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Abstract: We consider the effective evolution of a phenomenological model from FLRW supersym-
metric quantum cosmology with a scalar field. The scalar field acts as a clock and inflaton. We
examine a family of simple superpotentials that produce an inflation whose virtual effect on inho-
mogeneous fluctuations shows very good agreement with PLANCK observational evidence for the
tensor-to-scalar ratio and the scalar spectral index.
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1. Introduction

It is widely accepted that the observable universe originates from an early homoge-
neous phase beginning presumably around the Planck scale, just after a less understood
phase of quantum spacetime. This homogeneous phase has a classical description by an
effective FLRW model with scalar matter. The subsequent inhomogeneity is attributed to
quantum fluctuations of space that induce matter inhomogeneities that grow, and loss coher-
ence due to inflation. Thus, a quantum treatment seems to be natural for the homogeneous
phase.

Standard quantum cosmology is based on the canonical quantization of general relativ-
ity [1]. Following Dirac, the Hamiltonian constraint, generator of time reparametrizations,
is implemented as a time-independent Schrodinger equation, the Wheeler-DeWitt (WDW)
equation. Additionally, the solution to the WDW equation, i.e., the wave function of the
universe, must be supplemented with a prescription to compute probabilities considering
the singular character of the universe. Further, as the Hamiltonian operator annihilates the
wave function, this is a timeless theory. However, the universe exhibits a marked one-way
evolution (arrow of time), and internal observers have clocks [2-5].

In recent years, there have been several proposals in standard quantum cosmology
that mainly relate time to the scale factor, essentially by a gauge fixing. These proposals
involve mostly approximations of the semiclassical type, as well as Born-Openheimer
with a weakly coupled matter sector and a large-scale factor. In [6], a general gauge fixing
was analyzed, which was applied in [7] to several minisuperspace models with a classical

‘extrinsic’ time. In [8], a Born—-Oppenheimer approximation was used to separate the scale

factor from a weakly coupled matter sector. This allowed for defining a time as in the
WKB approach, proportional to the square of the scale factor, and parametrize matter
evolution with an effective Hamiltonian; see also [9,10]. Further, in [8] and a subsequent
series of works, increasingly complex settings were analyzed, an inflaton with a mass term
in [8], additional generic matter in [11], Mukhanov-Sasaki scalar perturbations for a de
Sitter evolution in [12], and tensor perturbations in a general slow-roll inflationary setting
in [13]. The parameter values of the last work were restricted in [14] by comparison with
observational data, and in [15], they were considered effects on the spectra of primordial
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perturbations. In [16] the consequences of the interference of the wave functions before and
after a bounce were analyzed. For supersymmetric quantum cosmology, in [9,10,17], in the
semiclassical approach, the effect of supersymmetry was explored for the solution.

The purely bosonic Wheeler-DeWitt equation is a second-order partial differential
equation (PDE) in (mini)superspace. To single out a solution that corresponds to the
wave function of the universe, one must impose suitable boundary conditions. Defining
the appropriate boundary conditions that give rise to the universe with which we are
familiar constitutes a well-known fundamental problem in quantum cosmology. There
is also the possibility that a more complete theory introduces additional restrictions that
uniquely determine a quantum state. An example of this is quantum supersymmetric
cosmology; see, e.g., [9,10]. In this case, the most general state has multiple components,
and the Hamiltonian constraint amounts to a system of coupled second-order PDEs that
is equivalent to a system of first-order PDEs, the supersymmetric constraints. In [18], we
worked out a supersymmetric model leading to an analytic solution to the WDW equation.
In the present work, with a slightly simpler WDW equation by a different operator ordering,
we consider the time choice of [18] by analyzing the wave function. The general expression
of this wave function allows for the identification of a curve of most probable values in
configuration space (superspace), parametrized by the scalar field, and suggests to choose
it as time. Such a type of choice has been known for a long time [19]. Here, we analyze
in detail the wave function regarding the choice in [18], of an effective time-dependent
wave function with a probability density that corresponds to the conditional probability
of measuring a value of the scale factor for a given value of the scalar field. Thus, the
mean values computed with this wave function were time-dependent, in particular for the
scale factor, which gives a trajectory that follows closely the previously mentioned curve of
most probable values. Further, we consider the quantum cosmology of this approach, and
explore a family of inflationary solutions.

We consider supersymmetric models because, even if at LHC energies, supersymmetry
has not been found, it might be broken at higher energies, and it continues to be part of
important candidates of ultraviolet completions for quantum gravity, supergravity, and
string theory. Supersymmetry nontrivially relates fermions and bosons; in a supersym-
metric quantum field theory, fermionic and bosonic divergences are cancelled [20]. Thus,
supersymmetric quantum cosmology [21-24] is a relevant option for the study of quantum
cosmology. Supersymmetry can be formulated by the extension of spacetime translations
to translations in a Grassmann-extended spacetime, which includes fermionic coordinates,
called superspace'. The fields on this supersymmetry superspace are called superfields, and
supergravity can be formulated as a general relativity theory on a supermanifold [20,25].
There are several formulations for supersymmetric extensions of homogeneous cosmologi-
cal models [22,23]. One class of such formulations comes from a dimensional reduction
of four- or higher-dimensional supergravity theories by considering homogeneous fields
depending only on time and integrating the space coordinates [26]. The other class is
obtained by supersymmetric extensions of homogeneous models, invariant under general
reparametrizations of time [27-29], or invariant under general reparametrizations on a
superspace, with anticommutative coordinates besides time [30,31]. In [18,31], we fol-
lowed [25], where one of us gave a geometric Lorentz covariant superfield model building
tool for supergravity that can be straightforwardly applied to any number of spacetime
dimensions. In particular, a homogeneous formulation could be straightforwardly traced
back to four-dimensional supergravity.

As usual in theories with fermionic degrees of freedom, their conjugate momenta are
eliminated by solving a number of second-class constraints, leaving an algebra of Dirac
brackets. The corresponding quantum fermionic operators can be represented in several
ways, e.g., by a matrix representation [21,32], representing half the fermionic degrees of
freedom by either differential operators [33], or by creation operators acting on a vacuum
state [18,29]. The wave function is spinorial in the first case, or a finite expansion of possible
states in the second case. In any case, the Wheeler—DeWitt equation is equivalent to a system
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of first-order partial differential equations. In many cases, they have exact solutions [30-32],
and the integration constants can be assimilated in the normalization. Therefore no initial
conditions are required, although the state depends on the model. For supersymmetric
extensions of higher-order theories, such as f(R) theories, the differential equations might
not be first-order [34].

In Section 2, we review the superfield formulation of supersymmetric cosmology. In
Section 3, we review the quantization of the models from [18]; supersymmetric Wheeler—
DeWitt equations have an analytic solution that depends on the scale factor and the superpo-
tential. In Section 4, we discuss the problem of time. The identification of high-probability
paths in configuration space to which mean trajectories correspond leads to the identifi-
cation of the scalar field as time. Thus, following [18], a time-dependent effective wave
function can be given. This effective wave function allows for computing mean values of
the scale factor that give a time evolution. This scale factor is inversely proportional to
the cubic root of the superpotential, and we obtain inflationary behavior for a family of
superpotentials, as shown in Section 5. These superpotentials depend on three parameters,
namely, 4, A, and p; the first determines the time scale, the second the number of e-folds,
and the last is a power that modifies the initial conditions of the scale factor. After fixing
parameters y and A, we compute the tensor/scalar ratio and the scalar spectral index
with remarkably good agreement with the observational bounds of PLANCK observatory
without having to adjust parameters for this purpose. Lastly, in Section 6, we present a
short discussion with some remarks and future work perspectives. In an appendix, we give
the effective wave function and the scale factor for k = 1.

2. Supersymmetric FLRW Model with a Scalar Field

The large-scale observable universe has been modelled in general relativity by the
FLRW metric with scalar fields. This is quite a general setting that could follow from
a fundamental theory, and can account for inflation, primordial matter generation and
structure formation, and dark energy. We consider the most studied model, the simplest,
with a single minimally coupled scalar field ﬁ [ /=8Rd*x + [ \/=g[rarpa, — V(¢)]d*x,
where x2 = 87;—4(;. For the FLRW metric, it reduces to well-known form

1

I=—
12

3 1 .
/{ —szN*aaz + 3Nka — Na®A + x%a3 ?N*qﬁ - NV(cp)} }dt. (1)
This Lagrangian is invariant under general time reparametrizations. From this action,
follow the Friedmann equations and the conservation equation for a perfect fluid described

by scalar field ¢(t), i.e., in natural units and comoving gauge, Z—; -2+ a% = %Zp, 4y

£ A+ a% = —«2pand p+ 3% (p+p) =0, with p = 1 + V(¢) the energy density, and

a2
p= %gbz — V(¢) the pressure for the perfect fluid ¢ (). The momenta are 77, = fﬁN “lag
and 71y = —C%N _11134} The Hamiltonian is H = NH;, where Hj is the Hamiltonian
constraint, which generates time reparametrizations.

2.1. Supersymmetric Cosmology

Supergravity, the supersymmetric version of gravity, can be formulated as general
relativity in superspace, an extension of spacetime by anticommutative spinorial variables,
in four dimensions, x™ — (x™,6,,0%), where 6 are Weyl spinors and 6 their conjugates [20],
a,& = 1,2. Supersymmetric field theory on superspace realizes supersymmetry algebra
{Q,X, Qa} = 2i0} 0, which extends the Poincaré algebra. Thus, for homogeneous fields,
the charges decompose into two copies

{Q,x, Q&} = 21.0',8‘5‘80 = Ziéaaao. (2)

Therefore, a minimal version of homogeneous supersymmetric field theory can be
given by extending time by one complex anticommuting coordinate, which amounts
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to supersymmetric quantum mechanics. This theory can be obtained, in general, by
dimensional reduction from higher-dimensional models to one (time) dimension [35]. Thus,
supersymmetric cosmology can be obtained from one-dimensional supergravity [30].

For the sake of clarity, here we shortly review the derivation of the supersymmetric
Wheeler—DeWitt equation following [18,31]. In these works, we formulated it as gen-
eral relativity on supersymmetry-superspace, t — zM = (t,0,0), where ® and @
are the anticommuting coordinates, the so-called “new” ©®-variables [20]. Hence, un-
der zM — M = ;M 4 CM(Z), the superfields, see e.g., [20,25], transform as 6;®(z) =
—¢M(2)9pP(z), and their covariant derivatives are V4@ = V M(z)9®. V M(z) is the su-
perspace vielbein, whose superdeterminant gives the invariant superdensity & = SdetV 4,
6 = (=1)"om(C Mg). For the supersymmetric extension of the FLRW metric, we have
£ = —N — L(@¢ + O@y) [31]. In this formulation, to the scale factor and the scalar field
correspond real scalar superfields [20,30].

A(t,0,0) = a(t) + OA(t) — OA(t) + OOB(t), 3)
D(t,0,0) = ¢(t) + On(t) — Off (t) + OOG(t). 4)

The supersymmetric extension of Action (1) fork = 0,1is I = Ig + Ij; , where I is
the supergravity action, and I, is the matter term [18,30,36]

Ic = % / 5(AV®AV@A - \@Az)d@d@dt, ®)
I = / e [—;V@)CDV@(I) + W(CD)] 1040t ©)

where W is the superpotential.

2.2. Component Formulation

The component action follows from (5) and (6). After performing the Grassmann
integrals, integrating out auxiliary fields B and G, and producing the redefinitions A —
a2\, A — a'?7, 4 — a%/?y, and i — a%/27, the Lagrangian reads , see [18]

3aa>  a’¢*>  3kNa 2 3NKk? 5o 14 o 3+ . i,

L= s + s+ =g — VAN W + W2 — ~a*NW +$(A)\+A/\)—£(W+w)
3\/aa N ) _ o Bip,. - vk 3 . 3vk  3x? 2\
+— g WA = PA) — = (= i) + 5= (AT + Ay) +3N| 7 = SW AL N ===+ =W = W" |7
e VE_1 50— % o+ 57— Y ) — 3 wiAR 4 i

+3ia (Kza 2W> (WA +PA) = =W gy + §71) = —5— (A = Ay) = S5 9PAA + i,

where W = W(¢), W' = 9yW (), and W' = 93 W(¢).
The Hamiltonian is of the form H = NHy + %QDS - %J)S_, with the components of the
one-dimensional supergravity multiplet (N, ¢, ¢) as Lagrangean multipliers enforcing the
Hamiltonian (Hp ~ 0) and supersymmetric (S ~ 0, S =~ 0) constraints [18].
The basic nonvanishing Dirac brackets are {a, 7.} = {¢, mp} = 1, {A, A}y = o

6 7/

{n,7}+ = —c. With these brackets, one can verify the following algebra of constraints
{5,5}4+ = —2H,, @)
{Ho, S} = {Ho, S} = 0. ®)

The scalar potential in the Hamiltonian Hy is [18]

3vk 32, 1.0
Vo= —W-—- —W —W'".
S p 1 t3 )
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For k = 0, the sign of the superpotential does not matter for the scalar potential.

3. Quantization

Homogeneous cosmology is a mechanical system; hence, it can be quantized with the
formalism of ordinary quantum mechanics. There are, however, several well-known prob-
lems. On the one hand, the probabilistic character of measurements in quantum mechanics
clashes with the uniqueness of the system as there is no ensemble of universes to perform
a series of tests, in identical, observer shaped conditions [37]. Nevertheless, observables
such as the Hubble parameter can be determined by a set of observations. On the other
hand, since the Hamiltonian vanishes, a time parameter cannot be introduced by means
of the Schrodinger equation, or for the wave function or for the observables. Nonetheless,
the Wheeler—DeWitt equation gives a time-independent Schrodinger equation with zero
eigenvalue whose solution depends on the superspace variables, the minisuperspace in
the homogeneous case, and gives the probability amplitude for the universe to be found in
certain superspace configurations. The fact that the theory does not give a time evolution is
the well-known consequence of invariance under time reparametrizations. Time is argued
to be an internal property that can be determined by the choice of a clock [3]. On the other
side, the observed universe is classical [37]; hence, its description is given by mean values
of the quantum operators. We further discuss the time problem in Section 4.

3.1. Supersymmetric Wheeler-DeWitt Equations

For the derivation of supersymmetric Wheeler-DeWitt equations, we follow [18],
but with a different ordering for fermions which yields somewhat simpler solutions. For
consistency, the Hamiltonian operator must be Hermitian; hence, the supercharges must
satisfy S = ST and S = S'. The only nonzero (anti)commutators are

07 =gl =in, (AR} =B, (i) = —he, (10)

where 13 = 7;—? is the Planck length. For the quantization, we redefine the fermionic

degrees of freedom as A = / h%—"za, A= %&, 7 = Vhep and 7 = V/hicp. Hence, the

anticommutators are
{a,a} =1,  {BB}=-1 (11)

as well as a> = g2 = a? = B? = 0. The bosonic momenta are represented by derivatives,
« and B are annihilation operators, and & and B are creation operators. We fixed the
ordering ambiguities by Weyl ordering, which is antisymmetric for fermions. Hence, the
supersymmetric constraint operators read

1 cK 1 1 3 3ix 3 3 Vo6k 1 iv3 ~
—S=——(a2m,+ma 2)a+ca 2mpB+ —a2Wa +ia2 W’ —i—a?tx——hcxa 5 , Bl, 12
hic 2 6( “ ! ) oP V6 p K 42 a[B, B (12)
1 cK 1 1 3 - 3iK 3 3 V6k 1 iv3 3=
—S=—"——(a2m,+ma 2)a+ca 2wy — —a2Wa —ia2 W’ j alx + ——hexa” 2&(B, Bl. 13
TV G P~ ot ohoa RalB B (19
Anticommutator {S,S} = —2hcH gives the quantum Hamiltonian
A2 1 . » V3., 3k vk 3vk -
Ho——ﬂ(a T+ A )—}—? ”¢_2\7hcxa 7T¢(tx,8+0¢/3)——a——h Hrs ]—l-iha 1, Bl
32 W2 4 3Vka*W + ;a3W’2 + hCKZW[ al — ghCKZW[ﬁ, Bl + Z\f/gihCKW’(sz —ap) + %hCWN[,B, B

+ % (hex)?a=3 (anBB + aiBp). (14)
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The Hilbert space is generated from the vacuum state |1), which satisfies
«|1) = B|1) = 0. Hence, there are four orthogonal states

1), [2)=al1), [3)=8[1) and [4)=ap|1), (15)

which have norms (2|2) = (1]1), (3|3) = — (1|1) and (4|4) = — (1|1). Hence, a general
state has the form

) = 91(a,9) [1) + $2(a, @) [2) + $3(a, @) [3) + pa(a,¢) |4) . (16)

Therefore, from constraint equation S |¢) = 0, we obtain

oo B e

(a —a W + Z‘[ a1> =0 and (a¢ — hlccr”’w’) Py =0, (18)

while from Sy = 0

3 6 1 6 /
R kv

3 2 6\/ AV 130\,

The terms with a~! in (17)-(20) differ from those in [18] due to a different operator
ordering in the Hamiltonian. In fact, the classical Hamiltonian in [18] has a term a~ 172

that can be ordered in many ways to give a Hermitian operator as a 1712 — 2k T (ka='rc2 +
I Yy + krpa™t).

3.2. Solutions

As the Wheeler-DeWitt equation is second-order, its solutions require boundary
conditions. However, in supersymmetric theory, Equations (17)—(20) are first-order and
have unique solutions that can be fixed by consistency and normalization. The equations
for 11 and 14 can be straightforwardly solved yielding the unique solutions up to constant
factors [30]

1 3vka?
P1(a, ¢) = Aaexp [_hc <a3W(¢>) — \1/(;1 >], (21)
2
Py4(a,$) = Aaexp [hlc <u3W(4)) — 3\2? >], (22)

The power of factor a of these solutions differs from the solutions in [18] due to the
different operator ordering mentioned end of the preceding section. As shown in [18], the
solutions of Equations (17) and (19) are not defined at 4 = 0 unless they are trivial. Thus,
we chose the solutions ) = C1 1(a,¢) [1) + C4ps(a, ¢) |4), where C; and Cy are arbitrary
constants [18]. The norm of this state is

01) = |IGP [ 19200, 0)Pdndp (G [ 1ys(a,0)Pdndp| Al 2

Classically, a > 0 and could be a problem for quantization, e.g., it could require an
infinite wall [4]. However, solutions (21) and (22) already vanish at a = 0. For a positive
superpotential, {; has a bell form and tends to zero as a increases; see Figure 1. In this
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case, solution ¢, must be set to be the trivial one. Oppositely, for a negative superpotential,
iy, tends to zero as a increases, and ¢, must be discarded. For ¢ — £oo, the behavior of
(21) and (22) depends on the form of the superpotential. Therefore, we considered only
positive or negative superpotentials, and we chose (1|1) = 1 for positive superpotentials,

and (1/1) = —1 for negative superpotentials. Hence,
[$) = Cir(a,9) [1), if W(g) >0, (24)
[9) = Cypa(a, @) 14), ifW(¢) <O0. (25)

From Expansions (16), and (15), we see that these states correspond to scalars. By
construction, these states are invariant under supersymmetry transformations.

wZ

a

Figure 1. Profile of ¢%(a, ¢), for ¢ constant.

Further, for ¢ — =£oo, the behavior of (21) and (22) depends on the form of the
superpotential. For a localized particle, the wave function has well-defined position
probabilities and probability conservation. These conditions also guarantee hermicity
of operators. On the other side, the wave functions of free particles do not vanish at
infinity, but can be given a meaning by considering relative probabilities. If we restrict the
superpotential to be an even function of ¢, then operators 775 and Hj are self-adjoint even
if the wave function does not vanish at ¢ — *co. Otherwise, if the wave function vanishes
at ¢ — 0, the domain of ¢ can be taken to be [0, o). A self-adjoint Hamiltonian constraint
is consistent with the lack of evolution in the Heisenberg picture

) .
(9| = 1) = % (9! [Ho,al ) = 0. 26)

In the following, unless otherwise stated, we consider k = 0. In this case, we can write
either (24) or (25) as

#lo,) = Caexp |~ W(o)] | @)

This wave function differs from the one in [18], by the power of the a in front of the
exponential, due to a different operator ordering, as mentioned in the preceding section.
In Appendix A we give the expressions for k = 1.

4. Time

Ordinary quantum mechanics assigns operators with real spectra to observables and
probability amplitudes for their occurrence. A time dependence of the wave function
is generated by the Hamiltonian operator. However, in an actually occurring state, a
definite time entails certain energy indeterminacy. Hence, the energy spectrum cannot
be restricted to one value, and time-dependent mean values arise by interference among
different energy states. In general relativity, the Hamiltonian is constrained to vanish, and
time is undetermined. This is consistent, since different energy states can manifest only
if there is an environment that makes possible transitions among them. Nonetheless, the
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universe certainly has different components interacting at least gravitationally, and one
such component, suitable chosen, can play the role of a clock [19]; see also [3,5].

In [18], we chose the scalar field as time parameter, and defined an effective time-
dependent wave function that allows for computing time-dependent mean values. Here,
we analyze Wave Function (27) and its probability density regarding the motivation of this
choice of time.

We adopted the standard interpretation of quantum mechanics for the solutions of
the Wheeler-DeWitt equation. Hence, the square modulus of the wave function gives
the probability density for the possible three-geometries. Further, invariance under time
reparametrizations ensures that the superspaces of each of the space slices are equivalent.
Thus, this wave function describes, in a quantum mechanical sense, the space geometries
of the whole spacetime. Furthermore, if it is possible to identify mean trajectories in
superspace along regions around the maxima of the wave function, then it should be
possible to parametrize these trajectories following the idea of Misner’s supertime [38].
These trajectories should be around classical trajectories [37] corresponding to effective
theories. Strictly speaking, measurements should give random values around these mean
values.

In the model of this paper, the configuration space is given by the scale factor and the
scalar field. Further, from (27), we see that, if we keep ¢ constant, the probability density of
Wave Function (27) has the generic bell form of Figure 1, with the maximum at

he V8
= _— . 2
Amax (‘P) L”WW))} ( 8)
Allowing for ¢ to vary, these maxima trace out a curve of most probable values of the
scale factor. The probability density along this curve is

P2 (amax, @) = e 2/%a%,(9), (29)

Therefore, higher values of the scale factor along this curve have a higher relative
probability, and we could think of an expanding universe for this wave function. On the
other side, in quantum mechanics mean values are generally time-dependent, and we
can speculate that later times correspond to higher probabilities here. Hence, time would
increase monotonically with the scale factor. Nevertheless, amax is driven by Scalar Field
(28); hence, a natural choice for time is the scalar field, and the superpotential should ensure
that amax increases properly. Such a choice corresponds to a gauge where the scalar field is
constant on the spacial slices.In this case, the universe is not localized in the ¢ direction,
and the wave function is not normalizable in this direction, but relative probabilities
can be considered, i.e., quotients of probabilities. As the value of ¢ is highly uncertain, a
measurement gives random values, and we can ask then for the probability that the scale
factor takes a value, which is given by the conditional probability of obtaining this value of
a, given a value of ¢ [18]

y(a,9)
¥(a,9) = : (30)
Jo daly(a,¢)?
This probability must be used if there is a correlation between both fields, as required
for a clock in [19], where it is called relative probability. Probability (30) can be obtained [18]
from a wave function normalized for a given value of ¢

(o, ) = ——— o) 61
i dalp(a,9)P
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Thus, making x¢ — t/u where p accounts for the time scale, and taking Solution (27),
Wave Function (31) becomes

Y(a,t) = 6|V;lfc(t)|aexp [_113“27;0} (32)

and satisfies a conservation equation [18]. Further, as the observed universe is classical,
what we can give a meaning to, following the Ehrenfest theorem, is mean values. Thus,
under the preceding ansatz, for the scale factor, we obtain [18]
00 5 ke 1/3
a() _/O al¥ (a, 1)[2da _r(4/3){2|w(t)|] , (33)
which is close to (28), as their quotient is T'(4/3)(3/2)1/3 ~ 1.02.

The quantum fluctuations produce standard deviations that satisfy the Heisenberg
relation [18].

In this work, we are not producing any approximation, semiclassical or of another
type. As the fermionic degrees of freedom do not have classical counterparts, the mean
values do not necessarily correspond to trajectories that approximate classical solutions,
see e.g., [17]. Actually, (33) can be inserted into the Friedmann equations, from which a
potential can be read out. If we consider the effective FLRW model with a scalar, obtained
by inserting (33) into the Friedmann equations, the corresponding potential can be read out

as a time function )
1 2W/ w"
3cti2 < w2 W) ! (34)

which can be compared with the scalar potential (9), which follows when the fermionic
terms in the Hamiltonian are eliminated.

The results for this section can also be given analytically for k = 1; see Appendix A.
They involve hypergeometric, AiryBi, and AiryBi’ functions that have exponential behavior,
and their numerical evaluation is troublesome. As we were interested in qualitative features
here, we restricted ourselves to k = 0. In this case, considering that the sign of the
superpotential did not have consequences for the wave function or the scalar potential, we
chose the superpotential as positive definite in the following.

5. Inflationary Model

In this section, we consider a class of phenomenological superpotentials that give
inflationary dynamics that satisfactorily agrees with the observational bounds. Potentials
of this form appear, e.g., in string-inspired tachyon models. With these superpotentials,
the wave function tends to zero as ¢ — 0, and we can restrict ¢ > 0, as mentioned in
Section 3.2. Thus, we consider universes with origin at ¢t = 0, described by homogeneous
quantum cosmology from its very beginning, although above Planck scale, full gravitational
interactions become relevant, and some ultraviolet completion would be required.

In [39,40], we performed a qualitative discussion of several superpotentials that have
diverse drawbacks, as phantom matter. Here, we consider a family of superpotentials

W(¢)

:C4M2l¢87rr<4/3>]”3 { (kp)" , )

h? 21/3n 1+ e(’“P)l/z}

for p > 0. The wave function fulfils lim, ;o ¢(a,¢) = 0 and limy o ¢(a,$) = 0.
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Thus, from (33), we have

p(1+eV) 1"
W"Jr)\tp(lJrem) '

a(t) =nlp (36)

where /p is the Planck length. In the following, we set the normalization constant equal to
one, n = 1, and we redefined the scale factor to be dimensionless, a/¢p — a. Constant y
accounts for the time scale. With respect to A, (33) shows that, if the value of W decreases,
the scale factor grows, and, in order to finish this growth, W must stop decreasing; this is
the role of A, which must be positive. Thus, in order to have a sufficiently large increase in
scale factor, A must be small enough. This parameter could be seen as the remainder of a
term responsible for dark energy in the superpotential

A

1 4 ePP—¢a) ’ (37)

we do not pursue this idea further in this work.
For the verification of the predictions of the evolution of Scale Factor (36), we consider
N = 60 e folds and observational data of PLANCK observatory [41]

e  Tensor-to-scalar ratio bound r < 0.064 ,
®  Scalar spectral index ns = 0.9649 + 0.0042.

The acceleration, as usual, can be written by identity
i(t) = aH2(1)(1 - e(t), (38)

_H®
H2(t)
The enhancing effect of inflation on inhomogeneous quantum fluctuations is well-
known [42]. As a consequence, the fluctuations last after inflation and produce structure
seeds, and gravitational waves are generated in the process. These primordial effects last
in the CMB, and their study led to stringent bounds on virtual predictions of inflationary
models, such as the tensor-to-scalar ratio r and scalar spectral index 75, that can be evaluated
directly from the characteristics of the inflationary evolution.
The tensor-to-scalar ratio is the quotient of the tensor-to-scalar power spectra and is
given by

where ¢(f) =

is the slow-roll parameter.

r = 16¢(t). (39)

Scalar spectral index 7, follows from scalar power spectrum

1 H(t)
AP () = —— , (40)
(© 82Mp? €(t) |q(s)m(r)=k
as )
dIn As(t
ns(t) =1+ 72 1rf§<) , (41)
a(H)H(E)=k

where k are the wavenumbers of the scalar perturbations that, during inflation, exit the
horizon at time ¢, i.e., a(t)H(t) = a(t) = k. Thus, (41) can be written as

dt dln Ag(t)?
dk dt

L a(t)dinAg(t)?
=1+ - 7

=1+ k
ns() * a(t

(42)

~—

a(t)H(t)=k a(t)H(t)=k

which can also be written in terms of the Hubble parameter

_ H(H?>+5H) - HH
TR ) )
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Therefore, in order to estimate the values of r and 7, predicted by our model during
inflation, we can evaluate them in the dependence of time.

A first approximation for A can be obtained from the limit of very large times of the
scale factor, limyeoa(t) = 1/A ~ eN. N are the ¢ folds generated by inflation for the
scale factor

N — a(texit)/ (44)
a (tin)
where ti, and t.jt are the beginning and end times of inflation. Then, if we compute (44)
with the scale factor (36), we can solve for A

yp 1 €3N
A= N 1 Vi B NG (45)
e tin? (1 +e in/}l) texit? (1 +e eXit/y)

Further, as A > 0, from (45) we obtain a condition for y. For instance, as ti, < texit, if
we set tin <} < texit, We can approximate efin/# < 1 and efeit/# > 1. In this case,

Fexit
. 4
V < [SN + P(h"l tin — 11’1 texit)]2 ( 6)

Strictly speaking, we must still define how to define the entry and exit times of inflation
depending on the evolution of the scale factor. Relations (45) and (46) help in checking
the consistency for choices of y and A. With this in mind, we can fix the values of these
parameters and evaluate the behavior in each case.

In order to get criteria for the entry and exit times, we first analyse the limits of the
scale factor, its velocity, and acceleration as t — 0. It turns out as follows. The scale factor

tends zero for p > 0. The velocity tends to oo for 0 < p < 3, for p = 3 it tends to %, and

for p > 3 it tends to zero. The acceleration tends to —co for 0 < p < 3,for3 < p < 6t

tends to oo, for p = 6 it tends to 2;#, and for p > 6 itis zero. Additionally, for t — oo, the

scale factor tends to 1/ A, the velocity tends to 01, and the acceleration tends to 0.

Considering now the acceleration, if it is negative at t = 0, for 0 < p < 3, it increases
until it becomes zero and then positive; we took this zero as the entry time for inflation,
see Figure 2. Further, the acceleration continues increasing until a maximum later, and
after that becomes zero again, and then negative. We took this second zero as the exit time.
Afterwards, the acceleration has a minimum, and then tends to zero from the negative
numbers; see Figure 3. For cases 3 < p < 6 where the acceleration tends to infinity at t = 0,
it decreases to a very small minimum that can be taken as the entry time, see Figure 2.
Further, as in the previous case, it has a maximum and then a zero, and we took it as exit
time. For p > 6, the acceleration at ¢ = 0 is equal to or larger than zero and increases from
the beginning; hence, the entry time is zero, and, as a(0) = 0, there is no precise way to
give an initial time for inflation. For this reason, we considered only 0 < p < 5.

Further, as a first input, we took the initial time for inflation at a scale lower than the
GUT scale 10 GeV. Hence, t;, > 5 x 10° Tp ~ 107 s. For the exit of inflation, we took the
generally accepted interval t ~ 10733-10732 5, and we set tg = 5 x 10733 s = 3.7 x 10 Tp,
as reference time for exit feyit ~ tg. With these times, for a given value of p, we estimated
from (46) and set y ~ x 10° Tp. From it, we computed A from (45) for N = 60, and then
evaluated the entry and exit times from the acceleration i(t). Following this procedure, we
adjusted p and A, so that teyit ~ tg and N = Ina(feit) /a(tin) ~ 60. With these data, we
computed the tensor to scalar ratio (39), and the scalar spectral index (41). We performed
these steps for p =1,2,3,4,5.
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a(t)
31071

2.x10713

1.x10713

2.25% 108 230108 235x 108
—1.x 10713

-2.%10713

—3.x1071%

a(t)
230948 x 10713
230946 % 10713
230944 x 10713

230042 % 10713

Figure 2. Inflation entry times for p =2 and p = 3.

a

2x10°

1x10°
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-2x10°

-3x10°

Figure 3. Inflation exit time for p = 1.

t
0% 1010

t
4.85%100  4.90x10%  4.95x100  5.00x 100

It is remarkable that, with the parameters fixed in the previous way, for given
0 < p <5, the entry time is of the order of 10° Tp, and the tensor/scalar ratio and the
scalar spectral index agree quite well with the observational constrains.
Tensor/scalar Ratio (39) (see Figure 4) satisfies bound r < 0.032 [40] very well and

depends slightly on p.

1(t)

0.10

t
0 5.0x10° 1.0x1010 15x101 20x1010 25x101° 3.0x1010 3.5x1010

Figure 4. Tensor/scalar ratio.

— p=1
p=2
— p=3
p=4
— p=5

Further, from (41), we computed the scalar spectral index whose behavior is shown in

Figure 5.
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— p=1
06 =2
— p=3
p=4
p=3

t
0 50%x10°  10x1010 151010 2.0x1010  25x1010  3.0x100  3.5x1010

Figure 5. Scalar spectral index.

Here, the agreement with observational bound 0.9649 + 0.0042 (with 68% CL) [41],
was very good for most of the duration of inflation, as shown in Figure 6. It is also slightly
dependent of p. Note that the running of the scalar spectral index % is positive, with a
value around 0.0004, with a a negative running of running.

()

0.980

0975

p=1
0970
p=2

— p=3
p=4

0.965

0.960 p=3

0.955

0 50x10°  10x1010  15%1010  20x1010  25x1010  3.0x100  35x1010 '
Figure 6. Detail of scalar spectral index.

6. Discussion

Quantum cosmology gives a canonical quantization of general relativity in the Schrodinger
picture, with the Wheeler-DeWitt equation as a time-independent Schrodinger equation.
The wave function gives the probability amplitudes for the occurrence of all possible spatial
three-geometries and field distributions, at any time. On the other hand, the observed
universe is classical and has time, and classical physics follows from quantum physics,
hence an effective time evolution should follow from the quantum description. Further,
the Wheeler-DeWitt equation is a second-order scalar equation. In the supersymmetric
case, there is a system of first-order equations whose solutions are spinorial wave functions,
see, e.g., [22,23]. A particular meaning of the components of these wave functions has not
been given; it would quickly lead to a Machian discussion. In many cases, there are only
two nonvanishing components, see, e.g., [32], given by real exponentials with opposite
exponent sign. Here, we considered an FLRW theory with a minimally coupled scalar field.
Single-field models are extremely effective to account for the inflationary era.

From the four components of the solution of the supersymmetric Wheeler—-DeWitt
equation, only one tends to zero as 2 — oo, and the other can be taken to be trivial. The
form of Solution (27) suggests the ansatz that, in a certain gauge, time can be given by
the scalar field, and trajectories for the observables are mean values on an effective wave
function that corresponds to conditional probabilities Thus, for the scale factor, we obtain
an evolution a(t), and we can perform time reparametrizations considering that it is scalar
a'(t') = a(t). The resulting evolution is nonperturbative. These trajectories are classical if
the quantum fluctuations are negligible. The time proposed here does not follow from a
semiclassical approach.

We considered in this formulation one family of inflationary models that depends on
the parameter p > 0; as for p > 5 there is eternal inflation, we restrict it to p < 5 and for
simplicity consider only integer values. There are other two parameters, i and A; the first
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fixes the time scale. Parameter A corresponds to the extent of the inflation, the e folds. We
convened to set the entry of inflation, depending on the value of p, at zeros or minima of
the acceleration, and exit times as zeros. In this way, for all p, we adjusted parameters y
and A, so that the exit time coincided with a reference time tg = 5 x 1035, and N = 60.
With this setting, the corresponding tensor-to-scalar ratio and scalar spectral index can be
computed with values that agree with the observational bounds remarkably well.

For indepth analysis, inhomogeneous perturbations should be introduced to evaluate
their evolution and the the production of primordial gravitational waves. These computa-
tions should be performed at best in the superfield formalism. An interesting perspective
is also the study of this formalism for dark energy.
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Appendix A

In this appendix, we give, for k = 1, the expressions for the normalization factor for the
wave function (21) for k = 1, and the time-dependent scale factor (33). The normalization
factor of

tl2
y(a,9) = Caexp[;c (—a3|w<¢>| + 2V )] (A1)

K2

is given by

4

where Bi is the Airy function of second kind.
For the denominator of (31)

_ 4
e chOW(p)?

2/3
2773’3 chkdW ()2 F”CGW((P)Z]

2/3 2/3
o ] ) - oo ] )}

from which follows
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324 8 -t 6 2/3
/2 40 4)\2/3 4/3 5.2 4, FEWIZ 4 »2/3 6 2] p;
a(t) {9\/:7,1{ (ch)“°W(t)*°,F, <1,2,3,3, o, (t)2>€ +2°1 {24+c1< hW (t) }B1<Lh1<6 (t)z]

4
. 8) e_ ckOnW(t)2

12
3" 3" ckbhW (t)2

2/3
3/5n2/3 .23 2/3 6 /7 6/ .+12/3 7/3 1.
+8v/23%/3 1>/ chW (1)?/3 Bi ([ch@wa)Z] )}/{WEK (ch)?/3W(t) 21:2<2,1,

6 2/3 6 2/3
42323 ik chW ()P B | | ————s 122230 W(H) Bi| | ——s .
4Vt VW () ! chkOW ()2 + e W(E) Bi chrOW (t)2
Due to the exponential behavior of the hypergeometric and Airy functions that appear
in the numerator and denominator in these expressions, it is difficult to handle them
numerically.

Note

1

Should not be confused with the superspace of geometrodynamics.
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