 2, 3) are the Dirac matrices in a
Majorana representation and I is the 4× 4 identity matrix. The explicit form of the two
supercharges Q1 and Q2 is given by
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Q1 = Λ11π2
1 + Λ21π2

2 + Λ31π2
3 + Λ12π1

1 + Λ22π1
2 + Λ32π1

3

− gΛ12(φ
1
2φ2

3 − φ1
3φ2

2)− gΛ22(φ
1
3̄φ2

1̄ − φ1
1̄φ2

3̄)− gΛ32(φ
1
1̄φ2

2̄ − φ1
2̄φ2

1̄) , (5)

Q2 = Λ11π1
1 + Λ21π1

2 + Λ31π1
3 −Λ12π2

1 −Λ22π2
2 −Λ32π2

3

+ gΛ11(φ
1
2φ2

3 − φ1
3φ2

2) + gΛ21(φ
1
3φ2

1 − φ1
1π2

3) + gΛ31(φ
1
1φ2

2 − φ1
2φ2

1).

The Hamiltonian (1) is also explicitly given by

H =
1
2
[(π1

1)
2 + (π1

2)
2 + (π1

3)
2 + (π2

1)
2 + (π2

2)
2 + (π2

3)
2]

+
g2

2
[(φ1

2)
2(φ2

3)
2 + (φ1

3)
2(φ2

2)
2 + (φ1

1)
2(φ2

3)
2 + (φ2

1)
2(φ1

3)
2 + (φ1

1)
2(φ2

2)
2 + (φ2

1)
2(φ1

2)
2]

− g2

2
[2φ1

2φ1
3φ2

2φ2
3 + 2φ1

1φ2
3φ1

3φ2
1 + 2φ1

1φ2
2φ1

2φ2
1 ] (6)

− igh̄
2
{ φ1

2([Λ11, Λ32] + [Λ12, Λ31]) + φ2
2([Λ11, Λ31] + [Λ32, Λ12])}

− igh̄
2
{ φ1

3([Λ22, Λ11] + [Λ21, Λ12]) + φ2
3([Λ21, Λ11] + [Λ12, Λ22])}

− igh̄
2
{ φ1

1([Λ32, Λ21] + [Λ31, Λ22]) + φ2
1([Λ31, Λ21] + [Λ22, Λ32])} .

In the matrix representation used Equation (4), the eigenstates of this Hamiltonian
have eight components [20,25]. We will use the following representation for the Dirac
matrices Γm, m = 1, 2

Γ1 =

(
0 1
1 0

)
, Γ2 =

(
1 0
0 −1

)
, (7)

this representation will play a definite role in the following. Notice that these matrices
appear as multiplicative factors of Ga in the algebra (2), if we take for instance α = 1 and
using (7) we have

2Q2
1 = 2H + 2gφ2

1G1 + 2gφ2
2G2 + 2gφ2

3G3, (8)

and we could solve H|Ψ〉 = 0 by solving Q1|Ψ〉 = 0, G1|Ψ〉 = 0, G2|Ψ〉 and G3|Ψ〉 = 0.
Instead of doing this, we will use the following fact, first notice that for α = 2 and using (7)
we have

2Q2
2 = 2H − 2gφ2

1G1 − 2gφ2
2G2 − 2gφ2

3G3, (9)

and the sum of (8) and (9) gives Q2
1 + Q2

2 = 2H. We can alternatively use the explicit
definition of Q1 and Q2 from (5) and after a long calculation we find

Q2
1 + Q2

2 = 2H, (10)

with H given by (6). This result shows us that we can find the ground state function
by solving simultaneously Q1|Ψ〉 = 0 and Q2|Ψ〉 = 0. From now on we will use this
methodology to find the ground state wave function. Motivated by the results given
in [27,28] related to the relation between cosmology and matrix models, since we are also
considering the supersymmetric sector, it is our purpose to search for supersymmetric
cosmological solutions as solutions of this matrix model.

4. Wave Functions

In this section we search for common solutions to Q1|Ψ〉 = 0 and Q2|Ψ〉 = 0 for some
specific models. The fixing of bosonic degrees of freedom classically allows to simplify the
equations as we will see. The next set of reduced solutions will be relevant as they will be
related to supersymmetric quantum wave functions
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4.1. First Solution

Let us begin with the following assumption

φ1
1 = a, φ2

2 = b, φ1
2 = d, φ2

1 = x, φ1
3 = φ2

3 = 0. (11)

where a, b, d are constants. We are making a reduction to only one bosonic degree of
freedom, φ2

1 = x, therefore we will only have one canonical momentum π2
1 = −ih̄ d

dx .
The set of variables are fixed classicaly, consequently there will be a canonical momentum
associated only to true variables. Once some configuration of variables is specified, it has
been verified that the canonical commutation relations (3) are satisfied. The operator Q1
and Q2 (see Equation (5)) take the simpler form

Q1 = Λ11π2
1 − gΛ32(ab− dx), Q2 = −Λ12π2

1 + gΛ31(ab− dx). (12)

Using the representation of the Λaα variables and applying the operator Q1 to the
wavefunction |Ψ〉 = (ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7, ψ8), the operator equation Q1|Ψ〉 = 0 yields
to the eight coupled differential equations

dψ8
dx −

g
h̄ (ab− dx)ψ1 = 0, dψ7

dx + g
h̄ (ab− dx)ψ2 = 0,

dψ6
dx + g

h̄ (ab− dx)ψ3 = 0, dψ5
dx −

g
h̄ (ab− dx)ψ4 = 0, (13)

dψ4
dx −

g
h̄ (ab− dx)ψ5 = 0, dψ3

dx + g
h̄ (ab− dx)ψ6 = 0,

dψ2
dx + g

h̄ (ab− dx)ψ7 = 0, dψ1
dx −

g
h̄ (ab− dx)ψ8 = 0.

This particular system can be written in the matrix form

d|Ψ〉
dx

= f (x)A|Ψ〉, (14)

where f (x) = g
h̄ (ab− dx) and A is a matrix with the explicit form

A =



0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0
0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0


. (15)

This fact has an operational advantage, let us suppose that the solution has the
following form

|Ψ〉 = C exp
(

λ
∫

f (x)dx
)
|v〉, (16)

where λ is a constant and |v〉 is a constant vector. Upon substitution in Equation (14) we
have that the following eigenvalue equation has to be satisfied

A|v〉 = λ|v〉, (17)

so our problem has been reduced to an eigenvalue problem and the general solution of
Equation (14) will be

|Ψ〉 =
8

∑
i=1

Ci exp
[

λi

∫
f (x)dx

]
|v〉i, (18)
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where Ci are complex constants, λi are the corresponding eigenvalues of the matrix A
and |v〉i its corresponding eigenvectors. Hence, following this procedure we find that the
general solution of Equation (14) is given by

|Ψ〉 =



−C1 exp
(
− g

h̄ [abx− dx2

2 ]
)
+ C5 exp

(
g
h̄ [abx− dx2

2 ]
)

C2 exp
(
− g

h̄ [abx− dx2

2 ]
)
− C6 exp

(
g
h̄ [abx− dx2

2 ]
)

C3 exp
(
− g

h̄ [abx− dx2

2 ]
)
− C7 exp

(
g
h̄ [abx− dx2

2 ]
)

−C4 exp
(
− g

h̄ [abx− dx2

2 ]
)
+ C8 exp

(
g
h̄ [abx− dx2

2 ]
)

C4 exp
(
− g

h̄ [abx− dx2

2 ]
)
+ C8 exp

(
g
h̄ [abx− dx2

2 ]
)

C3 exp
(
− g

h̄ [abx− dx2

2 ]
)
+ C7 exp

(
g
h̄ [abx− dx2

2 ]
)

C2 exp
(
− g

h̄ [abx− dx2

2 ]
)
+ C6 exp

(
g
h̄ [abx− dx2

2 ]
)

C1 exp
(
− g

h̄ [abx− dx2

2 ]
)
+ C5 exp

(
g
h̄ [abx− dx2

2 ]
)



, (19)

and it can be easily shown that this wave function satisfies Equation (13). Now we need to
find the solution to Q2|Ψ〉 = 0. The differential equations arising from this equation can
also be written in the form d|Ψ〉

dx = f (x)B|Ψ〉 with B given explicitly by

B =



−1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1


, (20)

and the general solution to Q2|Ψ〉 = 0 is

|Ψ〉 =



D4 exp
(
− g

h̄ [abx− dx2

2 ]
)

D8 exp
(

g
h̄ [abx− dx2

2 ]
)

D7 exp
(

g
h̄ [abx− dx2

2 ]
)

D3 exp
(
− g

h̄ [abx− dx2

2 ]
)

D2 exp
(
− g

h̄ [abx− dx2

2 ]
)

D6 exp
(

g
h̄ [abx− dx2

2 ]
)

D5 exp
(

g
h̄ [abx− dx2

2 ]
)

D1 exp
(
− g

h̄ [abx− dx2

2 ]
)



. (21)

Now that we have both solutions (19) and (21) we can see that in this case we can
choose particular values for the constants Ci and Dj in order to find a common solution that
satisfy Q1|Ψ〉 = 0 , and Q2|Ψ〉 = 0 . For instance we can choose; C5 = C2 = C3 = C8 = 0,
D4 = −C1, D8 = −C6, D7 = −C7, D3 = −C4, D2 = C4, D6 = C7, D5 = C6, D1 = C1 and the
solution (21) satisfies Q1|Ψ〉 = 0 and Q2|Ψ〉 = 0 at the same time, therefore it represents
the ground state of the Hamiltonian for the particular model. More important is the fact
that under the following identifications
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ab =
Mc
3

, d =

√
κc3

3G
, φ2

1 = x(t) = R(t), (22)

where c is the constant speed of light, G is the gravitational constant and k is the curvature
in the FRW metric of a cosmological model, the common solution becomes the ground state
of te Hamiltonian of a supersymmetric quantum cosmological model [30]

|Ψ〉 =



−D1 exp
(
−[Mc

h̄ R−
√

κc3

2Gh̄ R2]
)

−D5 exp
(
[Mc

h̄ R−
√

κc3

2Gh̄ R2]
)

−D6 exp
(
[Mc

h̄ R−
√

κc3

2Gh̄ R2]
)

−D2 exp
(
−[Mc

h̄ R−
√

κc3

2Gh̄ R2]
)

D2 exp
(
−[Mc

h̄ R−
√

κc3

2Gh̄ R2]
)

D6 exp
(
[Mc

h̄ R−
√

κc3

2Gh̄ R2]
)

D5 exp
(
[Mc

h̄ R−
√

κc3

2Gh̄ R2]
)

D1 exp
(
−[Mc

h̄ R−
√

κc3

2Gh̄ R2]
)

.



. (23)

In the superfield description of supersymmetric quantum cosmology it is customary
to define a weighted inner product in order to guarantee quick convergence [30,31]. Note
that the components, 2, 3, 6, and 7 of the wave vector solution have the right behavior for
large R. Under the inner product defined in the following manner [30]

〈Ψ|Ψ〉 =
∫ Rsup

0
Ψ†ΨR1/2dR, (24)

one of the exponentials in the solution converges, it is then important to be able to isolate
this convergent components in order to have a normalizable solution. It can be easily seen
that the constants Di (some of them equal to zero) can be chosen in such a way to achieve
this. In this case D1 = D2 = 0.

We have found so far that it is possible to construct a simultaneous normalizable
solution to both supercharges and the next question to answer is whether it is possible to
construct solutions that coincide with other supersymmetric cosmological wave functions.
This solution was found in [32] but with a less systematic methodology as the one shown
here. The next models have not been reported elsewhere and will be found following the
approach shown previously. They will show us that it is possible to find other relevant
normalizable cosmological solutions as well.

4.2. Second Solution

The next solution will be described by the following assumptions

φ1
3 = b, φ2

1 = d, φ1
1 = ex, φ2

3 = ex, φ1
2 = φ2

2 = 0, (25)

where b, d, e are constants. In order to satisfy the commutation relation (3) the canonical
momentum related to φ1

1 = φ2
3 = ex is given by π2

3 = − ih̄
e

d
dx . In this case the supercharges

take the form

Q1 = Λ12π1
1 + Λ31π2

3 − gΛ22(bd− e2x2), (26)

Q2 = Λ11π1
1 −Λ32π2

3 + gΛ21(bd− e2x2),
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and the equations Q1|Ψ〉 = 0 and Q2|Ψ〉 = 0 become respectively the systems

d|Ψ〉
dx = f (x)A|Ψ〉, (27)

d|Ψ〉
dx = f (x)B|Ψ〉,

where f (x) = eg/2h̄(bd− e2x2) and the matrices A and B are respectively

A =



0 0 −1− i 0 0 0 0 0
0 0 0 1− i 0 0 0 0

−1 + i 0 0 0 0 0 0 0
0 1 + i 0 0 0 0 0 0
0 0 0 0 0 0 −1− i 0
0 0 0 0 0 0 0 1− i
0 0 0 0 −1− i 0 0 0
0 0 0 0 0 1 + i 0 0


, (28)

B =



1 0 0 0 0 0 0 i
0 1 0 0 0 0 −i 0
0 0 1 0 0 −i 0 0
0 0 0 1 i 0 0 0
0 0 0 −i −1 0 0 0
0 0 i 0 0 −1 0 0
0 i 0 0 0 0 −1 0
−i 0 0 0 0 0 0 −1


. (29)

Following the same procedure described in the last section we can first write down
the solutions Equation (18) to Q1|Ψ〉1 = 0 and Q2|Ψ〉2 = 0

|Ψ〉1 = ∑8
i=1 C1i exp [λ1i

∫
f (x)dx]|v〉1i, (30)

|Ψ〉2 = ∑8
i=1 C2i exp [λ2i

∫
f (x)dx]|v〉2i,

with the corresponding eigenvalues and eigenvectors of the matrices A and B. In this
model, it is also possible to find first, a common solution to both supercharges that will
in general be a linear combination of increasing and decreasing exponentials and second,
isolate the normalizable wave function. Here we show two particular nontrivial solutions

|Ψ〉 =



(i− i
√

2)
(−i + i

√
2)

1/2(−2 +
√

2− 2i + i
√

2)
1/2(2−

√
2− 2i + i

√
2)√

2/2(1 + i)√
2/2(−1 + i)

1
1


exp

(
−
√

2eg
2h̄

[bdx− e2

3
x3]

)
(31)

|Ψ〉 =



(i + i
√

2)
−(i + i

√
2)

(−2−
√

2− 2i− i
√

2)
(2 +

√
2− 2i− i

√
2)

−
√

2/2(1 + i)√
2/2(1− i)

1
1


exp

(√
2eg
2h̄

[bdx− e2

3
x3]

)
. (32)
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These wave functions are simultaneous solutions to both supercharges and under the
following identification of the constants and variables of the model

b =
1
e

, d =
2c2M1/2

3G1/2 , e3 =

√
6c3Λ1/2

9G
, x(t) = R(t), (33)

where c is the speed of light, G is the gravitational constant, M is the mass parameter of the
matter content of the Universe and Λ is the cosmological constant. Then the normalizable
solution becomes

|Ψ〉 =



(i + i
√

2)
−(i + i

√
2)

(−2−
√

2− 2i− i
√

2)
(2 +

√
2− 2i− i

√
2)

−
√

2/2(1 + i)√
2/2(1− i)

1
1


exp

(√
2c2M1/2

h̄G1/2 R− c3Λ1/2

3
√

3h̄G
R3

)
, (34)

which is the solution to a supersymmetric quantum cosmological model, that is, a flat FRW
model with cosmological constant and radiation (γ = 1/3) as matter [33]. The structure
of the matrix model could also allow to find another cosmological solution but there is
nothing that indicates a priori that the solutions to Q1|Ψ〉 = 0 and Q2|Ψ〉 = 0 could have
common solutions and even worse, that these solutions could allow a linear combination
that results in a normalizable solution.

4.3. Third Solution

The next solution considers the following

φ1
3 = ex, φ2

1 = b, φ1
1 = ex, φ2

3 = ex, φ1
2 = φ2

2 = 0. (35)

where b, e are constants. Solving for the supercharges which in this case take the form

Q1 = Λ31π2
3 + Λ12π2

2 − gΛ22(bex− e2x2), (36)

Q2 = Λ11π1
1 + Λ31π1

3 + gΛ21(bex− e2x2),

the differential equations for the eight components of the wave function |Ψ〉, Q1|Ψ〉 = 0
and Q2|Ψ〉 = 0 can also be written in the form (14) and the explicit form of the matrices A
and B for both systems is the following

A =

(
A 0
0 A

)
, A =


0 0 −1− i −i
0 0 i 1− i

−1 + i −i 0 0
i i + 1 0 0

, (37)

B =

(
B C
−C −B

)
, B = I4×4, C =


0 0 −1 −i
0 0 −i 1
1 −i 0 0
i −1 0 0

.

In tis case also common solutions exists and the complex constants in the linear
combinations of the solutions can be chosen in such a way to have a normalizable solution.
After the identification

b =
31/6√κc
(GΛ)1/3 , e = − cΛ1/2

(3G)1/3 , x(t) = R(t). (38)
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the normalizable solution becomes

|Ψ〉 =



1/2(−1 +
√

3 + i− i
√

3)
1/2(1− i−

√
3 + i
√

3)
1/6(−3− 9i +

√
3 + 3i

√
3)

1/6(3− 3i−
√

3 + i
√

3)
1/
√

3(1 + 2i)
−1/
√

3
1
1


exp

(
−
√

κc3

2h̄G
R2 − c3Λ1/2

3
√

3h̄G
R3

)
(39)

which can be identified with he supersymmetric quantum solution of the FRW model with
curvature κ and cosmological constant [30,33,34].

The matrix solutions found so far, were compared to those arising from the general
FRW superfield action (c = 1 and G̃ = 8πG

6 )

S =
∫ [
− 1

2G̃
N−1RDηR+

√
κ

2G̃
R2 +

Λ1/2

3
√

3G̃
R3 − 2

√
2

G̃1/2 ∑
i

M1/2
γi

(3− 3γi)
R3−3γi/2

]
dηdηdt, (40)

where N(η, η, t) and R(η, η, t) are the relevant superfields. This action allows contributions
of curvature κ, and several matter terms like the cosmological constant Λ and fluids
following the state equation p = γiρ.

By the use of the Taylor expansion of these superfields, which involves fermionic
gravitino fields (λ, λ), the corresponding Hamiltonian H and Wheeler-deWit equation
HΨ = 0 is constructed following a systematic procedure [30,31,33–35]. In this approach
also, a matrix representation for the fermionic fileds is chosen and the resulting wave
functions are two component vectors

Ψ =

(
Ψ1
Ψ2

)
, (41)

whose general solutions have the form

Ψ1(R) = C1 exp

− √κ

2Gh̄
R2 +

1√
6

(
ρΛ

ρpl

)(
R
lpl

)3

−
√

18√
6π

1

ρ1/2
pl

(
R
lpl

)3

∑
i

ρ1/2
i

(3− 3γi)

, (42)

Ψ2(R) = C1 exp

 √κ

2Gh̄
R2 − 1√

6

(
ρΛ

ρpl

)(
R
lpl

)3

+

√
18√
6π

1

ρ1/2
pl

(
R
lpl

)3

∑
i

ρ1/2
i

(3− 3γi)

,

where the mass parameter is related to the scale factor and its corresponding density as
Mγi =

1
2 ργi R

3(1+γi), ρΛ = Λ
8πG and ρpl = G−2. Certain conditions might be imposed in

order to get normalizable functions [33].
Our eight component matrix solutions are particular cases compared to these

Equation (42) which are just two component ones but as it can be seen, both sets of solu-
tions have only two independent components and only one of them can be allowed to be
normalizable. Consequently they can be regarded as being the same. The comparison
between our solutions and those of Supersymmetric Quantum Cosmology (SUSYQC) mod-
els was made at the level of the wave vector functions, however it is possible to compare
Hamiltonians in order to see that the reduced Hamiltonians and the ones in SUSYQC also
coincide [30,33].

5. Conclusions

We have developed a method that allows to solve the ground state solution for the
complete sector of a SU(N) invariant supersymmetric matrix model [2,5,8]. Such method
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was solved here for a reduced and somehow simplified model, but it is important to note
that it could be in principle solved for any finite N. One relevant characteristic of the
procedure followed is the use of a Dirac-like gamma matrix representation for the fermionic
matrices Λaα. This method allows to find the ground state wave function solutions, for
the matrix model considered here, in terms of multicomponent vectors instead of scalar
functions of real and Grassman variables. The additional reductions we made, compared
to those earlier implemented to solve the matrix model [2,5,8], allow to find non-trivial and
normalizable solutions. This could not be the case in general for non-truncated models [5].

It is known that the Discrete Light Cone quantization provides a way to define a
consistent finite N matrix theory [2] and it has been found that the degrees of freedom
of finite N matrix models as the one solved here correspond to those of a Super Yang
Mills Theory (SYM). We have shown in this work that we are able to find the quantum
solution of one particular matrix model for any finite N [8]. We suspect that we could be
able to identify the degrees of freedom arising from our finite N solutions with the ones
coming from SYM theory. If such identification is possible, quantization of SYM theory
will be a matter of quantizing the finite N matrix model shown here. This is however a
matter of a future analysis and will not be discussed in detail here. Moreover, it will be of
interest the connection between the finite N matrix theory and some low energy models
associated with specific symmetry groups of the Standard Model, and beyond like, SU(N)
with N = 5, 3, 2, etc. This is still a more elaborated procedure which remains to be analyzed
in the future.

We have found also that the particular SU(2) matrix model solved here contains
supersymmetric quantum cosmological solutions as vacuum solutions. Those wave
functions have been found independently in the context of supersymmetric quantum
cosmology [30,33,34]. Those solutions give relevance to our method of solution and con-
tributes to consider the importance of solutions of finite N matrix models [3,4,36–39].

If we attempt to solve this matrix model for a bigger group and dimension, the size
of the vector solution is larger and powerful computational methods will be required in
order to solve the systems of differential equations when solving for the corresponding
supercharges. By solving a modest and simple reduced model, our intention here was
in principle to expose the methodology of solution on analytic grounds where even for
the reduced model, we found our method to be particularly productive. More complete
models will be solved and the possible relation with SYM theories will be presented in a
future work.
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