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Abstract: The effect of isospin-dependent nuclear forces on the inner crust of neutron stars is modeled
within the framework of Quantum Molecular Dynamics (QMD). To successfully control the density
dependence of the symmetry energy of neutron-star matter below nuclear saturation density, a mixed
vector-isovector potential is introduced. This approach is inspired by the baryon density and isospin
density-dependent repulsive Skyrme force of asymmetric nuclear matter. In isospin-asymmetric
nuclear matter, the system shows nucleation, as nucleons are arranged into shapes resembling nuclear
pasta. The dependence of clusterization in the system on the isospin properties is also explored by
calculating two-point correlation functions. We show that, as compared to previous results that did
not involve such mixed interaction terms, the energy symmetry slope L is successfully controlled
by varying the corresponding coupling strength. Nevertheless, the effect of changing the slope of
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updates the nuclear symmetry energy L on the crust-core transition density does not seem significant. To the
Citation: Mehta, P; Nandi, R.; knowledge of the authors, this is the first implementation of such a coupling in a QMD model for
Gomes, R.d.O.; Dexheimer, V.; isospin asymmetric matter, which is relevant to the inner crust of neutron and proto-neutron stars.
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doi.org/10.3390/universe8070380 1. Introduction

Academic Editor: Nicolas Chamel Matter in neutron stars presents the largest densities achieved in the Universe, making
their equation of state (EOS) hard to determine. Seeking the EOS of neutron-star matter
(NSM) is a flourishing field of interest due to the presence of neutron rich matter with
magnetic fields that can be larger than 10'2 G with the possibility of exotic particles, and a
phase transition to deconfined quark matter. The crust of a neutron star contains nuclei
embedded in a sea of electrons. As the density increases from the surface of the neutron
star towards its core, these nuclei undergo a neutronization process, eventually reaching a
state of high neutron to proton asymmetry, which is followed by a transition to uniform
nuclear matter at the core. Since matter above nuclear saturation density is unattainable

in terrestrial conditions (except in heavy ion collisions with larger temperatures), neutron
stars are considered to hold the key to the mysteries of dense nuclear matter.

Several approaches have been employed to study the properties of nuclear matter
in the context of neutron stars. One of the prominent methods is Quantum Molecular
This article is an open access article ~ Dynamics (QMD), which allows for the incorporation of competing nuclear forces of
distributed under the terms and  attraction and repulsion in dynamical simulations. QMD as a framework for simulating
conditions of the Creative Commons ~ heavy-ion collisions was proposed by J. Aichelin and H. Stocker [1]. Until then, nuclear
Attribution (CC BY) license (https:// ~ matter simulations were only possible microscopically through one-body models, such as
creativecommons.org/licenses /by / the Vlaslov-Uehling—Uhlenbeck (VUU) theory, and macroscopically by fluid dynamical
40/). models [2,3]. QMD combines classical molecular dynamics with quantum corrections,
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the most important of which is the Pauli principle. Peilert et al. [4] used QMD for the first
time to simulate clustering in nuclear matter at sub-saturation densities. They performed
uniform nuclear matter simulations with nucleons, which were sampled only in momentum
space, for the density range 0 < p < 2po (Where py is the nuclear saturation density). These
were then compared with simulations where nucleons were free to move in position space,
showing a decrease in binding energy per nucleon (E/ A), for the latter case, of about 8§ MeV
towards a more bound system for sub-saturation densities at a near-zero temperature. In the
same work, the authors also took snapshots of simulated nuclear matter for different mean
densities below pg, which was useful to visualize clustered matter at p = 0.1pg, but did
not help deduce the properties of single clusters (unless a computationally expensive time
average of many simulations could be done).

Later, results for sub-saturation density nuclear matter at zero temperature were
published by Maruyama et al. [5], where the the number of nucleons was significantly
expanded (by ~4 times) in the simulated infinite nuclear matter system. In addition to
partially observing transient shapes like holes, slabs, and cylinders in clustered nuclear
matter, they also extended the calculations to asymmetric nuclear matter, and obtained
similar clusterization effects. This is necessary to evaluate the properties of NSM, which is
highly asymmetric at saturation and sub-saturation densities. Further improvements to
NSM simulations were made by Watanabe et al. [6] by implementing larger relaxation time
scales and analyses of spatial distribution of nucleons. In a similar analysis, utilizing the
Indiana University Molecular Dynamics framework, Sagert et al. [7] have shown nuclear
pasta through similar 3D Skyrme Hartree-Fock (SHF) simulations. Recently, Schramm and
Nandi [8] studied the asymmetry dependence of the transition density from asymmetric to
homogeneous nuclear matter in the inner crust using QMD.

In this article, the asymmetry dependence shown by R. Nandi and S. Schramm [8] is
modified to have better control on the symmetry energy slope (L). The inspiration is taken
from the coupling of omega (w) and rho (p) meson fields in the Relativistic Mean-Field
(RMF) theory. The model is first applied to isospin chains of finite nuclei, and then to
nuclear matter at pp. Symmetry energy at saturation density is re-evaluated along with its
slope L. The primary aim of this work is to successfully control the density dependence
of symmetry energy, and of pure neutron matter, by calibrating the w — p type coupling
according to established constraints. The expected clustering of nuclear matter at densities
~0.1py is also addressed.

The structure of the article is as follows: the general formalism is outlined in Section 2.
Then a study of parameters of different strengths of the w — p coupling in elucidated in
Section 3. The conclusions are presented in Section 4, along with an outlook for the model
under study.

2. Formalism
2.1. The Canonical Formalism: Hamiltonian and Equations of Motion

Quantum Molecular Dynamics (QMD) is a model used to accomplish dynamical
simulations of nuclear matter by incorporating correlation effects between the constituents
of the simulated N-body system. Peilert et al. [4] studied non-uniformities that give rise
to clustering in nuclear matter. A model based on QMD for heavy-ion collisions through
an N-body approach was proposed as early as the late 1980s (Aichelin and Stocker [1]).
The reader can refer to Ref. [9] for a thorough review of the method and its theoretical
background. A brief insight into the working of QMD and the relevance to this project is
provided in this section based on a review by Maruyama et al. [10].

In a Classical Molecular Dynamics (CMD) simulation of nucleons, particles are sim-
ulated as solid elastic spheres, and their motion is governed by Newton’s equations of
motion. Inter-particle potentials quantify the force experienced by a particle, given the
positions of other particles. QMD introduces quantum behavior to the system of nucleons
by including the following modifications:
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(a)

(b)

In QMD for nuclear matter, a nucleon is represented by a fixed-width Gaussian
wavepacket in the form of a single particle wave function

1 —R;)? .
P(r;) = Wexp( - (I4CW) +ir- Pi>, 1)

with Rj and P; as the centers of position and momentum of the wave packet, respec-
tively. Cyy denotes the width of the wave packet. The motion of the wave packet or
‘nucleon’ is determined by forces derived from inter-particle potentials in the QMD
Hamiltonian. The total wave function of the N-nucleon system is obtained through a
direct product given by

N
=ITvm), k)

The nucleon wavefunctions are not anti-symmetrized to explicitly manifest fermionic
characteristics. As a result, the energy states violate the Pauli principle, as they all
attain minimum energy. This problem was addressed phenomenologically (see the
review in Ref. [10] for further references) by mimicking the Pauli principle through a
repulsive 2-body potential called the Pauli potential (Vp,,;;). The potential effectively
repels nucleons with the same spin and isospin from coming close in phase space,
since it is a function of both distance in coordinate and momentum space. In the
ground state, nucleons have non-zero momentum values and do not all exist in the
lowest energy state.

The Hamiltonian of the nucleon-nucleon interaction is given by Ref. [11]

H =K+ Vpgui + VSkyrme + Vsym + Vmp + Veouls (3)

where K is the kinetic energy, Vpgy; is the Pauli potential, Vsiyy is the potential similar to

Skyrme like interactions, Vy, is the isospin dependent potential, Viip is the momentum
dependent potential, and V-, is the Coulomb potential. The expressions for the potential
and kinetic terms are
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where the nucleon mass, spin, and isospin are represented by m;, ¢; and T;, respectively.

The values of the parameters are listed in Table 1.
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Table 1. Parameter set for nucleon-nucleon interaction (values from Ref. [5] parameterized to
reproduce properties of the ground states of the finite nuclei and saturation properties of the nuclear
matter). The parameters are optimized to give E/ A ~ —16 MeV for symmetric nuclear matter at
saturation pg.

Parameter Value
Cp (MeV) 207
po MeV/c) 120
g0 (MeV) 1.644
a (MeV) —92.86
B (MeV) 169.28
0 1.33333
cV (Mev) 25854
c? Mev) 375.6
py (Ffm~1) 235
1y (fm~1) 0.4
po (fm~3) 0.165
Cs (MeV) 25
Cw (fm?) 2.1
Ceoul Oor1l

The overlap between single nucleon densities p;; and g;;, which depends on positions
R; and R, is calculated as

pij = /d3rPi(r)Pj(r)r pij = /d3r{3i(r)ﬁj(r) , (10)
where the single nucleon densities are given by
oo L (r—R;)’
pile) = (0" = CW)a/zexp[ el N
oi(r) = L exp (r— Ri)2
S (2nlw)?? 28y |’
along with the modified width
Cn = 5(1+6)/Cyy, (12)

which is calculated in this form to incorporate the effect of density-dependent term in
Equation (6) (see Section IL.B. of Ref. [5] for details).

2.2. Vector-Isovector Interaction Formalism

As the numerical model to simulate nuclear matter in conditions pertaining to neutron
star crusts has been outlined above, we now move on to the introduction of a nucleon-
nucleon interaction potential based on the RMF w — p vector interaction.

C.J. Horowitz and J. Piekarewicz [12,13] added isoscalar-isovector coupling terms to
the non-linear Lagrangian for nuclear matter, and achieved softening of symmetry energy
to control the neutron skin thickness in 2%Pb. They introduced a RMF Lagrangian density,
where the interaction part has the following terms:

Line = P[0 — (Vi + $7 byt 51+ 1) A )7y

2 2
—E(859)° — 2 (gs0)* + LA (VuVH)? + §gb(by - bY) (13)
+2by - b [A4g2¢% + Avg2V, V],
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where 1 and ¢ are the baryon and conjugate baryon fields, respectively. V represents the
isoscalar w meson field, ¢ represents the isoscalar-scalar o meson field, isovector b is the
p-meson field, and the photon is denoted by A. g,, s, and g, are the respective coupling
constants. A similar Lagrangian with a non-linear w — p interaction term is employed by
F. Grill, H. Pais et al. [14] to study the effect of the symmetry energy slope parameter, L,
on the profile of the neutron star crust within a Thomas—Fermi formalism.

Note that a softening of the symmetry energy around saturation can also be achieved
through the use of density dependent couplings (See Figure 4 and the right panel of Figure 2
of Ref. [15]).

According to the RMF framework, the equation of motion for the w-meson field takes
the form,

mey (Vo) = Y gops + 3€,gv< 0)° + 282 A0 82 (bo)* (Vo) = 0, (14)
B=n,p
and similarly for the the p-meson field:
X 8oy —on) + S8800)° + 283 Aa (b0} (90) + 23AE o) (V) = 0. (15)

B=n,p

From Equations (14) and (15), it is clear that the mean w and p meson fields depend
on the baryon density pg and isospin density p; = pp — pn , respectively (linearly, if we
ignore higher-order contributions). Equation (13) shows how the mixed coupling w — p
potential part of the Lagrangian density depends quadratically on the w and p meson
fields, from which we can conclude its dependency to be ~ p%p?. Let us approximate it for
our QMD model, motivated by the density-dependent repulsive Skyrme potential as in
Equation (6) with a term quadratic in both the pg, and in pj as

Voo = Z < p; > < g >, (16)

501k

where < p; > and < gy > are the averaged pp and p; respectively, with the
following expressions:

o~ (Ri—Rj)2/4Cyy

<p> = Y= X S 17)
i7 e (4w
e—(Rk—R1)2/4CW
<> = Y cupon= Yy, 1-2l%—1)———575— (18)
17 17 (47Cw)>/2

The summation needs to be calculated before squaring in Equation (16). A similar
calculation has already been made for the repulsive part of the Skyrme potential.
The components of force for the w — p term can be derived from the potential

o= W
m X

2C, Xon 2
= g,pgyzj,kl(<Pm>+<Pj >) = PmJ<Pk>

. B -X;
+(< o>+ < Oj >) < ok >2 X T ijpm]] (19)

2Cy - de~
— 5pép lzk < P >2 {ijijf(< pm >+ < pj >)}

WXy, _
+ Yk < px >? {Zj Conjomj =z (< Pm > + < fj >)}1
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where X;, and X; are the x-coordinates of the centers of the positions of m—th and j—the
particles, respectively.

2.3. Modeling of Infinite Systems: Achieving the Ground State Configuration

Different methods can be employed to achieve the ground state configuration of
nuclear matter for a given density or temperature. Peilert et al. [4] calculated E/ A values
for finite nuclei, and subsequently studied infinite nuclear matter using a version of the
QMD model. They found that nuclear matter simulated at temperatures near T = 0 MeV
showed clustering among nucleons at sub-saturation densities. Later, Maruyama et al. [5]
employed QMD to study the dynamical evolution of nuclear matter into pasta phases.
In this work, we follow the method employed by Maruyama et al., obtaining the energy-
minimum configuration of nuclear matter by distributing nucleons randomly in phase
space, and then cooling down the system to achieve the minimum energy state of the
system. This allows for arbitrary nuclear shapes and incorporates thermal fluctuations,
giving an insight into the formation process of such structures.

To achieve equilibrium in the nuclear matter system, we use the following equations
of motion along with damping factors {g and &p:

. B’H oH

Ri==p —CR3p -

5 o g,
17 79R;, “Pop;’

where H is given by Equation (3) and the factors (g and ¢p are adjusted according to the
relaxation time scale, with a fixed value of either 0 or —0.1.

The system is cooled from an initial temperature maintained by the Nosé-Hoover ther-
mostat. The thermostat introduces additional coordinates and velocities in the Hamiltonian
of the system in order to mimic a thermal bath in contact with the system. The extended
Hamiltonian H s appears as

N P2 s ns
,HNose = 2 m ({Rl} {PIJ}) + ﬁ +g ﬁ
i=1 (21)
sps Ins
=H+ +
20 B

where s is the additional dynamical variable for time scaling, ps is the momentum conjugate
tos, U({R;},{P;}) = H — K is the potential which depends on both positions and mo-
menta, Q is the thermal inertial parameter corresponding to a coupling constant between
the system and thermostat, g is a parameter to be determined as 3N by a condition for
generating the canonical ensemble in the classical molecular dynamics simulations, and g is
defined as B = 1/ (kpTset) [16,17]. The energy of the nuclear matter system is not conserved,
but Hnose is . The most important variables here are § = 1/kpTse , where Ty, is the desired
input temperature, and Q ~ 108 MeV (fm/ c)z. More details can be found in Refs. [17,18]
and sources therein.

At sub-saturation densities, local minima may take place around the actual global
energy-minimum value of the ground state that the damping coefficients lead to if not
chosen carefully. The simulation results should be checked to avoid local energy minima
by repeating the cooling procedure.

3. Results
3.1. Simulation Procedure

Using the theoretical framework established in the previous chapters, the QMD sim-
ulation of a system of neutrons and protons is carried out. The final temperature after
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cooling down from a finite temperature was set to 0, so as to imitate the conditions in a
neutron star’s inner crust.

A cubic box confines the nucleons. The size of the box is determined by the number
of nucleons N and average density psy. Periodic boundary conditions are imposed and
the motion of nucleons is imitated across 26 cells surrounding the central primitive cell.
The value of N is set to 1024, such that for homogeneous symmetric nuclear matter the
number for protons/neutrons with spin up and protons/neutrons with spin down is equal
(proton fraction Y}, = 0.5 with 512 particles each of protons and neutrons). Hence, there is
no magnetic polarization. Electrons are treated as a uniform background gas that makes
the system charge neutral.

The nucleons are initially distributed randomly in phase space. The system is brought
to thermal equilibrium at T = 20 MeV for about 1000 fm/c. The system, initially kept at a
constant temperature by the Nosé-Hoover thermostat, is slowly cooled down in accordance
with the equations of motion (Equation (20)), until the temperature is 0. To attain the ground
state configuration, the simulation requires about 1-2 days of computation time to reach
10* fm/c when carried out on the Goethe-HLR CPU cluster at Goethe-University Frankfurt.
The computer code for the simulations in this project was first used for QMD calculations
in Ref. [8].

The set of values for the parameters used in interaction potentials constituting the
Hamiltonian Equation (3) is given in Table 1. Additionally, the set of values for the
coefficient Cqyp of V,yp in Equation (16) are listed in Table 2.

Table 2. Optimized values for coefficient of V.

Set pr (MeV)
I 0.02
II 0.01

III 0.005

v —-0.01

v —0.02

3.2. Finite Nuclei

We first calculate the binding energies of ground states of a number of finite nuclei
and their isotopes. Five different values of the coefficient C,, are tested. All five reproduce
the trend of binding energies per nucleon of various nuclear isotopes, as can be seen in
Figure 1. Individual simulated energy values (E,;) deviate from the experimental (E,x))
counterparts [19] by less than 10% in all cases. Considering a reasonable expectation
of accuracy within the QMD model employed in this paper, there is a minor spread in
the calculated values. It is clear that varying C,, does not have a significant impact on
the binding energies per nucleon of finite nuclei, which can be explained by the non-
dependence of symmetry energy in a finite nucleus to its slope L, and the fact that it rather
depends on other parameters: the symmetry energy coefficient at saturation density, ratio of
the surface symmetry coefficient to the volume symmetry coefficient, surface stiffness and
obviously the mass number of the nucleus (see Refs. [20,21] and sources therein.) The nuclei
chosen are heavy with Z larger than 40. Good results for lighter nuclei are not expected,
based on the results in Figure 4 of Ref. [5]. For each isotope family, three nuclei are selected
with Yp ranging from 0.3 to 0.5 to analyze the effect of isospin dependent interactions.

There is an anomaly in the form of binding energies per nucleon being about
0.65 MeV too deep compared with experimental values for all nuclei. Given the real-
istically achievable accuracy within a molecular dynamics approach, this deviation is
acceptable. Nevertheless, the model reproduces the overall trends of the binding energies
of various nuclei reasonably well, for all values of Cy,.
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Figure 1. Binding energies per nucleon for three nuclear isotopes each of Zr, Sn, Sm, Os, Pb, and U
obtained from simulation for five different parameter sets listed above the image. The experimental
values are taken from AME2016 [19].

3.3. Pure Neutron Matter

An important final test of the model is the examination of the behavior of a pure
neutron gas at nuclear and sub-nuclear densities. The energy per nucleon (E/N), of pure
neutron matter affects the densities at which NSM becomes uniform.

For this case, the same system is adapted to simulate nuclear matter with Yp = 0.0,
i.e., 1024 neutrons in the primitive cell without protons. The results for pure neutron matter
simulations for nuclear and sub-nuclear densities are shown in Figure 2. The density
dependence of neutron matter (or the neutron matter EoS) is crucial, as E/ N is an input in
the calculation of the symmetry energy.

In Figure 2, the neutron matter EoSs for different Cy) from the QMD model can
be compared with two other non-linear RMF models (IUFSU [23] and FSUgold [24]),
which also include the w — p coupling. The shaded area shows the results from Chiral
EFT [22], providing robust theoretical constraints for neutron-matter equations of state. For
Cuwp =0.02, the EoS indicates a bit too much repulsion around the nuclear saturation density.
For all values of C, at low densities, binding is weaker than expected. In spite of these
issues, all parameter sets with different strengths of the coefficient C,,, appear to be in good
qualitative agreement with the constraints.
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207 ---- IUFSU
---- FSUgold
S 15
S — C,,=0.02
Z 10 C,p=0.01
5 — C,,=0.005
5 — C,p,=—0.01
Chiral EFT N®LO — C,,= —0.02
0

02 04 06 0.8 1.0 1.2
P/ po

Figure 2. Energy per nucleon of pure neutron matter as a function of density for 5 different parameter
sets. The shaded area corresponds to Chiral EFT constraints as provided in Ref. [22]. The RMF models
FSUgold and IUFSU, which also include the w — p interaction, are shown for comparison. Note that
here the saturation density py = 0.165 fm 3.

The slope of the symmetry energy L and the pure neutron matter EoS are related,
shown by Equation (19) in Ref. [11]:

Jd (&,
L=3pg—| — , 22
Poapn<pn>po (22)

where the energy density of pure neutron matter is given by ¢,. The slope of the neutron-
matter EoS decreases as Cyp is lowered, which is consistent with the trend of the L values in
Table 3. Therefore, varying the slope (and by extension the strength of the w — p interaction)
has a direct impact on the densities at which neutrons drip out of nuclei, and consequently
on the nuclear pasta phases in NSM.

Table 3. Symmetry energies and corresponding slope values (parabolic approximation).

Set Cuwp MeV) S(p) L
I 0.02 37.40 135.26
1I 0.01 35.63 102.71
I 0.005 34.72 100.41
v -0.01 32.23 66.38
I —0.02 30.52 48.32

3.4. Determination of Symmetry Energy and Slope Parameter
In a free fermion gas of nucleons, the expression for energy per particle is

E E
a ~ Z(,Basy =0)+ Esymﬁﬁsy +e, (23)
where sy defined as
_np—np N-Z
,Busy = o + 1, A (24)
or in terms of proton and neutron densities p, and p;,
ﬁasy = P~ Pp . (25)

Y
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For an initial determination of Es,,, and L at saturation density, a parabolic approxi-
mation is applied, such that only the lowest-order non-vanishing term in Sy, is retained.
Rewriting the equation with the approximation gives

E E
Z = Z(:Basy = O) + S(p) gsy ’ (26)

where & (Basy = 0) = (E/ A)j is the energy per nucleon of symmetric matter, and S(p) is the
nuclear symmetry energy. Keeping the Coulomb interaction switched off, the simulation
is run for many values of Yp at pg for all pr in Table 2. The values for E/ A are fitted in
Equation (26), and S(pp) is obtained as a fit parameter from the plot of energies per nucleon
shown in Figure 3.

The slope parameter L quantifies the density dependence of the symmetry energy,
which can be used to practically calculate the possible L values as [25]

S(1.1pg) — 5(0.9p0)
1.1p0 — 0.9p0 ’

L = 3po (27)

Here, S(1.1p9) and S(0.9p9) are determined with the same procedure as for S(po)
described above. The obtained values for S(p) and L are listed in Table 3.

Parabolic Approximation
30

-

00 02 04 06 08 10 00 02 04 06 08 1.0

30
C.p =0.005 . C.p= —0.01
20 4 .
10
S
(<5}
2 0
Z
M -10
-20 . . . . .
00 02 04 06 08 10 00 02 04 06 08 1.0
30
Cp=—0.02
20 .
10
0
_10.
-20 . , : : :
00 02 04 06 08 1.0

/Basy

Figure 3. Fit of energy per nucleon vs. neutron excess using Equation (26) for different parameter sets
(parabolic approximation). Basym is the neutron excess with 1.0 being pure neutron matter, and 0.0
being symmetric nuclear matter. A list of the corresponding slope values is given in Table 3.

The calculations discussed above can be improved. Chen et al. [26] suggested that the
description of the nuclear matter EoS can be made better by improving on the parabolic
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approximation. Through a systematic study of isospin dependence of saturation properties
of asymmetric nuclear matter, it was concluded that the parabolic approximation produces
good results for ‘Bgsy < 0.1, but for higher asymmetries the quartic term should also be
included. In this work, where higher isospin asymmetries are simulated, the fit using the
function in Equation (26), as can be seen in Figure 3, is not satisfactory. The slope values for

%sy > (.1 can therefore be modified by adding a quartic term to Equation (26), which now
expands to
E E 2 4
A = Z(,Basy =0)+ S(Z) (p)ﬁasy + 5(4) (p)ﬁasy ’ (28)

where S(5)(p)=5(p) and S4)(p) is the fourth order term of nuclear symmetry energy.
The binding energies for different B,y values are fitted to the Equation (28) and S 5) (0)=S(p)
and S(4(p) are obtained as fitting parameters. A better fit for energy per nucleon is
achieved, as shown in Figure 4. The updated values for symmetry energy and slope are
listed in Table 4. Figure 5 shows the density dependence of symmetry energy for 5 different
parameter sets. The difference between results obtained using different parameter sets
increases with density due to the quadratic dependence of V,,—, on baryon and isospin
densities, being very small for densities below 0.5p9.

Quartic Approximation
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& plpp=1.0
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Figure 4. Fit of energy per nucleon vs. neutron excess using Equation (28) (quartic approximation)
for different parameter sets. Basym is the neutron excess with 1 being pure neutron matter and 0
being symmetric nuclear matter. A list of the corresponding slope values is given in Table 4. This
approximation results in better fitting compared to the parabolic approximation in Figure 3.
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Figure 5. Density dependence of symmetry energy for 5 different parameter sets is shown. The w — p
term determines the coupling of two vector fields, which are sub-leading at low densities, where the
attraction represented by the scalar fields dominates. As the density increases beyond pp = 0.5 fm =3,
the w — p effects can clearly be seen in this figure.

Comparing Tables 3 and 4, the effect of adding a fourth order term is a decrease in
the symmetry energy in all cases. However, the decrease in L is not straightforward and
is only seen for Sets II, III, and IV in the quartic case (as compared to the parabolically
approximated case). It is clear in Table 4 that, with a decrease in pr, L can be lowered to
optimal values for Sets II, III, VI, and V. However, the L for Set IIl was expected to be lower
than that for Set II, in agreement with the trend of decreasing values going from Sets I to
V. It appears that this value is indeed much closer to previous results in Ref. [8], where a
symmetry energy of ~29 MeV is associated with an L ~ 92 MeV. This can be interpreted
in terms of the strength of the w — p interaction energy being too low for Set III, which
causes the prediction to agree closely with previous results that excluded it. Note that the
values of symmetry energy and slope for set I are high when compared with experimental
values [27-29].

Table 4. Symmetry energies and corresponding slope values (quartic approximation).

Set pr (MeV) 5(2) (p) 5(4) (p) L(z) L(4)
1 0.02 32.81 6.56 135.52 —0.38
1I 0.01 30.93 6.72 71.88 4411
111 0.005 30.18 6.59 99.52 1.30

v —0.01 27.56 6.68 61.32 7.24
\Y —0.02 25.88 6.63 49.32 —1.43

3.5. Nucleon Distributions

Nuclear clustering cannot only occur in NSM, but also for more isospin symmetric
matter as it undergoes the liquid-gas transition. Such matter can be studied, for example,
in high energy nuclear collisions. In order to bridge the gap between such studies and
NSM, the proper isospin dependence of the existence and occurrence of the liquid-gas
phase separation needs to be understood. In the following we will show how our model
can be used to study the occurrence of clustering of nuclear matter for nuclear matter with
proton fractions between 0.3 < Y, < 0.5.

The nucleon distribution of nuclear matter at T = 0 can be visualized in the simulation
box. At every grid point, the density contribution of each nucleon is added to produce a
density map. Since the Coulomb interaction is included, clusterization of nucleons in a
lattice-like structure is clearly seen in the system.

In Figures 6-8, clusterization is seen in the system at T = 0. At every grid point in the
simulation box, the density contribution of each nucleon gaussian wave packet is added to
calculate the density map. In Figure 7, an increased C,,, decreases the density of clusters,
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so they seem to break up into smaller clusters of lower densities. This implies that neutrons
will drip out at lower densities for C.p = 0.02 than for 0.01. As the density is increased
3-folds (shown in Figure 8), the density map morphs into a more interesting structure.

T=0,0=0.1po, Yp = 0.3, C,p = 0.01 fm~—3

0.200
0.175
0.150
0.125
0.100
0.075
0.050
0.025
0.000

Box Edge = 39.59 fm

Figure 6. Density map of simulation box with Cq,, = 0.01.

T=0,0=0.100, Yp = 0.3, Cyyp = 0.02 fm=3

0.200
0.175
0.150
0.125
0.100
0.075
0.050
0.025
0.000

Box Edge = 39.59 fm

Figure 7. Density map of simulation box with Cq,, = 0.02.

T=0,0=0.3p0, Yp = 0.3, C,, =0.01 fm=3

0.175
0.150
0.125
0.100
0.075
0.050
0.025
0.000

Box Edge = 27.45 fm

Figure 8. Density map of simulation box with Cq,, = 0.01, but at three times the density of Figure 6.
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3.6. Transition from Clustered to Uniform Nuclear Matter

Long-range correlations between nucleons can determine the density at which a liquid-
gas phase transition occurs. To this end, a useful tool to analyse the spatial distribution of
nucleons is the two-point density fluctuation correlation function ¢y for nucleon density
fluctuations defined as [8]:

ENN = (AN(X)AN(X + 1)) . (29)

Here, the average denoted by (...) is taken over the position x and in the direction of
r. The fluctuation Ay (x) of the nucleon density field pn(x) is defined as

AN = M , (30)
Pav

where pg, is the average density of the simulation box. Two-point correlation functions
for Yp = 0.3 and 0.5 (for Cyp = 0.01, 0.005, and —0.01) are plotted in Figure 9. In all cases,
an increase in density decreases the amplitude of {yy, indicating a smoother nucleon
density distribution. Correlations are highest near the origin as the nucleons have the
strongest influence on their nearest neighbors. This also indicates clusterization at low
densities. A negative value of ¢y at a given r implies anti-clustering or regularity, which
means the point at that r has a density lower than the average density of the simulation box.

All curves at densities higher than 0.8pg are almost flat-lined at {yn = 0, indicating
uniform matter above 0.8p¢. Clear trends in the variation of cluster size and densities with
Cwp and L could not be deduced.

When nuclear matter is uniform, the two-point correlation vanishes. At a certain
average density, the long-range correlations suddenly disappear (instead of gradually),
indicating the density turning to uniform matter through a first-order phase transition,
which corresponds to the liquid-gas transition. Similar conclusions were obtained in
previous studies [6,8]. For all cases of Cy, in Figure 9, more data is needed to find out the
point of transition although the transition from asymmetric to uniform matter seems to
occur between p/pp=0.6 and 0.8.

061 C,,=001,Yp=0.3 T e

044 ~~ 1 N

0.2 1 ~~ e 1 ~

0.0 - ;"‘::'Q‘-r_-r: 1_—__—:;-—:—‘-- | T s “-'..—:\ ——————— I ,Ollp{] =05
= T plpg =06

—0.27 1 == plpy =07

Correlation

0.6 1 1 7=
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0.2 4 AN 1 Tl S~

0.0 1 1 T

Figure 9. Two-point correlation function {yy of nucleon density fluctuations for Cyp = 0.01,
Cwp = 0.005 and Cyyp = —0.01 and proton fractions Yp = 0.3 (left) and 0.5 (right).

Note that it has been shown using relativistic mean field models that effects on the
slope of the symmetry energy induced by an additional w — p interaction affect the crust-
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core transition: a smaller slope reproduces a larger onset [30-32]. Similar results were
found within the Brueckner—Hartree-Fock approach [33] and in a detailed study involving
different approaches [34].

4. Conclusions

The conditions in the inner crust of neutron stars have been simulated within a Quan-
tum Molecular Dynamics (QMD) approach with periodic boundary conditions to imitate
infinite uniform nuclear matter. The nucleon-nucleon interaction Hamiltonian for QMD
was successively developed in earlier works by Aichelin and Stocker [1], Peilert et al. [4],
and Watanabe et al. [6] and consists of effective interaction potentials that take into account
the Pauli principle, the Yukawa interaction, Coulomb interaction, and density dependent
terms. In the current project, an isospin-dependent potential term to take into account the
repulsion from interaction of omega and rho mesons has been implemented in the QMD
Hamiltonian. The idea to include a mesonic self-interaction in nuclear matter calculations
is not new. It was first introduced in an attempt to reduce the neutron-skin thickness of
208pp [12]. In a work proposing the IUFSU effective interaction [23], it was shown that in-
creasing the w — p coupling constant softens the EoS of nuclear matter at around saturation
density and that the density dependence of symmetry energy is highly sensitive to it. This
was done within a model based on a relativistic effective field theory. Later, it was shown
to improve the radius and tidal deformability of neutron stars, leading RMF models to be
in better agreement with observations [35].

The new w — p-inspired term in the QMD model Hamiltonian in this work is inspired
from the density dependent repulsive Skyrme force and depends on the baryon density and
isospin density of asymmetric nuclear matter. A few values for the coefficient of the w — p
potential were tested, which resulted in very different behavior of the symmetry energy and
its slope L. First, the values and trends of binding energies per nucleon of ground states of
several nuclear isotopes were reasonably reproduced compared with experimental values.
Simulations for pure neutron matter resulted in a density dependent behavior that is largely
similar for all Cy, (coefficient of w — p meson field interaction) below nuclear saturation
density and is in good qualitative agreement within constraints from Chiral EFT. Around
0o, we can see a large divergence in the trend of E/N and a decrease in maximum energies
as Cyyp is lowered. The numerical data obtained by simulating asymmetric nuclear matter
was fitted to the energy per nucleon expanded as Taylor series, keeping both the lowest
and the second highest order term. The approximation in the second-order term, also
called the parabolic approximation, gave a trend of symmetry energies that decreases as the
coefficient of the w — p potential also decreases. The corresponding slopes L exhibit a similar
trend, although four of five tested parameter sets produced L values within established
constraints [27-29]. The higher-order approximation, which is necessary to obtain a better
fitting of the data to energy per nucleon, further reduced the symmetry energies for the
same coefficient values whereas there are more variations in the corresponding L values
amidst a general decrease. This behavior requires the inclusion of data for higher and
in-between values of proton fractions to further improve fitting and obtain better symmetry
energy and slope values.

The dependence of clusterization in the system, due to the nuclear liquid-gas tran-
sition, on the isospin properties was also explored by calculating two-point correlation
functions. Although a detailed study of the structure of inhomogenous phases could not
be accomplished due to inaccurate Coulomb energies, a visualization of the simulated
system shows interesting pasta-like shapes. The transition from inhomogeneous to uniform
matter is evaluated using a two-point density fluctuation correlation function and points to
a first-order phase transition. Only a small change was observed in the effect of varying
L on the transition density, which cannot be deemed as significant. The properties of the
mixed phase with the newly integrated w — p-inspired interaction can be studied in a
similar fashion to a work conducted earlier in Ref. [36] with the aim of giving a better
range for the critical end-point of the liquid-gas phase transition in dense nuclear matter.
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The analysis of two-point density fluctuation correlations also reveals the size of clumps of
nucleons in the system. If the evolution of clump sizes is tracked with respect to time, one
can deduce where density fluctuations are amplified enough to have matter separate into
domains of high and low densities forming a coexisting phase. The growth of instabilities
or fluctuations point to a region of negative compressibility in the phase diagram of nuclear
matter, where at a constant temperature an increase of density results in a decrease in
pressure [37]. This region is called the spinodal region. Therefore, further study is needed
to shed more light on the nuclear phase diagram. Steinheimer et al. [38,39] have conducted
detailed analyses on experimental signals of the expected phase transition at large baryon
densities and identifying spinodal clumping in high energy nuclear collisions. Studies of
temperature, pressure, and time evolution of density fluctuations in nuclear matter are
outside the scope of this project but is an interesting prospect for the future.

QMD has an advantage over other types of models in the possibility to track the
trajectory of nucleons and study the non-averaged properties of clusters in nuclear matter
at inner crust densities, unlike mean-field approaches. Implementing the w — p interaction
in a QMD model is an important step in efforts to constrain the density dependence of
symmetry energy and at the same time observe effects of this interaction on the structure
of nuclear matter within a dynamical framework. Pressure can be calculated using the
simulated data to obtain the full equation of state, and subsequently a M-R curve for the
model used in this work. We also aim to find a way to reconcile the model with the causality
of sound speed, which is ensured in Relativistic Mean Field models but can be problematic
in microscopic simulations. An exciting prospect is finite temperature calculations to
check for phases of hot nuclear matter at sub-saturation densities, which is relevant for
proto-neutron stars.
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