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Abstract: Under the background of perfect fluid and flat Friedmann–Lemaître–Robertson–Walker
(FLRW) space-time, this paper mainly describes the dynamics of the cosmological model constructed
in f (R, T) gravity on three invariant planes, by using the singularity theory and Poincaré compactifi-
cation in differential equations.
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1. Introduction

General Relativity (GR) is one of the pillars of modern physics, known as the standard
model of gravitation and cosmology, with many successes [1–3]. However, the theory in
its usual form fails to explain the late-time acceleration observed experimentally in high
redshift supernova [4,5]. Furthermore, GR cannot match with quantum theory and explain
the flatness of galaxy rotation curves [6,7]. To this end, scientists have proposed many novel
ideas to overcome different aspects of its incompleteness and shortcomings. Some of these
ideas modify or generalize GR in a geometrical background. Other ideas introduce new
cosmic fluids, such as dark matter, responsible for clustering galaxy structures and dark
energy that accelerates the observed accelerating expansion of the Universe. The former
has attracted a great deal of interest in recent years. Many researchers have proposed
more complicated gravity theories in which high-order curvature invariants correct for the
Einstein–Hilbert action concerning the Ricci scalar.

In higher-order gravitational theory, a simple modification is the f (R) theory of gravity,
obtained by substituting the Ricci scalar R with an arbitrary function in the Einstein–
Hilbert action. In some cases, the theory can solve specific problems [8–10] and predict a
comparison of the early accelerated expansion of the Universe with the late-time accelerated
expansion, matching observational cosmology data [11–14]. Some researchers tested the
viability of f (R) gravity models to explain dark energy and later-time Universe [15–17]. It
has been observed that the conclusions of the models in f (R) gravity which accounts for
the local gravity and cosmic problems are different from those of the ΛCDM model [18].
Two feasible models of f (R) gravity in Palatini formalism and the properties of geometric
dark energy in modified gravity were recently investigated in [19], and it was concluded
that the ΛCDM model was the best fit for the current data. A generalization of the f (R)
theory has been proposed [20] by introducing an explicit coupling of an arbitrary function
of the Ricci scalar R to the matter Lagrangian density Lm in theory. Harko [21] obtained a
maximal extension of the Lagrangian by considering the Einstein–Hilbert Lagrangian as a
general function of R and Lm. In f (R, Lm) gravity, it is assumed that the matter Lagrangian
Lm contains all the properties of matter, which was generalized to any coupling between
matter and geometry [22].

In 2011, Harko et al. proposed a new modified theory of gravity known as f (R, T)
gravity [23], which is considered a generalization of f (R) gravity as it incorporates the
Ricci scalar R and the trace of the energy-momentum tensor T. The primary justification
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for the dependence on trace T may be induced by the existence of some imperfect exotic
fluid or quantum effects originating from a conformal anomaly trace. The dynamical and
gravitation equations were developed for test particles, and higher-curvature theories were
found to help to resolve the flat problem in galaxies’ rotation curves. In the f (R, T) theory
of gravity, cosmic acceleration depends on geometrical contribution to the total cosmic
energy density and on matter particles. Since the birth of this theory, its various aspects
have been investigated, such as dark energy [24], dark matter [25], redshift drift [26], worm-
holes [27,28], thermodynamics [29,30], bouncing cosmology [31,32], baryogenesis [33],
scalar perturbations [34], gravitational waves [35,36]. The reconstruction schemes of the
f (R, T) theory were investigated in [37–39]. Shabani and Farhoudi [40,41] studied different
types of f (R, T) cosmological models with miscellaneous cosmological quantities by apply-
ing a dynamical system approach. Baffou et al. [42] studied the dynamics and stability of
the model obtained by imposing the conservation of the energy momentum tensor. The
model can be regarded as a potential dark energy candidate. Sharma and Pradhan [43]
presented an analysis of cosmological solution in modified f (R, T) theory with Λ(T). The
late-time dynamics of a complete form of the f (R, T) gravity were investigated in [44],
and their results are consistent with standard cosmology. Other relevant literature can be
referred to [45,46].

Dynamical system analysis is a powerful mathematical tool for studying the dynami-
cal behavior of models of the universe without analytically solving field equations. This
method has been used for a broad class of models in different gravity theories [47–50]. Equi-
librium points in the governing equations of cosmological models can describe different
epochs of the universe. Considering the perfect fluid and flat FLRW space-time, this study
will investigate the dynamics (including the infinite case) and cosmological evolution of the
f (R, T) = ξRα + ζ

√
−T gravitational model on invariant planes by the dynamical system

analysis method. To capture all possible equilibrium points near infinity, the Poincaré
compactification method is usually applied, which maps all infinity points to points on the
boundary of the Poincaré sphere. The involved singularity theory accurately computes
trajectories around some unusual equilibrium points. The stability of all equilibrium points
is discussed to draw phase diagrams for different invariant planes. Furthermore, we study
the case |α| → 1 and propose a cosmological solution that is consistent with observations.

The paper is organized as follows: in Section 2, we briefly review the fundamental
equations of f (R, T) gravity and derive the dynamical system. Section 3 shows phase
diagrams on three invariant planes and obtains cosmological solutions. Section 4 contains
the case |α| → 1 in 3D. Section 5 briefly analyzes a case that is considered to be more
interesting and physical when f (R, T) = R + ξRα + ζ

√
−T. In Section 6, we summarize

and discuss the obtained results.

2. Cosmological Equation in f (R, T) Gravity

The action for the f (R, T) gravity can be written as follows

S =
∫ √

−gd4x
[

1
16πG

f
(

R, T(m)
)
+ L(m) + L(rad)

]
, (1)

where g is the determinant of the metric, f (R, T) is an arbitrary function of the Ricci scalar R,
and the trace of the energy-momentum tensor T(m), L(m), and L(rad) stand the Lagrangians
of the dust matter and radiation, respectively, and we set c = 1. Since the trace of the
radiation energy–momentum tensor L(rad) = 0, we drop the superscript m from the trace
T(m). As usual, the energy-momentum tensor is defined as

Tµν ≡ −
2√−g

δ
[√−g

(
L(m) + L(rad)

)]
δgµν , (2)



Universe 2022, 8, 365 3 of 24

Moreover, we assume that L(m) and L(rad) depend only on the metric and not on its
derivatives. We obtain

Tµν = gµν

[
L(m) + L(rad)

]
− 2

∂
[

L(m) + L(rad)
]

∂gµν . (3)

We assume a perfect fluid in the model and have

gαβ δT(m)

δgµν = −2T(m)
µν , (4)

By varying the action S with respect to the Tµν, we obtain

fR(R, T)Rµν −
1
2

f (R, T)gµν +
(

gµν�−∇µ∇ν

)
fR(R, T)

= (8πG + fT(R, T))T(m)
µν + 8πGT(rad)

µν ,
(5)

where � = ∇µ∇µ, fR(R, T) = ∂ f (R, T)/∂R, fT(R, T) = ∂ f (R, T)/∂T and ∇µ denotes the
covariant derivative. With the contraction of Equation (5), we have

fR(R, T) + 3� fR(R, T)− 2 f (R, T) = (8πG + fT(R, T))T. (6)

Here, we consider a spatially flat FLRW metric given by

ds2 = −dt2 + a2(t)
(

dx2 + dy2 + dz2
)

, (7)

where a(t) represents the scale factor. Equation (5) can be rewritten in a standard form

Gµν =
8πG

fR(R, T)

(
T(m)

µν + T(rad)
µν + T(eff)

µν

)
, (8)

where

T(eff)
µν =

1
8πG

[
1
2
( f (R, T)− fR(R, T)R)gµν

+
(
∇µ∇ν − gµν�

)
fR(R, T) + fT(R, T)T(m)

µν

]
.

(9)

According to the Bianchi identity, we can know that∇µT(m)
µν = 0 = ∇µT(m)µν. Under

the assumption of the conservation of the effective energy-momentum tensor T(m)
µν , we find

3
2

H(t) fT(R, T) = ḟT(R, T), (10)

where H(t) = ȧ(t)/a(t) is the Hubble parameter, and a dot denotes the derivative with
respect to the cosmic time t. Regarding the metric (7), Equations (5) and (6) can be given as

3H2 fR(R, T) +
1
2
( f (R, T)− fR(R, T)R) + 3 ḟR(R, T)H

= (8πG + fT(R, T))ρ(m) + 8πGρ(m)
(11)

and

2 fR(R, T)Ḣ + f̈R(R, T)− ḟR(R, T)H = −(8πG + fT(R, T))ρ(m) − 32
3

πGρ(rad). (12)



Universe 2022, 8, 365 4 of 24

In the following, we assume that f (R, T) = g(R) + h(T), where both g(R) and h(T),
cannot be a constant. Six dimensionless independent variables are introduced to obtain the
equations of dynamics [41], namely,

x1 ≡ −
ġ′(R)

Hg′(R)
, x2 ≡ −

g(R)
6H2g′(R)

, x3 ≡
R

6H2 =
Ḣ
H2 + 2, (13)

x4 ≡ −
h(T)

3H2g′(R)
, x5 ≡ −

8πGρ(rad)

3H2g′(R)
, x6 ≡ −

Th′(T)
3H2g′(R)

. (14)

Four dimensionless parameters are defined for parameterization in the determination
of the dynamic equations. These parameters are:

m ≡ Rg′′(R)
g′(R)

, r ≡ −Rg′(R)
g(R)

=
x3

x2
, n ≡ Th′′(T)

h′(T)
, s ≡ Th′(T)

h(T)
=

x6

x4
. (15)

With the form f (R, T) = g(R) + h(T), we rewrite Equations (11) and (12) as follows:

1 +
g

6H2g′
+

h
6H2g′

− R
6H2 +

ġ′

Hg′
=

8πGρ(m)

3H2g′
+

h′ρ(m)

3H2g′
+

8πGρ(rad)

3H2g′
(16)

and

2
Ḣ
H2 +

g̈′

H2g′
− ġ′

Hg′
= −8πGρ(m)

H2g′
− h′ρ(m)

H2g′
− 32πGρ(rad)

3H2g′
. (17)

The constraint Equation (10) becomes

Th′′ = −1
2

h′, (18)

and by integrating with respect to the trace h, Equation (18) reads

Th′ − 1
2

h + C = 0, (19)

where C is an integration constant. Set C = 0, which leads to s = 1/2. Then, we obtain
x4 = 2x6 and h = ζ

√
−T, where ζ is a constant.

We consider the model’s later-time behaviors, i.e., radiation does not exist, and assume
that f (R, T) = ξRα + ζ

√
−T, where ξ is a constant. Thus, we obtain that

x3 = −αx2, m = α− 1. (20)

By setting x1 ≡ x, x2 ≡ y, x4 ≡ z, the obtained autonomous dynamical system is:

dx
dN

= −1 + x(x + αy) + (α− 3)y− 3
2

z,

dy
dN

= − xy
α− 1

+ 2y(2 + αy),

dz
dN

= z
(

5
2
+ x + 2αy

)
,

(21)

where N = ln a. We defined the density parameter of matter Ω(m) and effective equation
of state ω(eff) as follows

Ω(m) ≡ 8πGρ(m)

3H2g′
= 1− x + (α− 1)y− z, (22)

ω(eff) ≡ −1− 2Ḣ
3H2 =

1
3
(1 + 2αy). (23)



Universe 2022, 8, 365 5 of 24

System (21) has six finite equilibrium points pi (i = 1, · · · , 6). Here, p1 = (1, 0, 0)
has eigenvalues 2, 7/2 and (4α− 5)/(α− 1), p2 = (−1, 0, 0) has eigenvalues −2, 3/2, and
(4α− 3)/(α− 1), p3 = (−5/2, 0, 7/2) has eigenvalues −7/2, −3/2, and (8α− 3)/(α− 1),
p4 = ((4− 2α)/(2α− 1), (5− 4α)/[(2α− 1)(α− 1)], 0) has eigenvalues (5− 4α)/(α− 1),
(−8α2 + 13α − 3)/[(2α − 1)(α − 1)] and −[(5α − 1)(2α − 3)]/[2(2α − 1)(α − 1)], p5 =
((5− 4α)/α, (3− 4α/2α2, 0) has eigenvalues 3/2 and[

3(1− α)±
√
(α− 1)(256α3 − 608α2 + 417α− 81)

]
/[4α(α− 1)],

and p6 = (3(α − 1)/(2α), (3 − 8α)/(4α2),−[(5α − 1)(2α − 3)]/[4α2]) has eigenvalues
−3/2 and[

3(2α− 1)(α− 1)±
√
(α− 1)(676α3 − 1328α2 + 573α− 81)

]
/[8α(α− 1)].

These equilibrium points of system (21) are presented in Table 1. According to different
values of α, we summarize the relevant types of these six finite equilibrium points in Table 2.

Table 1. Equilibrium points of system (21).

Equilibrium Points Coordinates (x, y, z) Scale Factor Ω(m) ω(eff)

p1 (1, 0, 0) a(t) = a0

(
t−ti
t0−ti

) 1
2 0 1

3

p2 (−1, 0, 0) a(t) = a0

(
t−ti
t0−ti

) 1
2 2 1

3

p3 (− 5
2 , 0, 7

2 ) a(t) = a0

(
t−ti
t0−ti

) 1
2 0 1

3

p4 ( 4−2α
2α−1 , 5−4α

(α−1)(2α−1) , 0) a(t) = a0

(
t−ti
t0−ti

) (α−1)(2α−1)
2−α 0 −6α2+7α+1

3(α−1)(2α−1)

p5 ( 3(α−1)
α , 3−4α

2α2 , 0) a(t) = a0

(
t−ti
t0−ti

) 2α
3 −8α2+13α−3

2α2
1−α

α

p6 ( 3(α−1)
2α , 3−8α

4α2 , −10α2+17α−3
4α2 ) a(t) = a0

(
t−ti
t0−ti

) 4α
3 0 1−2α

2α

Table 2. Finite equilibrium points and their types for different values of α of system (21).

Values of α Finite Equilibrium Points

α < 0 or 0 < α < 1
5 or α > 3

2
p1 is an unstable node, p2, p3, p5 and p6 are saddles,
p4 is a stable node

α = 1
5 or α = 3

2
p1 is an unstable node, p2, p3, and p5 are saddles,
p4 and p6 have a 2DSM

1
5 < α < 13−

√
73

16
or 13−

√
73

16 < α ≤ α1
or α4 ≤ α < 3

2

p1 is an unstable node, p2, p3, p4 and p5 are saddles,
p6 is a stable node

α = 13−
√

73
16

p1 is an unstable node, p2 and p3 are saddles,
p4 and p5 have a 1DUM and a 1DSM, p6 is a stable node

α1 < α < 3
8

p1 is an unstable node, p2, p3 and p4 are saddles,
p5 is a NHEP, p6 is a stable node

α = 3
8

p1 is an unstable node, p2 and p4 are saddles,
p3 and p6 have a 2DSM, p5 is a NHEP

3
8 < α < 1

2
p1 is an unstable node, p2, p4 and p6 are saddles,
p3 is a stable node, p5 is a NHEP
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Table 2. Cont.

Values of α Finite Equilibrium Points

1
2 < α < α2

p1 is an unstable node, p2 and p6 are saddles,
p3 and p4 are stable nodes, p5 is a NHEP

α2 ≤ α < 3
4 or 3

4 < α < 1 p1 is an unstable node, p2, p5, and p6 are saddles,
p3 and p4 are stable nodes

α = 3
4

p1 is an unstable node, p2 and p5 have a 1DUM and a 1DSM,
p3 and p4 are stable nodes, p6 is a saddle

1 < α < 5
4

p1, p2, and p3 is a saddle,
p4 is an unstable node, p5 and p6 are NHEPs

α = 5
4

p1 and p4 have a 2DUM, p2 and p3 are saddles,
p5 and p6 are NHEPs

5
4 < α < α3

p1 is an unstable node, p2, p3, and p4 are saddles,
p5 and p6 are NHEPs

α3 ≤ α < 13+
√

73
16

or 13+
√

73
16 < α < α4

p1 is an unstable node,
p2, p3, p4, and p5 are saddles, p6 is a NHEP

α = 13+
√

73
16

p1 is an unstable node, p2 and p3 are saddles,
p4 and p5 have a 1DUM and a 1DSM, p6 is a NHEP

Note: 2DSM: two-dimensional stable manifold. 1DUM: one-dimensional unstable manifold. 1DSM: one-
dimensional stable manifold. NHEP: non-hyperbolic equilibrium point.

3. Phase Portraits on Invariant Planes and Cosmological Solutions

For the careful analysis of the global phase portraits and the local phase portraits at the
equilibrium points of system (21), we start our discussion on three invariant planes z = 0,
y = 0, and 1− x + (α− 1)y− z = 0, respectively. Note that the first two invariant planes
are obvious, here we just need to verify that 1− x + (α− 1)y− z = 0 is also an invariant
plane of system (21). As Ω(m) = 1− x(α− 1)y− z, the surface 1− x + (α− 1)y− z = 0 is
invariant if it holds that

∂Ω(m)

∂x
x′ +

∂Ω(m)

∂y
y′ +

∂Ω(m)

∂z
= KΩ(m), (24)

where K is a polynomial, and this is the case with K = 1 + x + 2αy.

3.1. Phase Portraits on the Invariant Plane z = 0 and Cosmological Solutions

On this invariant plane, system (21) becomes

dx
dN

= −1 + x(x + αy) + (α− 3)y

dy
dN

= − xy
α− 1

+ 2y(2 + αy)
(25)

System (25) has four finite equilibrium points e1 = (1, 0), e2 = (−1, 0), e4 = ((4−
2α)/(2α− 1), (5− 4α)/[(α− 1)(2α− 1)]) and e5 = (3(α− 1)/α, (3− 4α)/(2α2)). In fact,
the points ei and the previous pi (i = 1, 2, 3, 4, 5, 6) represent the same location in space.
Since the stability of the same location in 3D space and invariant planes may not be the
same, the two forms pi and ei are used to distinction. We use pi when discussing the
stability of points in 3D space and ei on an invariant plane.

The point e1 is a purely kinetic point with Ω(m) = 0 and ω(eff) = 1/3. Since this point
can not describe any known matter, it is not considered to have physical significance. The
eigenvalues of e1 are 2 and (4α− 5)/(α− 1), it is an unstable node when α < 0 or 0 < α < 1
or α > 5/4, a saddle when 1 < α < 5/4 and a saddle-node when α = 5/4.
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The point e2 is denoted as a φ-matter-dominated epoch (φMDE) [51] with Ω(m) = 2
and ω(eff) = 1/3. Although the matter-density parameter of e2 does not match the effective
equation of state, the universe may approach to this point in this model. The point e2 can
be treated as a special case of point e5 by setting α = 3/4. The point has eigenvalues −2
and (4α− 3)/(α− 1), it is a saddle when α < 0 or 0 < α < 3/4 or α > 1, a stable node
when 3/4 < α < 1 and a saddle-node when α = 3/4.

For point e4, we have Ω(m) = 0 and ω(eff) = (−6α2 + 7α + 1)/[3(α − 1)(2α −
1)]. This point can act as an accelerated-expansion point provided that ω(eff) < −1/3
for α < (1−

√
3)/2 or α > (1 +

√
3)/2 or 1/2 < α < 1. This point has eigenvalues

(5− 4α)/(α− 1) and (−8α2 + 13α− 3)/[(α− 1)(2α− 1)], it is a stable node when α < 0
or 0 < α <

(
13−

√
73
)

/16 or 1/2 < α < 1 or α >
(

13 +
√

73
)

/16, a saddle when(
13−

√
73
)

/16 < α < 1/2 or 5/4 < α <
(

13 +
√

73
)

/16, an unstable node when

1 < α < 5/4 and a saddle-node when α =
(

13±
√

73
)

/16 or 5/4. Thus, e4 contains the

range where the universe can be accelerated, i.e., α < (1−
√

3/2) or 1/2 < α < 1 or
α > (13 +

√
73)/16. Additionally, the point e4 does not exist when α = 1/2.

For point e5, we have Ω(m) = (−8α2 + 13α− 3)/(2α2) and ω(eff) = (1− α)/α. This
point can actually represent a standard matter era with Ω(m) = 1 and a ∝ t2/3 when
α → 1. However, when α < 0 or α > 3/2, e5 can be the point of acceleration, but
with a negative value for the matter-density parameter. Considering Equation (22), solu-
tions that lead to Ω(m) < 0 are excluded from the background of feasible f (R) models,
so we discard it from the acceleration point candidates. The point e5 has eigenvalues[
3(α− 1)±

√
(α− 1)(256α3 − 608α2 + 417α− 81)

]
/[4α(α− 1)], it is a saddle when α < 0

or 0 < α <
(

13−
√

73
)

/16 or 3/4 < α < 1 or α >
(

13 +
√

73
)

/16, a stable node when(
13−

√
73
)

/16 < α ≤ α1 or α2 ≤ α < 3/4 or α3 ≤ α <
(

13 +
√

73
)

/16, a stable focus

when α1 < α < α2 or 1 < α < α3 and a saddle-node when α =
(

13±
√

73
)

/16 or 3/4. The

constants α1, α2 and α3 are the roots of 256α3 − 608α2 + 417α− 81 = 0 and α1 < α2 < α3.
The verification of situation that e1 is a saddle-node when α = 5/4 is presented here.

When α = 5/4, we set x = p− 1 and system (25) becomes

dp
dN

= p2 +
5
4

py− 2p− 3y,

dy
dN

= −4py +
5
2

y2 + 8y.
(26)

It is quite clear that e′1 = (0, 0) is the equilibrium point of system (26). By setting
−4py + 5

2 y2 + 8y = 0, we can obtain

y =
8
5

p− 16
5

. (27)

Let D = p2 + 5
4 py− 2p− 3y and connecting with Equation (27), we obtain

D = 3p2 − 54
5

p +
48
5

. (28)

According to the semi-hyperbolic singular point theorem in [52], e′1 is a saddle-node.
Thus, e1 is also a saddle-node. Similar judgments will not be repeated below.

In order to investigate the infinite situation of system (25), we use the Poincaré com-
pactification [52]. On the local chart U1, set x = 1/v, y = u/v, then system (25) can be
rewritten as
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du
dN

= u
[
(3− α)uv + v2 + αu + 4v− α

α− 1

]
,

dv
dN

= v
[
(3− α)uv + v2 − αu− 1

]
.

(29)

Note that the time scale here is different from the previous N, but we still use the N
notation for convenience.

At infinity v = 0 system (29) has two equilibrium points e7 = (0, 0), e8 = (1/(α− 1), 0).
The equilibrium point e7 has eigenvalues −1 and α/(1− α), it is a stable node when α < 0
or α > 1 and a saddle when 0 < α < 1. The equilibrium point e8 has eigenvalues α/(α− 1),
(2α− 1)/(1− α), it is a saddle when α < 0 or 1/2 < α < 1 or α > 1, a stable node when
0 < α < 1/2 and a saddle-node when α = 1/2.

Similar to the local chart U1 we let x = u/v, y = 1/v on the local chart U2, then system
(25) has the form

du
dN

=
α

α− 1
u2 − v2 − 4uv− αu− (α− 3)v,

dv
dN

= v
(

1
α− 1

u− 4v− 2α

)
.

(30)

As other equilibrium points at infinity have been analyzed on the U1, we only have to
analyze the origin of system (30) on local chart U2. Obviously the origin e9 = (0, 0) is an
equilibrium point of system (30). The equilibrium point e9 has eigenvalues −α and −2α, it
is an unstable node when α < 0 and a stable node when 0 < α < 1 or α > 1. The infinite
points e7, e8, and e9 are neither matter points nor feasible accelerated points because their
matter-density parameters are negative.

Since the above four finite equilibrium points and three infinite equilibrium points
have different stabilities when α varies, we make a summary in Table 3. Moreover, we
present the global phase portraits of system (21) on the z = 0 in Figure 1, where the point
ei,j can represent either ei or ej.

Here, we focus on the cosmological solutions that have survived a sufficiently long
epoch of matter dominance, followed by accelerated expansion. In the phase space, we
need to search for saddle points with positive matter-density parameters and stable points
that can exhibit accelerated expansion. The points involving matter points are e2 and e5,
and only e4 can be the accelerated point on the invariant plane z = 0 in the model. Since
the matter density parameter of e2 exceeds the critical density of 1, we do not consider
it as a matter point. The point e5 is a saddle matter point when 1/2 < α < 1 and when
α < (1−

√
3)/2 or 1/2 < α < 1 or α > (1+

√
3)/2, e4 can be a stable accelerated point. For

the limit |α| → 0 and 1, it can be found that under the limit |α| → 0, the point e4 is not an
accelerated point. When α→ 1+, the point e4 is not an accelerated point, thus the trajectory
from e5 to e4 is not a cosmological solution. The point e5 is the saddle matter point and e4
is a stable accelerated point when α→ 1−. Therefore, the trajectory from e5 to e4 can be a
cosmological solution. The process from e5 to e4 can be regarded as a cosmological solution
when 1/2 < α < 3/4, but there is no trajectory from e5 to e4 in this range. Therefore,
the trajectory from e5 to e4 can be a cosmological solution when 3/4 ≤ α < 1, however
m5 = Rg′′(R)/g′(R) < 0 represents the divergence of the eigenvalues as m5 → 1−. This
means that the system can not remain around the point e5 for a long time. Thus, there are
no viable cosmological solutions on the invariant plane z = 0.
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Figure 1. (a–p) Phase portraits on z = 0.

3.2. Phase Portraits on the Invariant Plane y = 0 and Cosmological Solutions

On the invariant plane y = 0 system (21) is

dx
dN

= −1 + x2 − 3
2

z,

dy
dN

= z
(

x +
5
2

)
.

(31)

System (31) has three equilibrium points, i.e., e1 = (1, 0), e2 = (−1, 0), and e3 =
(−5/2, 7/2). Since the discussion of e1 and e2 has been presented above, we only discuss
the point e3 here. The point e3 indicates Ω(m) = 0 and ω(eff) = 1/3. Since radiation is
not present in the model, this point does match any known matter and is not physically
interesting. The eigenvalues are −3/2 and −7/2, thus e3 is a stable node.
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Table 3. Equilibrium points and their types corresponding to various α values of system (25).

Values of α Finite Equilibrium Points Infinite Equilibrium Points

α < 0 e1 is an unstable node,
e2 and e5 are saddles, e4 is a stable node

e7 is a stable node, e8 is a saddle,
e9 is an unstable node

0 < α < 13−
√

73
16

e1 is an unstable node,
e2 and e5 are saddles, e4 is a stable node

e7 is a saddle,
e8 and e9 are stable nodes

α = 13−
√

73
16

e1 is an unstable node, e2 is a saddle,
e4 and e5 are saddle-nodes

e7 is a saddle,
e8 and e9 are stable nodes

13−
√

73
16 < α ≤ α1

e1 is an unstable node,
e2 and e4 are saddles, e5 is a stable node

e7 is a saddle,
e8 and e9 are stable nodes

α1 < α < 1
2

e1 is an unstable node,
e2 and e4 are saddles, e5 is a stable focus

e7 is a saddle,
e8 and e9 are stable nodes

α = 1
2

e1 is an unstable node,
e2 is a saddle, e5 is a stable focus

e7 is a saddle, e4,8 is a saddle-node,
e9 is a stable node

1
2 < α < α2

e1 is an unstable node, e2 is a saddle,
e4 is a stable node, e5 is a stable focus

e7 and e8 are saddles,
e9 is a stable node

α2 ≤ α < 3
4

e1 is an unstable node, e2 is a saddle,
e4 and e5 are stable nodes

e7 and e8 are saddles,
e9 is a stable node

α = 3
4

e1 is an unstable node,
e2 and e5 are saddle-nodes, e4 is a stable node

e7 and e8 are saddles,
e9 is a stable node

3
4 < α < 1 e1 is an unstable node,

e2 and e4 are stable nodes, e5 is a saddle
e7 and e8 are saddles,
e9 is a stable node

1 < α < 5
4

e1 and e2 are saddles,
e4 is an unstable node, e5 is a stable focus

e7 and e9 are stable nodes,
e8 is a saddle

α = 5
4

e1 and e4 are saddle-nodes, e2 is a saddle,
e5 is a stable focus

e7 and e9 are stable nodes,
e8 is a saddle

5
4 < α < α3

e1is an unstable node,
e2 and e4 are saddles, e5 is a stable focus

e7 and e9 are stable nodes,
e8 is a saddle

α3 ≤ α < 13+
√

73
16

e1is an unstable node,
e2 and e4 are saddles, e5 is a stable node

e7 and e9 are stable nodes,
e8 is a saddle

α = 13+
√

73
16

e1is an unstable node, e2 is a saddle,
e4 and e5 are saddle-nodes

e7 and e9 are stable nodes,
e8 is a saddle

α > 13+
√

73
16

e1 is an unstable node,
e2 and e5 are saddles, e4 is a stable node

e7 and e9 are stable nodes,
e8 is a saddle

With the use of Poincaré compactification, we set x = 1/v, z = u/v on the local chart
U1. System (31) reads

du
dN

= uv
(

3
2

u + v +
5
2

)
,

dv
dN

= v
(

3
2

uv + v2 − 1
)

.
(32)

As all the points of system (32) at infinity v = 0 are equilibrium points, using the
transformation dτ1 = vdN, we rewrite this system

du
dτ1

= u
(

3
2

u + v +
5
2

)
,

dv
dτ1

=
3
2

uv + v2 − 1.
(33)
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However, none of the points at v = 0 is the equilibrium point of system (33).
Similarly, we let x = u/v and z = 1/v on the local chart U2. Then, system (31) is

du
dN

= −v
(

5
2

u + v +
3
2

)
,

dv
dN

= −v
(

u− 5
2

v
)

.
(34)

The origin e10 = (0, 0) is an equilibrium point of system (34). Although it has eigen-
values 0 and 3/2, e10 is not a semi-hyperbolic point as it is not an isolated singular point
of system (34). Note that all the points on the axis v = 0 are the equilibria of system (34)
and there are no other equilibria on the axis v = 0 if we remove the common factor v. In
the region near e10, 5u/2 + v + 3/2 > 0, du/dN < 0 for the positive semi-axis (PSA) of
v illustrates that u decreases monotonously and du/dN > 0 for the negative semi-axis
(NSA) of v indicates that u increases monotonously. Above the straight line u + 5v/2 = 0,
dv/dN < 0 for the PSA of v and du/dN > 0 for the NSA of v. Below the straight line
u + 5v/2 = 0, dv/dN > 0 for the PSA of v and du/dN < 0 for the NSA of v. Therefore,
we obtain the local phase portrait of e10, which is shown in Figure 2. Since the points at
infinity have negative values of the matter-density parameter, they can not be an epoch of
the universe.

u

v

e
10

Figure 2. Local phase portrait of e10.

We present the global phase portraits of system (31) on y = 0 in Figure 3. None of the
points on the invariant plane y = 0 can show accelerated expansion, so we can not find a
cosmological solution in Figure 3.

E
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e
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Figure 3. Phase portraits on y = 0.
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3.3. Phase Portraits on the Invariant Plane 1− x + (α− 1)y− z = 0 and Cosmological Solutions

On this invariant plane system (21) changes to the form

dy
dN

= y
[
(2α− 1)y +

1
α− 1

z +
4α− 5
α− 1

]
,

dz
dN

= z
[
(3α− 1)y− z +

7
2

]
.

(35)

System (35) has four equilibrium points e1 = (0, 0), e3 = (0, 7/2), e4 = ((5− 4α)/
[(2α − 1)(α − 1)], 0), and e6 = ((3− 8α)/(4α2),−[(2α − 3)(5α − 1)]/(4α2)). According
to the previous discussion, except for the point e6, the physical meaning of other points
is the same, but the mathematical stability may be different, so here we mainly discuss
the point e6. This point means Ω(m) = 0 and ω(eff) = (1 − 2α)/(2α). It can display
an accelerated-expansion era for α < 0 or α > 3/4. The eigenvalues of e6 are given by
−
[
3(α− 1)(2α + 1)±

√
(α− 1)(676α3 − 1328α2 + 573α− 81)

]
/[8α(α − 1)], it is a saddle

when α < 0 or 0 < α < 1/5 or 3/8 < α < 1 or α > 3/2, it is a stable node when
1/5 < α < 3/8 or α4 ≤ α < 3/2, a stable focus when 1 < α < α4 and a saddle-node when
α = 1/5, 3/8, 3/2. The constant α4 is the root of 676α3 − 1328α2 + 573α− 81 = 0.

Applying the Poincaré compactification on the local chart U1, we transform system
(35) into

du
dN

= u
[

α

1− α
u +

3− α

2(α− 1)
+ α

]
,

dv
dN

= v
(

1
1− α

u +
4α− 5
1− α

v− 2α + 1
)

.
(36)

At infinity v = 0, system (36) has two equilibrium points, which are e11 = (0, 0) and
e12 = (α− 1, 0). The equilibrium point e11 has eigenvalues α and 1− 2α, it is a saddle when
α < 0 or 1/2 < α < 1 or α > 1, an unstable node when 0 < α < 1/2 and a saddle-node
when α = 1/2. The equilibrium point e12 has eigenvalues −α and −2α, it is an unstable
node when α < 0 and a stable node when 0 < α < 1 or α > 1.

On the local chart U2, we use the Poincaré compactification again changing system (35) to

du
dN

= u
[
−αu +

α− 3
2(α− 1)

v +
α

α− 1

]
,

dv
dN

= v
[
(1− 3α)u− 7

2
v + 1

]
.

(37)

The equilibrium point e13 = (0, 0) is the origin of system (37). This point has eigen-
values 1 and α/(α− 1), it is an unstable node when α < 0 or α > 1 and a saddle when
0 < α < 1.

For points e11, e12, and e13 we all have Ω(m) = 0. These points can be accelerated
points when α < 0, however, they are not stable points in this range. Therefore, these three
infinite points are not included in the cosmological solutions.

Since the stabilities of these four finite equilibrium points (e1, e3, e4, and e6) and three
infinite equilibrium points (e11, e12, and e13) are different when α changes, we make a
summary in Table 4. Moreover, we present the global phase portraits of system (35) on
1− x + (α− 1)y− z = 0 in Figure 4. On the invariant plane 1− x + (α− 1)y− z = 0, the
matter-density parameters are zero at all the equilibrium points. Since we can not find any
matter points, there is no cosmological solution in Figure 4.
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Table 4. Equilibrium points and their types for different values of α of system (35).

Values of α Finite Equilibrium Points Infinite Equilibrium Points

α < 0 e1 is an unstable node,
e3 and e6 are saddles, e4 is a stable node

e11 is a saddle,
e12 and e13 are unstable nodes

0 < α < 1
5

e1 is an unstable node,
e3 and e6 are saddles, e4 is a stable node

e11 is an unstable node,
e12 is a stable node, e13 is a saddle

α = 1
5

e1 is an unstable node, e3 is a saddle,
e4 and e6 are saddle-nodes

e11 is an unstable node,
e12 is a stable node, e13 is a saddle

1
5 < α < 3

8
e1 is an unstable node,
e3 and e4 are saddles, e6 is a stable node

e11 is an unstable node,
e12 is a stable node, e13 is a saddle

α = 3
8

e1 is an unstable node,
e3 and e6 are saddle-nodes, e4 is a saddle

e11 is an unstable node,
e12 is a stable node, e13 is a saddle

3
8 < α < 1

2
e1 is an unstable node,
e3 is a stable node, e4 and e6 are saddles

e11 is an unstable node,
e12 is a stable node, e13 is a saddle

α = 1
2

e1 is an unstable node,
e3 is a stable node, e6 is a saddle

e11 is a saddle-node,
e12 is a stable node, e13 is a saddle

1
2 < α < 1 e1 is an unstable node,

e3 and e4 are stable nodes, e6 is a saddle
e11 and e13 are saddles,
e12 is a stable node

1 < α < 5
4

e1 and e3 are saddles,
e4 is an unstable node, e6 is a stable focus

e11 is a saddle, e12 is a stable node,
e13 is an unstable node

α = 5
4

e1 and e4 are saddle-nodes, e3 is a saddle,
e6 is a stable focus

e11 is a saddle, e12 is a stable node,
e13 is an unstable node

5
4 < α < α4

e1 is an unstable node,
e3 and e4 are saddles, e6 is a stable focus

e11 is a saddle, e12 is a stable node,
e13 is an unstable node

α4 ≤ α < 3
2

e1 is an unstable node,
e3 and e4 are saddles, e6 is a stable node

e11 is a saddle, e12 is a stable node,
e13 is an unstable node

α = 3
2

e1 is an unstable node, e3 is a saddle,
e4 and e6 are saddle-nodes

e11 is a saddle, e12 is a stable node,
e13 is an unstable node

α > 3
2

e1 is an unstable node,
e3 and e6 are saddles, e4 is a stable node

e11 is a saddle, e12 is a stable node,
e13 is an unstable node
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Figure 4. (a–n) Phase portraits on 1− x + (α− 1)y− z = 0.



Universe 2022, 8, 365 18 of 24

3.4. Equilibrium Points on the Poincaré Sphere at Infinity

Using the 3D Poincaré compactification [49,53], we let x = 1/z3, y = z1/z3, z = z2/z3
on the local chart U1 and then system (21) becomes

dz1

dN
= z1

[
(3− α)z1z3 +

3
2

z2z3 + z2
3 + αz1 + 4z3 −

α

α− 1

]
,

dz2

dN
= z2

[
(3− α)z1z3 +

3
2

z2z3 + z2
3 + αz1 +

5
2

z3

]
,

dz3

dN
= z3

[
(3− α)z1z3 +

3
2

z2z3 + z2
3 − αz1 − 1

]
.

(38)

As z3 = 0 corresponds to the infinity, we only need to study equilibrium points with
z3 = 0 on the different local chart of Poincaré sphere. System (38) has equilibrium points
p7 = (1/(α − 1), 0, 0) and (0, z2, 0) for all z2 ∈ R when z3 = 0. The equilibrium point
P7 has eigenvalues (2α− 1)/(1− α), α/(α− 1) and α/(α− 1), it is a stable node when
0 < α < 1/2 and it is a saddle when α < 0 or 1/2 < α < 1 or α > 1. The equilibrium
point (0, z2, 0) has eigenvalues −1, 0, and α/(1− α). Applying the normally hyperbolic
sub-manifold theorem [54], the equilibrium point (0, z2, 0) has a two-dimensional stable
manifold when α < 0 or α > 1 and when 0 < α < 1, it has a one-dimensional unstable
manifold and a one-dimensional stable manifold.

Similar to the local chart U1, we set x = z1/z3, y = 1/z3, z = z2/z3 on U2. we obtain

dz1

dN
=

α

α− 1
z2

1 − 4z1z3 −
3
2

z2z3 − z2
3 − αz1 + (α− 3)z3,

dz2

dN
= z2

(
α

α− 1
z1 −

3
2

z3

)
,

dz3

dN
= z3

(
1

α− 1
z1 − 4z3 − 2α

)
.

(39)

System (39) has an equilibrium point p9 = (α − 1, 0, 0) when z2 = 0 and z3 = 0.
The equilibrium point p9 has eigenvalues α, α, and 1− 2α, it is an unstable node when
0 < α < 1/2 and it is a saddle when α < 0 or 1/2 < α < 1 or α > 1. Since other
infinite equilibrium points of system (39) are contained in the local chart U1, we will not
analyze them.

Similarly, we have x = z1/z3, y = z2/z3, and z = 1/z3 on the local chart U3 and then
system (21) is

dz1

dN
= −αz1z2 −

5
2

z1z3 + (α− 3)z2z3 − z2
3 −

3
2

z3,

dz2

dN
= z2

(
α

1− α
z1 +

3
2

z3

)
,

dz3

dN
= z3

(
−z1z3 − 2αz2 −

5
2

z
)

.

(40)

The origin p10 = (0, 0, 0) of system (40) is an equilibrium point. In the local chart
U3, we will not study other equilibria of system (40) expect p10 because they have been
discussed on the local charts U1 and U2. We take z3 = 0 and system (40) becomes

dz1

dN
= −αz1z2,

dz2

dN
= − α

α− 1
z1z2.

(41)
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Obviously, we can obtain z1 = (α− 1)z2 + C1, where C1 is a constant. As z1 is linearly
related to z2, the equilibrium point p10 is an unstable center when α > 1 and a stable center
when α < 0 or 0 < α < 1/2 or 1/2 < α < 1.

Obviously, we can obtain z1 = (−1/2)z2 + C2, where C2 is a constant. As z1 is linearly
related to z2, the equilibrium point q9 is a stable center.

4. The Case |α| → 1 in 3D

According to Ref. [41], the best solution of this model can be achieved for α tending
to one. Therefore, we present global phase of system (21) on three invariant planes when
|α| → 1 in Figures 5 and 6, where CS represents the cosmological solution.

When α → 1−, there is only one saddle matter point e5 and one stable accelerated
point e4. The trajectory from e5 to e4 on the invariant plane z = 0 can be considered as
a cosmological solution. However, this case approximates GR because z = 0 leads to
h(T) = 0. Note that GR can not explain the late-time behavior of the universe. This
cosmological solution is unacceptable.

When α→ 1+, e4 is not an accelerated point, and e6 is the only stable accelerated point
instead. There is only one saddle matter point e5. We can not find a cosmological solution
on three invariant planes because the accelerated point e6 and the matter saddle point e5
are not on the same plane. However, by analyzing the trajectories around these three points
in 3D, we find that the saddle matter point e5 can reach the stable accelerated point e6,
which is an acceptable cosmological solution. This solution from e5 to e6 corresponds to the
solution from P3 to P1 obtained in Ref. [41].
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5. The Form g(R) = R + ξRα

In this section, we briefly discuss a case that is considered to be more interesting and
physical when f (R, T) = R + ξRα + ζ

√
−T. Considering a spatially flat FLRW metric and

the model’s later-time behaviors. This theory gives

1+
R + ξRα

6H2(1 + ξαRα−1)
+

ζ
√
−T

6H2(1 + ξαRα−1)
− R

6H2 +
ġ′

H(1 + ξαRα−1)

=
8πGρ(m)

3H2(1 + ξαRα−1)
− ζρ(m)

6H2
√
−T(1 + ξαRα−1)

,
(42)

and

2
Ḣ
H2 +

g̈′

H2(1 + ξαRα−1)
− ġ′

H(1 + ξαRα−1)

=− 8πGρ(m)

H2(1 + ξαRα−1)
+

ζρ(m)

2
√
−TH2(1 + ξαRα−1)

,
(43)

as the Friedmann-like equation and Raychaudhuri-like equation, respectively. The dynami-
cal system becomes

dx1

dN
= x1(x1 − x3)− 3x2 − x3 −

3
2

x4 − 1,

dx2

dN
=

x1x3

m
+ x2(x1 − 2x3 + 4),

dx3

dN
= − x1x3

m
+ 2x3(2− x3),

dx4

dN
= x4

(
x1 − 2x3 +

5
2

)
.

(44)

The density parameter of matter Ω(m) and effective equation of state ω(eff) read as
follows

Ω(m) = 1− x1 − x2 − x3 − x4, (45)

ω(eff) =
1
3
(1− 2x3). (46)

The equilibrium points of system (44) and the related eigenvalues are listed in
Tables 5 and 6, respectively. Furthermore, the parameter r = r(x2, x3) satisfies

dr
dN

=
∂r(x2, x3)

∂x2

dx2

dN
+

∂r(x2, x3)

∂x3

dx3

dN
= 0. (47)

Using Equations (13)–(15), Equation (47) can be rewritten as

dr
dN

= r
(

1 + r + m(r)
m(r)

)
x1 = 0, (48)

where m(r) = α(r + 1)/r. Let

M(r) ≡ 1 + r + m(r)
m(r)

, (49)

which is well-defined for m(r) 6= 0 as all solutions that hold m(r) = −r − 1 must sat-
isfy M(r) = 0. Therefore, an acceptable solution must satisfy r = 0 or M(r) = 0 or
x1 = 0. By assuming r 6= −1 in Equation (49), we obtain M(r) = 1 + r/α, which gives
M(r = −1) = 1− 1/α. The condition M(r) = 0 is true only when r = −α, resulting in
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m 6= 0. On the other hand, the point q6 is the matter point when r = −1. Note that models
with α = 1 can be acceptable, we mainly discuss the case of α→ 1 where M(r = −1) ≈ 0.

Table 5. Equilibrium points of system (44).

Equilibrium Points Coordinates (x, y, z) Ω(m) ω(eff)

q1 (1, 0, 0, 0) 0 1
3

q2 (−1, 0, 0, 0) 2 1
3

q3 (− 5
2 , 0, 0, 7

2 ) 0 1
3

q4 (−4, 5, 0, 0) 0 1
3

q5 (0,−1, 2, 0) 0 −1

q6 ( 3m
m+1 ,− 4m+1

2(1+m)2 , 4m+1
2(m+1) , 0) 2−3m−8m2

2(m+1)2 − m
m+1

q7 ( 2(1−m)
2m+1 , 1−4m

m(2m+1) ,− (1−4m)(m+1)
m(2m+1) ) 0 2−5m−6m2

3m(2m+1)

q8 ( 3m
2(m+1) ,− 8m+5

4(m+1)2 , 8m+5
4(m+1) , 4−3m−10m2

4(m+1)2 ) 0 − 2m+1
2(m+1)

Table 6. Eigenvalues of equilibrium points.

Equilibrium Points Eigenvalues

q1 7
2 , 2, m(9m−1)+r(r+1)m′±a(m,m′)

2m2

q2 −2, 3
2 , m(7m+1)−r(r+1)m′±a(m,m′)

2m2

q3 − 7
2 ,− 3

2 , m(11m+5)−r(r+1)m′±5a(m,m′)
4m2

q4 −5,−3, 4(1 + 1
m ),− 3

2

q5 −3,− 3
2 ,− 3

2 ±
√

25
4 −

4
m

q6 3
2 , −3m±b(m)

4m(m+1) , 3(1 + m′)

q7
−4 +

1
m , −8m2−3m+2

m(2m+1) , 2(1−m2)(1+m′)
m(2m+1) , −10m2−3m+4

2m(2m+1)

q8 − 3
2 , −3m(m+1)(2m+3)±c(m)

8m(m+1)2 , 3
2 (1 + m′)

Note: a(m, m′) =
{

m2(m + 1)2 + rm′[−2m(m + 1) + 2(m− 1)mr + r(1 + r2)m′]
}1/2, b(m) ≡ [m(256m3 +

160m2 − 31m− 16)]1/2, c(m) ≡
{

m(m + 1)2[m(676m2 + 700m− 55)− 160]
}1/2.

When α→ 1−, as r = −α, we can obtain r → −1+, which means m(r)→ 0+. Within
this range, the eigenvalues of point q6 can be approximated as

3
2

, 3(1 + m′), −3
4
±
√
− 1

m
. (50)

This point is a matter saddle point with Ω(m) = 1 and ω(eff) = 0. The point q8 is
a stable accelerated point for m′q8

< −1. Therefore, the transition from q6 to q8 is viable
for leaving the matter-dominated era with m′q6

> −1 and entering the accelerated epoch
m′q8

< −1. Moreover, the transition from q6 to q5 is possible. For m(r = −2) = α/2, the
de Sitter point q5 is an acceptable final attractor for the cosmological solutions. When
m′q6

> −1, the trajectories can reach the final attractor q5 after leaving the matter point q6.
When α→ 1+, we obtain the limit m(r)→ 0−. The point q6 is not acceptable in this

range because there are two eigenvalues approaching infinity. This indicates the matter-
dominated era is short and does not match with the observational data. Since there are no
other matter points, we cannot find the cosmological solution withinn this limit.
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6. Conclusions

The dynamics of the f (R, T) gravity model on the invariant planes for a perfect fluid
in a spatially flat FLRW metric are studied with the form g(R) + h(T). By considering the
conservation of the energy–momentum tensor, it has been presented that the functionality
of h(T) must have the form h(T) = C

√
T in the minimal models. More precisely, we mainly

analyze the model in the type of ξRα + ζ
√
−T. We apply two powerful dynamic analysis

tools, singularity theory, and Poincaré compactification. Using the singularity theory, we
can understand the direction of trajectories near some unusual equilibrium points, such
as saddle-nodes. The infinite phase space can be transformed into a finite space with the
application of Poincaré compactification. Through the use of these two techniques, the
stability of all the equilibrium points and global phase on the invariant planes is presented.
Finally, we discussed the case of |α| → 1. All cosmological solutions have been marked in
the figures.

Since the parameter α in this paper has a wider range of values, in order to accurately
show the evolution of the model on three invariant planes simultaneously in space, we
finally selected the limit |α| → 1, which visually illustrates the dynamic behavior of the
model at this limit. The trajectory from e5 to e4 on the invariant plane z = 0 is not the
desired cosmological solution when α → 1−, and since this case approaches GR and we
adopt it. When α→ 1+, we have a stable accelerated point e6, and two saddle matter points
e2 and e5. Although there are no cosmological solutions on the three invariant planes, by
analyzing the trajectories around these three points, we find the trajectories from e5 to e6
exist, which can be considered as a cosmological solution. Furthermore, this solution is
consistent with the cosmological solution from P3 to P4 in Ref. [41]. In addition, we briefly
discuss a more interesting and physical form f (R, T) = R + ξRα + ζ

√
−T, and find two

viable cosmological solutions q6 to q5 and q6 to q8 when α→ 1−.
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