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Abstract: In this essay, we immerse into the framework of normed division algebras as a suitable arena to
accommodate the standard model of elementary particles, and we explore some applications to cosmology.
Remarkably, they permit interesting non-trivial realisations of the cosmological principle with an interplay
between the symmetry groups of the quaternions and octonions. We also argue how these realisations
give rise to potentially observational signatures in gravitational waves astronomy.
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1. Introduction

One of the wonders of the natural world resides in its compliance to being described
in a mathematical language. In this language, numbers form the channel to communicate
with Nature, and one could even assert that science (and physics in particular) is about
obtaining theoretical predictions expressed in terms of numbers that can eventually be
compared to observational measurements. Natural numbers allow us to count things,
and that is why they were the first ones to make an appearance as a practical construct.
Soon, negative natural and rational numbers claimed their position for practical purposes.
Beyond this point, it would seem that nothing more was necessary for the primordial
mathematical needs of the first societies. However, when geometry had to be included
in the mathematical machinery, new numbers such as

√
2 and π also called their role to

measure lengths and surfaces. Subsequent needs and mathematical consistency gave the
leading role in this play to the real numbers R and, not coincidentally, they were the first
field to be discovered. They are a continuum completion of the more intuitive rational
numbers and form an algebra that possesses all the nice properties that one could ask for,
namely: it is ordered, commutative and associative. Moreover, one can define a norm and
a well-defined division, thus making it a normed division algebra. Nevertheless, the reals
fail in one important aspect: polynomial equations with real coefficients do not necessarily
admit real solutions. This innocent observation prompted the introduction of the imaginary
unit i and led to the discovery of the complex numbers C that extend R into a closed
field so that all polynomial equations now find solutions within the same field, which is
a result known as the fundamental theorem of algebra proven by Carl Friedrich Gauss.
The complex numbers share the commutativity and associativity properties of the reals
as well as maintaining the status of a normed division algebra. They lose the order of the
reals, but this is a hitch we are willing to accept in view of all the additional gifts brought
about by them. Despite appearing as a mathematical construct, it is undeniable that Nature
embraces the complex numbers, and they play a paramount role in fundamental aspects
as quantum mechanics,1 but also in very practical situations such as the description of
electric circuits.

After discovering the reals and the complex numbers and their suitability to describe
Nature, a pertinent question would be: are there more types of numbers that could help us
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in our understanding of the natural world? If so, is there an infinite class of numbers that
will appear in our ever-increasingly fundamental comprehension of the natural laws? The
answer to these questions is intriguingly precise: there are exactly four distinctive types of
numbers (conforming normed division algebras). However, then, does this mean that they
suffice to have a complete fundamental description of Nature? In the following, we will
occupy ourselves with the first questions and defer this more ambitious last question to
another occasion.

2. The Neglected but Valuable Quaternions

The search for numbers beyond the complex realm commenced from a pure mathemat-
ical curiosity in an endeavour undertaken by William Rowan Hamilton, who discovered
the quaternions H as a four-dimensional extension of the complex numbers: a discovery
that was literally carved in stone for the posterity in the Brougham Bridge of Dublin. These
numbers still form a normed division algebra, but they leave the commutativity of C
behind. The quaternions extend the complex numbers with two additional imaginary units
so an arbitrary q ∈ H can be expressed as

q = q0 + q1e1 + q2e2 + q3e3 , (1)

where ei belong to a set that generates, together with the unit element 1, the quaternionic
algebra H = Span{1, e1, e2, e3} via the following product rules:

eiej = −δij + εijkek, (2)

that give rise to the commutation relations

[ei, ej] = 2εijkek. (3)

These commutation relations already hint at the suitability of quaternions to describe
three-dimensional rotations in terms of multiplication of pure imaginary quaternions
with q0 = 0. We can also introduce the conjugation that consists in changing the sign of
the imaginary units: q̄ ≡ q0q0 − q1e1 − q2e2 − q3e3, so a quaternion is said to be purely
imaginary if it satisfies q̄ = −q. The norm of a quaternion is then defined as ‖q‖2 = qq̄ =
q2

0 + q2
1 + q2

2 + q2
3 and its inverse q−1 = q̄/‖q‖.

At the time, the quaternions were a very fashionable subject, and physics made
extensive use of them (e.g., Maxwell equations were written with quaternions). When Gibbs
noticed that quaternions could be expressed in the three-dimensional vector space endowed
with a dot and a cross product, they became a proper contender. Quaternions eventually lost
the battle and vectors arouse as the standard framework for physics, displacing quaternions
to a marginal place. They however have always lurked in different corners of physics,
finding their way to provide insightful applications. One can easily understand why they
are an appealing groundwork for physics after noticing that they admit a representation in
M(2,C) via

q 7→ A(q) =
(

q0 + iq1 q2 + i q3
−q2 + iq3 q0 − iq1

)
, (4)

where multiplication in H simply becomes matrix product with A(q1q2) = A(q1)A(q2),
i.e., the above gives an homomorphism between quaternions and 2× 2 complex matrices.
One can observe that imaginary quaternions can be expressed in terms of Pauli matrices,
thus corroborating their relation to rotations. Furthermore, the homomorphism also shows
that ‖q‖2 = det A(q), which further unveils the isomorphism between unit quaternions
and SU(2). It is then direct to uncover that rotations can be realised as unitary quaternions
r (which satisfy r̄ = r−1) acting on pure imaginary quaternions x (that satisfy x̄ = −x by
definition) via x 7→ r x r̄.

It is certainly very appealing that pure imaginary quaternions provide a realisation of
the real three-vector space where rotations is simply realised by quaternionic multiplication
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as well as their intimate relation to SU(2). In view of these properties and noticing that
quaternions are actually a four-dimensional algebra, which coincides with the spacetime
dimension, one cannot help but wonder if the spacetime Lorentz symmetry can find a dwell
within the quaternionic algebra. The fascinating answer is that it indeed does! Perhaps
even more fascinating is that Lorentz symmetry rightfully finds its place not in H but in
C⊗H. After all, why should we leave our old friend C out of the function?

The application of complex quaternions to special relativity did not take long since its
inception by Einstein in 1905. In two independent works by A. Conway in 1911 [1] and L.
Silberstein a year later [2], special relativity and Lorentz transformations were presented to
quaternions, and it was explored in subsequent years by different authors (see e.g., [3] and
references therein). We can show how to realise spacetime Lorentz symmetry by identifying
the spacetime position with the quaternion

x = −ix0 + xiei, (5)

that is antihermitian x + x† = 0, where x† is the complex and quaternion conjugate
of x. It is straightforward to check that this condition is preserved under the quater-
nion transformation x 7→ q̂ x q̂† with q̂ a unit complex quaternion. Moreover, the norm
‖x‖2 = −(x0)2 + ~x2, that gives the spacetime interval, is also invariant. This permits
realising Lorentz transformations of the spacetime coordinates as a multiplication by unit
complex quaternions in the space of antihermitian complex quaternions (see e.g., [4] for an
explicit construction). Restricting to real unit quaternions, we recover the spatial rotations,
so boosts are naturally associated to the antihermitian (pure quaternionic imaginary) part
of q̂.

Very much like pure imaginary quaternions over the reals realise rotations in the
Euclidean space, pure imaginary quaternions with complex coefficients generate the Lie
algebra sl(2,C), which precisely corresponds to the double cover of the Lorentz group.
This can be easily seen from (4) with q0 = 0. If we introduce the basis{

ê1 = ie1, ê2 =
1√
2
(e2 + ie3), ê3 = − 1√

2
(e2 − ie3)

}
, (6)

it is immediate to obtain

q = z1ê1 + z2ê2 + z3ê3 7→ A(q) =
(

z1 z2
z3 −z1

)
, z1, z2, z3 ∈ C, (7)

that establishes the realisation of sl(2,C) with unit quaternions. This should be sufficiently
convincing and stimulating to embrace the algebra C⊗H as a promising framework to
describe the Lorentz group. Of course, a number of authors have engaged this venture with
interesting results. A related subject that deserves attention is that once we have a proper
characterisation of the Lorentz group within C⊗H, the possibility of describing gravity as
a localisation of this algebra emerges as well as new avenues to exploring theories of gravity.
This is a speculation we should not dismiss and should receive a more meticulous scrutiny.

3. The Surprisingly Cooperative Character of the Untamed Octonions

Having met the quaternions and its interesting applications, our curiosity eagerly
craves the exploration of more algebras and their suitability to describe physics. The task of
obtaining higher-dimensional extensions of the quaternions was tackled by John T. Graves,
who showed the existence of an eight-dimensional algebra that he called octaves but are
now known as octonions. This algebra is generated by

O = Span{1, f1, f2, f3, f4, f5, f6, f7} (8)

that satisfy the following rules:

• f2
a = −1.
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• Anticommutativity: {fa, fb} = 0 for a 6= b.
• Cycling identity: If fafb = fc, then fa+1fb+1 = fc+1 mod 7.
• Index doubling identity: If fafb = fc, then f2af2b = f2c mod 7.

The octonion multiplication table is not particularly illuminating. For a detailed and
excellent review of the properties and some applications of the octonions, we refer to [5].
In analogy with the quaternions, we can write the octonions multiplication as

fafb = −δab + fabcfc (9)

where fabc represents the structure constants of the octonions algebra, which are completely
antisymmetric. A common representation is the Cartan–Schouten–Coxeter given by

fabc = 1 for (abc) ∈ {(124), (235), (346), (457), (561), (672), (713)}, (10)

while the remaining ones can be obtained from the aforementioned properties. The com-
mutator of two octonions is

[fa, fb] = 2 fabcfc. (11)

Unlike its lower dimensional relatives, the octonions are not associative, and this
property is encoded in the so-called associator

[fa, fb, fc] = (fafb)fc − fa(fbfc) 6= 0. (12)

In the seven-dimensional space of the pure imaginary octonions, we can also introduce
the dual of the structure constants

f̃abcd =
1
6!

εabcde f g fe f g (13)

which are related to the non-associative character of O. The analogous dual of the structure
constants of H vanish identically by virtue of the Jacobi identity [ei, [ej, ek]] = 0 that
reflects the associative property of the quaternionic algebra. For O, we instead have
[fa, [fb, fc]] = 3 f̃abcdfd that reveals the untamed character of octonions who do not even
comply with associativity.

Due to their non-associative nature, octonions have remained even more neglected
than their more amicable relatives the quaternions. For this, the unit octonions do not even
form a group, while unit quaternions are keen to be related to physically sound groups such
as rotations or Lorentz transformations. They however hide a beautiful gem inside their
more intricate algebraic structure that is unveiled once we2 note that the automorphism
group of the octonions is the exceptional Lie group G2, so the structure constants fabc and
their dual f̃abcde are invariants of G2. In this sense, the octonions follow an analogy with
the quaternions since the Lie algebra of G2 can be represented in terms of pure imaginary
octonions (and G2 can be obtained via exponentiation). Furthermore, one can construct an
SU(3) subgroup of G2 as the little group of some imaginary octonionic unit. This is the
joyful moment when we realise that octonions may be willing to cooperate for describing
color, as explored for instance by Güydin and Gürsey in [7].

After discovering the octonions and their potential suitability to describe quarks,
nobody can blame us for further pursuing our algebra hunt. A useful result at this point
is that R, C, H and O can be sequentially generated by means of the Cayley–Dickson
algorithm. However, the application of the Cayley–Dickson algorithm to O leads to the
so-called sedenions that lack a well-defined division. While it is true that in each iteration
we give up one important property (order, commutativity and associativity for C, H and O
respectively), not having a division may seem an excessive concession so one could be a bit
more reluctant to include them in the class of sensible numbers.3

Thus, it seems we have to content ourselves with the reals, the complex, the quater-
nions and the octonions as our possible numbers. This is supported by Hurwitz’s theorem



Universe 2022, 8, 407 5 of 10

that states that the only normed division algebras are indeed R, C, H and O. This is a very
remarkable result and, thus, it is very tempting to find their appropriate place to describe
physics. Delving into their respective group structures, we have seen that the real unit
quaternions are nicely related to SU(2), which is a result that resembles the relation of unit
complex numbers to U(1), while complex quaternions naturally give representations of the
Lorentz group. On the other hand, octonions are related to G2, which contains SU(3) as a
subgroup. Thus, we conclude that the only four normed division algebras are intimately
related to the fundamental groups of the standard model (possibly even including gravity).
It is then extremely appealing to employ4 R⊗C⊗H⊗O as the algebraic framework to
formulate the fundamental laws of physics (see Figure 1). Exploring these speculations has
led to remarkable insights, and it is an increasingly viable hypothesis that the elementary
forces and particles are numbers (see e.g., [9–11]).
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Figure 1. In this diagram, we summarise the relations of the different algebras with physically
relevant groups as explained in the main text.

4. Algebras in the Sky

We have discussed how the algebras can provide a very appealing framework for the
standard model of elementary particles and, in particular, the intriguing suitability of R⊗C⊗
H⊗O to describe the particles. In this essay, we want to explore the potential relevance for
cosmology. The first two factors of the algebra have been extensively applied to cosmological
models where real and complex fields have a long history. We will thus focus on the last two
factors that remain nearly unexplored (see e.g., [12] for a recent application). The interest is
not only in that they have been seldom studied in cosmological scenarios, but, as we will
argue in the following, they happen to permit more interesting realisations of the cosmological
symmetries dictated by the cosmological principle as the usual homogeneity and isotropy5.
This requirement in turn forces our universe to have maximally symmetric spatial sections so
they could be described by the groups ISO(3), SO(3, 1) and SO(4) for the flat, open and closed
universes, respectively. Our universe seems to prefer being flat, so we will assume ISO(3).
Thus, in order to develop cosmological models, we need to have a residual ISO(3) symmetry
for our background configuration of fields. The reals and the complex numbers give trivial
realisations of this symmetry group because both real and complex scalar fields comply with
these symmetries by simply taking a homogeneous vacuum state. In that case, homogeneity
and isotropy are obvious and they are generated by the usual linear and angular momentum.

Moving on to the higher dimensional algebras, things become more interesting. Be-
fore proceeding, it is convenient to pause for a moment and describe the mechanism
of the cosmological scenarios based on quaternions and octonions with a more familiar
framework. The underlying idea that we will exploit consists of realising the cosmological
principle not directly in terms of the Euclidean subgroup of the Poincaré symmetry but as
a diagonal subgroup of ISO(3, 1)× G, where G is some internal group. Thus, homogeneity
and isotropy are generated by linear and angular momenta that arise as some linear combi-
nations of those within ISO(3, 1) and some generators of G. Of course, not every G allows
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for this construction, but it should contain some subgroup isomorphic to rotations plus
translations. There are many different manners in which this symmetry breaking pattern
can be realised, and we refer to [13] for an exhaustive and comprehensive classification.
In this respect, we only need to resort to the natural symmetry groups that these structures
are endowed with. For the quaternions over the reals, this requirement means that the
resulting theory will naturally have an SU(2) symmetry, since this is the symmetry group
of unit quaternions as well as the symmetry group of automorphisms of H. With this rudi-
mentary algebra, we can already start considering interesting cosmological applications.
Let us proceed to explore some of them:

• Quaternionic solid inflation. A scenario with a scalar quaternionic field φ can adopt a
profile of the form 〈φ〉 = xiei that breaks isotropy as well as the quaternionic SU(2)
symmetry. However, there is a linear combination that is preserved. Regarding
homogeneity, we need to make an additional assumption of some internal Abelian
symmetry T (e.g., a shift symmetry) that could restore homogeneity. The symmetry
breaking pattern would then be ISO(3, 1)× SU(2)× T → ISOD(3). This symmetry
breaking pattern appears in solid inflation [14], and our construction provides a quater-
nionic formulation of this scenario. Let us elaborate on the quaternionic formulation
of the solid. We can resort to a pure imaginary quaternionic field φ(x), thus satisfying
φ̄ = −φ, so that (global quaternionic) rotations can be realised with unit quaternions.
Thus, the simultaneous action of a spatial rotation xi → Ri

jxj and a quaternionic
rotation φ(x)→ r φ(x) r̄ on 〈φ〉 yields

〈φ〉 = xiei → 〈φ̃〉 = r
(

Ri
jxj

)
ei r̄ = xj

(
r Ri

j ei r̄
)

. (14)

Now, we can choose r so that the imaginary quaternion Ri
j ei is rotated to ej and,

therefore, 〈φ〉 remains invariant thanks to the cooperation of Ri
j and r. In order to

formulate the solid theory, we need to write down a Lagrangian that is required to be
real and enjoy Lorentz invariance and both (global quaternionic) rotations and shift
symmetry. We will not delve much into the procedure to systematically construct the
allowed terms. Instead, we will simply quote that the required conditions are fulfilled
by the quaternionic operators:

X = ∂µφ∂µφ̄, Y = ∂µφ∂νφ̄∂µφ∂νφ̄ and Z = ∂µφ∂νφ̄∂ρφ∂µφ̄∂νφ∂ρφ̄. (15)

It is straightforward to see that they are real, shift symmetric, Lorentz invariant,
and have the symmetry φ → r φ r̄. It is less trivial to see that they exhaust all the
possibilities, so any other operator satisfying the desired properties is a function of
the above three. In fact, X, Y and Z encode the three independent invariants of the
matrix B̂ with components Bij ≡ ∂µφi∂µφj where φ(x) = φi(x)ei. It can be shown,
with a tedious but simple direct computation, that X, Y and Z are linear combinations
of the traces of B̂, B̂2 and B̂3, which are equivalent to the three fundamental objects
employed in [14].

• Triad cosmology. Let us now consider a real quaternionic6 vector field Qµ that takes
a background configuration of the form 〈Q〉 = Q(t)δa

i eadxi with Q(t) some time-
dependent function. Again, the quaternionic sector naturally introduces an SU(2)
symmetry that can conspire with the spacetime Lorentz symmetry to preserve a
diagonal SO(3). The scenario is now analogous to models with multiple vector
fields featuring internal non-Abelian (global or local) symmetries (see e.g., [15] and
references therein).

• R⊗C⊗H⊗O cosmology. In the previous examples, it was necessary to resort to some
external elements that could assist us in developing the non-trivial realisations of
homogeneity and/or isotropy. For the quaternionic solid, an additional shift symme-
try was necessary, while the quaternionic triad is required to use quaternionic vector
fields. It is however possible to overcome these seemingly assisting structures and
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simply embrace the full generality of R⊗C⊗H⊗O. As explained above, the complex
quaternionic sector conveniently contains Lorentz, while the octonionic sector can
account for internal symmetries such as color. Thus, a theory using this full alge-
bra will have a symmetry group G that will contain, at least, the natural groups of
the algebra. We have seen that the group of automorphisms of the quaternions and
the octonions are SU(2) and G2 respectively. Furthermore, the complex quaternions
provide representations of the Lorentz group. In this case, we can envision having
G ⊃ SO(3, 1)× G2 as the symmetry group, so it is clear that a symmetry breaking
pattern G → ISOD(3) is possible, where the linear and angular momenta generating
this residual three-dimensional Euclidean group is a combination of the generators
in SO(3, 1) and G2. This group contains several SU(2) subgroups so, in particu-
lar, the triad cosmology explained above in terms of vector quaternions is possible.
However, other realisations are also possible.

Let us point out that our reasoning is fully general and the mechanism does not
necessitate any specific Lagrangian, but it is the own structural properties of the algebras
that allows the non-trivial realisations of the cosmological principle. These structural
properties are enough to obtain observational signatures.

5. The Sound of Cosmic Algebras

The non-trivial realisations of the cosmological principle provided by quaternions and
octonions is not of purely mathematical interest, but they can have an observational impact
for gravitational waves (GWs) astronomy. The underlying reason is that the background
rotational symmetry now combines the usual spatial rotations of space and the internal
symmetries of the scalar quaternion and octonion fields. This means that the perturbations
will organise themselves into irreps of this symmetry and, as a consequence, we can have
additional helicity-2 perturbations even if the only properly spin-2 field in the theory
corresponds to the usual GWs. These additional helicity-2 modes will exhibit a mixing with
GWs mediated by the cosmological background configuration of the non-commutative
sector of R⊗C⊗H⊗O. Depending on the structure of the original group, there could
be several additional helicity-2 modes, but we will focus on the case where only one
extra species arises. The helicity-2 sector will then be conformed by the usual GWs h(λ)
together with the additional guy t(λ) where λ stands for the two polarisation modes of
each perturbation.

In the described framework, we can test the presence of a non-trivial background for
the non-commutative sector of the algebra R⊗C⊗H⊗O by studying the GWs signal
emitted by a binary black hole system. The scenario we envision is depicted in Figure 2
and consists of two black holes that are assumed to live on an uncharged sector concerning
the non-commutative piece of R⊗C⊗H⊗O. In that situation, the inspiral black holes
will only emit the usual GWs h(λ), but no emission in the t(λ)−channel will be present.
As these GWs travel toward the Earth, they propagate on the non-trivial background
of R⊗C⊗H⊗O that will mediate an oscillation into t(λ) modes, thus modulating the
received signal in our GWs interferometers. We thus arrive at the leitmotif of this essay: the
cosmic presence of R⊗C⊗H⊗O can be heard through GWs.
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The  source only 
emits GWs.

The cosmic algebra 
mediates an oscillation into 
additional helicity-2 modes.

We listen to the cosmic 
algebra through the 
modulation in the GWs signal.

<latexit sha1_base64="1FN0y9s1Rvm0O03v/reg7zJQRL8="></latexit>hR ⌦ C ⌦ H ⌦ Oi

Figure 2. This figure illustrates the considered scenario leading to the oscillation of GWs. Initially,
a pure GWs signal is generated by the source. The cosmic medium with a non-trivial background of
R⊗C⊗H⊗O induces an oscillation between GWs. Our interferometers will only be sensitive to the
GWs signal, but the oscillations are imprinted so we can indirectly hear the sounds of the algebras.

Under very general assumptions, the propagation from the source to the receiver will
be governed by a system of equations that can be parameterised in Fourier space and in
conformal time η as [

d2

dη2 + ν̂
d

dη
+ Ĉk2 + N̂k + M̂

](
h(λ)
t(λ)

)
= 0 , (16)

with k representing the Fourier mode and ν̂, Ĉ, N̂ and M̂ representing some matrices
encoding the non-trivial cosmological background of R ⊗ C ⊗ H ⊗ O. These matrices
will typically evolve in time over cosmological time-scales and could also depend on
the helicity mode λ. The off-diagonal components of these matrices describe the flavor
oscillations that can occur in a variety of manners and lead to different effects, all of which
will give rise to distinctive modulations of the GWs signals measured by the interferometers.
A detailed quantitative analysis of the different effects derived from Equation (16) can be
found in [16,17], and some particular cases of GWs oscillations have also been explored
for cosmological gauge fields [18,19] and in massive gravity [20,21], though in this latter
case, there is an additional spin-2 field in the theory. Qualitatively, the flavour oscillations
produce interesting effects, some of which we mention in the following (see also Figure 3):

• Anomalous propagation speed of GWs. If Ĉ is different from the identity, then the
oscillations will induce an anomalous propagation speed of GWs even if Ĉhh = 1.
The reason is that the oscillation will make the GWs propagate as t-modes for some
time, thus modifying the effective propagation speed throughout its path.

• Generation of chirality. If N̂ is different from 0, then the different helicities will oscillate
in a different manner, thus generating chirality for the GWs. The reason is that N̂,
governing a term linear in k, typically arises from violations of parity.

• Oscillations in the GWs luminosity distance. Due to the oscillations and the presence of
the friction matrix ν̂, the luminosity distance of GWs dGW

L will be affected. Comparing
this quantity with the electromagnetic counterpart dEM

L , we can also hear some non-
trivial cosmic R⊗C⊗H⊗O.

There are other interesting observational effects that will be visible in GWs astronomy
such as echoes, wave distortions or birrefringence that we will not explain in detail but are
comprehensively analysed in [16,17]. The remarkable result is that the subtle whisper of the
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cosmic algebras will be imprinted in the GWs, opening the possibility to test their presence
through a variety of effects.
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Figure 3. From [16]. The left panel shows a clear signature of the mixing of GWs with an additional
helicity-2 mode mediated by a non-trivial background due to R ⊗ C ⊗ H ⊗ O. The right panel
shows a possible signature in the luminosity distance. The plots correspond to different masses and
angle mixing.

6. Conclusions

Normed division algebras are interesting fellows from a pure mathematical view-
point since they conform sensible types of numbers. Numbers are allegedly our way of
communicating with Nature, and the reals and complex numbers have repeatedly proved
their appropriateness to that purpose and so they are hardwired in our description of the
physical laws. Quaternions have also claimed their position in this endeavour, but they
have remained largely marginalised. They are starting to receive well-deserved attention
due to their suitability to describe some fundamental aspects of particles. Octonions are by
far the most obscure member of this family, although they hide extremely remarkable prop-
erties that not only are suitable for color but also permit giving a fresh new look at known
intriguing results in, e.g., string theory and supersymmetry. This essay has been devoted
to reviewing this family and some of its applications in physics. If this family does play a
fundamental role in the foundations of our standard model, including gravity, it could also
plausibly participate in the cosmological evolution of our universe. In this respect, we have
argued how the two non-commutative members naturally lead to interesting realisations
of the cosmological principle that arise from their structural properties. If that is the case,
they can be probed with different distinctive signatures in GWs astronomy so the future
observations of GWs could unveil the presence of cosmic quaternions and octonions and
bring exciting news about these undeservedly neglected acquaints.

We will conclude with a wild surmise. Fundamental aspects of the standard model are
encoded in scattering amplitudes and, in particular, the analytical properties of physical ob-
servables such as the S−matrix. In this respect, complex analysis emerges as a fundamental
tool, where analiticity, poles, branch cuts, etc., have precise physical meanings. We cannot
resist speculating that quaternionic and octonionic analysis (or analysis in R⊗C⊗H⊗O
more generally) could eventually bring out new insights on our comprehension of the
most fundamental laws of physics and could resolve long-standing difficulties with the
gravity sector.
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Notes
1 We can allude to the Aharonov–Bohm effect as a real manifestation of complex numbers in Nature.
2 With a little help from E. Cartan [6].
3 Of course, this has not prevented to find physical applications for the sedenions as recently explored in e.g., [8].
4 It is clear that the factor R is redundant and considering C⊗H⊗O would be sufficient. We prefer to keep it there to emphasise that the

general framework of the only four normed division algebras is employed.
5 Cosmological models violating these symmetries have also been considered as in the Bianchi or Lemaître-Tolman-Bondi

cosmologies.
6 Let us pedantically clarify that by real quaternionic field we refer to a vector field over H with real coefficients.

References
1. Conway, A.W. On the application of quaternions to some recent developments of electrical theory. Proc. R. Ir. Acad. Sect. A Math.

Phys. Sci. 1911, 29, 1–9.
2. Silberstein, L. LXXVI. Quaternionic form of relativity. Philos. Mag. Ser. 1 1912, 23, 790–809. [CrossRef]
3. Synge, J.L. Quaternions, Lorentz transformations, and the Conway-Dirac-Eddington matrices. Commun. Dubl. Inst. Ser. A 1972, 21,

1–67.
4. Rao, K.N.S.; Rao, A.V.G.; Narahari, B.S. On the quaternion representation of the proper lorentz group so(3,1). J. Math. Phys. 1983,

24, 1945–1954. [CrossRef]
5. Baez, J.C. The Octonions. Bull. Am. Math. Soc. 2002, 39, 145–205. [CrossRef]
6. Cartan, E. Les groupes réels simples, finis et continus. Ann. Sci. l’École Norm. Supérieure 1914, 31, 263–355. [CrossRef]
7. Güydin, M.; Gürsey, F. Quark structure and octonions. J. Math. Phys. 1973, 14, 1651–1667. [CrossRef]
8. Masi, N. An exceptional G(2) extension of the Standard Model from the correspondence with Cayley—Dickson algebras automor-

phism groups. Sci. Rep. 2021, 11, 22528. [CrossRef] [PubMed]
9. Dixon, G. Division Algebras: Octonions, Quaternions, Complex Numbers and the Algebraic Design of Physics; Springer: Berlin/Heidelberg,

Germany, 1994.
10. Furey, C. Standard Model Physics from an Algebra? Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 2015.
11. Gording, B.; Schmidt-May, A. The Unified Standard Model. Adv. Appl. Clifford Algebr. 2020, 30, 55. [CrossRef]
12. Gunaydin, M.; Kallosh, R.; Linde, A.; Yamada, Y. M-theory Cosmology, Octonions, Error Correcting Codes. J. High Energy Phys.

2021, 2021, 160. [CrossRef]
13. Nicolis, A.; Penco, R.; Piazza, F.; Rattazzi, R. Zoology of condensed matter: Framids, ordinary stuff, extra-ordinary stuff. J. High

Energy Phys. 2015, 2015, 155. [CrossRef]
14. Endlich, S.; Nicolis, A.; Wang, J. Solid Inflation. J. Cosmol. Astropart. Phys. 2013, 2013, 11. [CrossRef]
15. Jiménez, J.B.; Heisenberg, L. Non-trivial gravitational waves and structure formation phenomenology from dark energy. J. Cosmol.

Astropart. Phys. 2018, 2018, 35. [CrossRef]
16. Jiménez, J.B.; Ezquiaga, J.M.; Heisenberg, L. Probing cosmological fields with gravitational wave oscillations. J. Cosmol. Astropart.

Phys. 2020, 2020, 027. [CrossRef]
17. Ezquiaga, J.M.; Hu, W.; Lagos, M.; Lin, M.-X. Gravitational wave propagation beyond general relativity: Waveform distortions

and echoes. J. Cosmol. Astropart. Phys. 2021, 2021, 48. [CrossRef]
18. Caldwell, R.R.; Devulder, C.; Maksimova, N.A. Gravitational wave—Gauge field dynamics (Awarded Fifth Prize in 2017 Gravity

Research Foundation Essay Contest). Int. J. Mod. Phys. D 2017, 26, 1742005. [CrossRef]
19. Caldwell, R.R.; Devulder, C. Gravitational Wave Opacity from Gauge Field Dark Energy. Phys. Rev. D 2019, 100, 103510. [CrossRef]
20. Narikawa, T.; Ueno, K.; Tagoshi, H.; Tanaka, T.; Kanda, N.; Nakamura, T. Detectability of bigravity with graviton oscillations using

gravitational wave observations. Phys. Rev. D 2015, 91, 062007. [CrossRef]
21. Max, K.; Platscher, M.; Smirnov, J. Gravitational Wave Oscillations in Bigravity. Phys. Rev. Lett. 2017, 119, 111101. [CrossRef]

http://doi.org/10.1080/14786440508637276
http://dx.doi.org/10.1063/1.525952
http://dx.doi.org/10.1090/S0273-0979-01-00934-X
http://dx.doi.org/10.24033/asens.676
http://dx.doi.org/10.1063/1.1666240
http://dx.doi.org/10.1038/s41598-021-01814-1
http://www.ncbi.nlm.nih.gov/pubmed/34795323
http://dx.doi.org/10.1007/s00006-020-01082-8
http://dx.doi.org/10.1007/JHEP01(2021)160
http://dx.doi.org/10.1007/JHEP06(2015)155
http://dx.doi.org/10.1088/1475-7516/2013/10/011
http://dx.doi.org/10.1088/1475-7516/2018/09/035
http://dx.doi.org/10.1088/1475-7516/2020/04/027
http://dx.doi.org/10.1088/1475-7516/2021/11/048
http://dx.doi.org/10.1142/S0218271817420056
http://dx.doi.org/10.1103/PhysRevD.100.103510
http://dx.doi.org/10.1103/PhysRevD.91.062007
http://dx.doi.org/10.1103/PhysRevLett.119.111101

	Introduction
	The Neglected but Valuable Quaternions
	The Surprisingly Cooperative Character of the Untamed Octonions
	Algebras in the Sky
	The Sound of Cosmic Algebras
	Conclusions
	References

