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Abstract: We review, as well as provide some new results regarding the study of the structure of
spacetime and the singularity in the interior of the Schwarzschild black hole in both loop quantum
gravity and generalized uncertainty principle approaches, using congruences and their associated
expansion scalar and the Raychaudhuri equation. We reaffirm previous results that in loop quantum
gravity, in all three major schemes of polymer quantization, the expansion scalar, Raychaudhuri
equation and the Kretschmann scalar remain finite everywhere in the interior. In the context of the
eneralized uncertainty principle, we show that only two of the four models we study lead to similar
results. These two models have the property that their algebra is modified by configuration variables
rather than the momenta.

Keywords: quantum gravity; quantum black hole; loop quantum gravity; generalized uncertainty
principle; singularity resolution; Raychaudhuri equation

1. Introduction

Black holes are one the most important objects in the Universe with regards to quan-
tum gravity. The singularity in their interior is a prediction of general relativity (GR), which
in turn is a prediction of its eventual breakdown. Furthermore, it is believed that this
singularity resides in a small spatial region where quantum effects cannot be neglected.
Thus, one has the natural expectation that a final theory of quantum gravity should be able
to resolve this singularity. Various theories of quantum gravity or effective gravity have
been utilized to study such objects. Among these are loop quantum gravity (LQG) [1], a
nonperturbative canonical theory of quantization of the gravitational field, and the general-
ized uncertainty principle (GUP), which is a rather phenomenological approach resulting
from the assumption of noncommutativity of spacetime or existence of a minimum length.

In LQG, there have been numerous works studying both the interior and the full
spacetime of the Schwarzschild black hole [2–41]. In particular, the interior of such a black
hole has been studied in various ways. One of the most common approaches uses the
so called polymer quantization [42–46], which was originally inspired by loop quantum
cosmology (LQC), dealing with a certain quantization of the isotropic Friedmann-Lemaitre-
Robertson-Walker (FLRW) model [47,48]. Since the interior of the Schwarzschild black hole
is isometric to the Kantowski-Sachs cosmological model, the idea in this polymer approach
is to apply the same techniques of the polymer quantization of the Kantowski-Sachs model
to the Schwarzschild interior [49,50]. Polymer quantization introduces a parameter in the
theory called the polymer scale, that sets the minimal scale of the model close to which
the quantum gravity effects become important. The approach in which such a parameter
is taken to be constant is called the µ0 scheme (which in this paper we refer to as the µ̊
scheme), while approaches where it depends on the phase space variables are denoted by
µ̄ schemes. The various approaches were introduced to deal with some important issues
resulting from quantization, namely, to have the correct classical limit (particularly in LQC),

Universe 2022, 8, 349. https://doi.org/10.3390/universe8070349 https://www.mdpi.com/journal/universe

https://doi.org/10.3390/universe8070349
https://doi.org/10.3390/universe8070349
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0001-8993-9601
https://orcid.org/0000-0001-6583-8929
https://doi.org/10.3390/universe8070349
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe8070349?type=check_update&version=2


Universe 2022, 8, 349 2 of 37

to avoid large quantum corrections near the horizon, and to have final physical results that
are independent of auxiliary or fiducial parameters. Other approaches to this model in LQG
such as Refs. [51,52] provide a derivation of a Schwarzschild black hole modified dynamics,
not relying on minisuperspace models. Starting from the full LQG theory, this model
performs the symmetry reduction at the quantum level. This has led to several differences
in the effective dynamics with respect to previous polymer quantization-inspired models,
one of which is the absence of the formation of a white hole in the extended spacetime
region replacing the classical singularity. All of these past studies in LQG and some other
approaches point to the resolution of the singularity at the effective level.

Another approach to quantum gravity uses the so-called Generalized Uncertainty
Principle (GUP). GUP extends the standard canonical commutation relation to include ad-
ditional (small) momentum dependent terms, such that Heisenberg’s uncertainty principle
gets modified as well. It can be shown that as a result, there must exist a minimum measur-
able length, which can be for example, a multiple of the Planck length. Furthermore, such a
modification affects practically all quantum Hamiltonians, even at low energies, giving rise
to potentially measurable predictions of various quantum gravity theories [53–58]. It may
be noted that in the infrared limit, there is also an Extended Uncertainty Principle (EUP)
which may apply to the black hole spacetimes under consideration [59–65].

A particularly powerful approach to study the singularities in classical and semiclas-
sical/effective gravity is the use of congruences and the associated expansion scalar and
the Raychaudhuri equation to probe the structure of spacetime. This approach which is
the backbone of the Hawking–Penrose singularity theorem, was particularly used, among
other works, in several of our recent studies [36,55,66]. In this approach, a particular choice
of congruence is made by choosing the velocity vector field of the associated geodesics. In
previous works we have mainly used timelike congruences, while here we systematically
use both timelike and null ones.

This paper serves as both a review of our recent works in studying the congruences
in the interior of the Schwarzschild black hole in LQG and GUP approaches, and also
includes new results, particularly with regard to GUP and the nonperturbative behavior
of the Kretschmann scalar in both approaches. The structure of the paper is as follows: In
Appendix A, we brief review the geodesic deviation, expansion scalar and the Raychaud-
huri equation and their significance in studying the structure of spacetime. In Section 2
we use these results to choose certain congruences to study the interior of the Kantowski-
Sachs metric which is isometric to the Schwarzschild black hole interior. In Section 3 we
review the classical formulation of the interior of the Schwarzschild balck hole based on the
Ashtekar-Barbero connection and derive general expressions for the expansion scalar and
the Raychaudhuri equation for both timelike and null cases. In Section 4.1 we apply these
results to the effective black hole interior in LQG and show that in all the three common
schemes, and using either timelike or null congruences, not only expansion scalar and the
Raychaudhuri equation always remain finite in the interior, but also the Kretschmann scalar
does so. In Section 4.2, we do the same for four most common model in GUP and show
that only two of them have the property that their expansion scalar and Raychaudhuri
equation together with he Kretschmann scalar always remain finite. Finally, in Section 5,
we conclude and present an outlook for future work.

2. General Schwarzschild Interior and Congruences

Given that the radial spacelike and timelike coordinates switch their causal nature one
we cross the horizon in the Schwarzschild black hole, we can simply switch t ↔ r in the
Schwarzschild metric to obtain the metric of the interior as

ds2 = −
(

2GM
t
− 1
)−1

dt2 +

(
2GM

t
− 1
)

dr2 + t2dΩ2, (1)

where t, r, θ, φ are the standard Schwarzschild coordinates and dΩ2 = dθ2 + sin2(θ)dφ2.
As it is seen, t2 now plays the role of the radius of the infalling 2-spheres. Notice that
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this model is not a field theory anymore since the metric components (and hence the
degrees of freedom) are independent of r. So we are dealing with a system with finite
degrees of freedom, i.e., a minisuperspace model. The above metric is a special case of the
Kantowski-Sachs cosmological model

ds2
KS = −N(t)2dt2 + gxx(t)dx2 + gθθ(t)dθ2 + gφφ(t)dφ2, (2)

which describes a homogeneous but anisotropic spacetime.
In order to obtain a general result for such models, we consider a metric of the form

ds2 = −N(t)2dt2 + X2(t)dr2 + Y2(t)dΩ2. (3)

We will study the null and timelike congruences propagating on this spacetime. To be
self-contained, a brief review of the geodesic deviation, expansion scalar, and Raychaudhuri
equation is given in Appendix A.

2.1. Timelike Case

Let us consider a radial timelike congruence of geodesics where their velocity vector
in the coordinates given in Equation (3) is

Uµ =
(

U0, U1, 0, 0
)

. (4)

Given that Ua is a unit timelike vector field, the above vector can be written as

Uµ =

U0,

√
−1 + N2(U0)

2

X
, 0, 0

. (5)

Hence, to simplify our analysis we choose the free component U0 as

U0 =
1
N

, (6)

to obtain

Uµ =

(
1
N

, 0, 0, 0
)

. (7)

Using this form of the velocity vectors, we can easily obtain the transverse metric from
Equation (A2) as

hµν =


0 0 0 0
0 X2 0 0
0 0 Y2 0
0 0 0 Y2 sin2(θ)

. (8)

The expansion tensor corresponding to Equation (7) also becomes

Bµν = ∇νUµ =


0 0 0 0
0 XẊ

N 0 0
0 0 YẎ

N 0
0 0 0 YẎ

N sin2(θ)

. (9)
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Using this tensor, the metric and the transverse metric Equation (8), it is straightfor-
ward to obtain

θ =
Ẋ

NX
+ 2

Ẏ
NY

, (10)

σ2 =
2

3N2

(
Ẋ
X
− Ẏ

Y

)2

, (11)

ωab = 0. (12)

It is clear from here that in order to be able to find these quantities, we need to obtain
the equations of motions, i.e., the Einstein’s equations. Here is where the difference between
the classical and the effective cases show up. As we will see later, either the Hamiltonian
or the canonical algebra of the interior is changed and this leads to modified equations of
motion, which consequently results in modified expansion scalar and its rate of change.

We can now compute the Raychaudhuri Equation (A10) either by finding the Ricci
tensor components and replacing them in the last term of Equation (A10), or simply by
using the chain rule dθ

dτ = dθ
dt

dt
dτ = 1

N
dθ
dt . The result is

dθ

dτ
= − Ṅ

N3
Ẋ
X

+
1

N2
Ẍ
X
− 1

N2

(
Ẋ
X

)2

− 2
Ṅ
N3

Ẏ
Y
+

2
N2

Ÿ
Y
− 2

N2

(
Ẏ
Y

)2

(13)

2.2. Null Case

In this case we choose a congruence of radial null geodesics and due to the null
property of their tangent vector ka, we obtain

kµ =

(
k0,−Nk0

X
, 0, 0

)
. (14)

A simplifying choice for k0 is thus k0 = 1
N which results in

kµ =

(
1
N

,− 1
X

, 0, 0
)

. (15)

The auxiliary radial null vector field la has two nonvanishing components that can be
fixed by using the null property of la and the condition Equation (A14). This way we obtain

lµ =

(
1

2N
,

1
2X

, 0, 0
)

(16)

Using these vectors and the spacetime metric, we can find the transverse metric
Equation (A15) as

hµν =


0 0 0 0
0 0 0 0
0 0 Y2 0
0 0 0 Y2 sin2(θ)

 (17)

which is a two dimensional metric as it should be. Next, we can compute Bab as in
Equation (A16) and then find B̃ab using Bab and ka, la above as

B̃µν =


0 0 0 0
0 0 0 0
0 0 YẎ

N 0
0 0 0 YẎ

N sin2(θ)

. (18)

As mentioned before, we can use these data to compute the expansion scalar and shear
and vorticity parameters as
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θ̃ =2
Ẏ

NY
, (19)

σ̃2 =0, (20)

ω̃ab =0. (21)

While quantities are simpler compared to the timelike case, we still need the equations
of motion in order to be able to compute the expansion. The Raychaudhuri equation can be
computed as before by using the Ricci tensor, as

dθ

dλ
= −2Ṅ

N3
Ẏ
Y
− 2

N2
Ẋ
X

Ẏ
Y
+

2
N2

Ÿ
Y
− 2

N2

(
Ẏ
Y

)2

. (22)

3. Classical Schwarzschild Interior
3.1. Metric and Classical Hamiltonian

Before considering the quantum effects, let us first analyze the classical interior in
the light of the expansion scalar and the Raychaudhuri equation. For this we need the
metric of the interior and the classical Hamiltonian. Since crossing the event horizon of
the Schwarzschild black hole results in change of causal nature (spacelike/timelike) of r, t,
the metric of the interior can be obtained by switching t ↔ r of the usual Schwarzschild
metric as

ds2 = −
(

2GM
t
− 1
)−1

dt2 +

(
2GM

t
− 1
)

dr2 + t2
(

dθ2 + sin2 θdφ2
)

. (23)

Here and throughout the paper, t is the Schwarzschild time coordinate (in the exterior)
which has a range t ∈ (0, 2GM) in the interior. Such a metric is a special case of a Kantowski-
Sachs cosmological spacetime that is given by the metric [67]

ds2
KS =− N(T)2dT2 + gxx(T)dx2 + gθθ(T)dθ2 + gφφ(T)dφ2

=− dτ2 + gxx(τ)dx2 + gΩΩ(τ)dΩ2. (24)

Note that x here is not necessarily the radius r of the 2-spheres with area A = 4πr2,
but it can be chosen to be. Here N(T) is the lapse function corresponding to a generic time,
and τ is the proper time. The metric Equation (24) represents a cosmology with spatial
homogeneous but anisotropic foliations.

To canonically analyze the model, one decomposes the spacetime into space and
time by foliating spacetime into spatial hypersurfaces with constant coordinate time using
the ADM method. This induces a spatial metric qab on the hypersurfaces. The classical
Hamiltonian we will be working with is the one written in terms of Ashtekar–Barbero
connection Ai

a, and its conjugate the densitized triad Ẽa
i . The Ashtekar–Barbero connection

Ai
a = Γi

a + γKi
a (25)

is an su(2) connection with i being an su(2) index and a an spatial index. It is the sum of
two terms. The hodge dual of the spin connection ωa

ij denoted by Γi
a = 1

2 εi
ijωa

ij where
ωa

ij associated with the symmetry under the Lorentz transformations, and the extrinsic
curvature Ki

a := ωa
0i. The parameter γ is called the Barbero–Immirzi parameter which is a

free parameter of the theory, and εijk is the totally antisymmetric Levi-Civita symbol. The
densitized triad is related to the spatial metric qab via

qqab = δijẼa
i Ẽb

j (26)

with q = det(qab). The full gravitational Hamiltonian constrain in terms of Ashtekar–
Barbero connection and densitized triad is
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Hfull =
1

8πG

∫
d3x

N√
det |Ẽ|

{
ε

jk
i Fi

abẼa
j Ẽb

k − 2
(

1 + γ2
)

K[a
iK j

b]Ẽ
a
i Ẽb

j

}
, (27)

Here, F = dA + A ∧ A is the curvature of the Ashtekar–Barbero connection and N is
the lapse function.

To obtain the classical Hamiltonian of the model, we take the above Hamiltonian
constraint and reduce it by replacing the canonical variables with the ones adapted to
the model,

Ai
aτidxa =

c
L0

τ3dx + bτ2dθ − bτ1 sin θdφ + τ3 cos θdφ, (28)

Ẽa
i τi∂a =pcτ3 sin θ∂x +

pb
L0

τ2 sin θ∂θ −
pb
L0

τ1∂φ. (29)

Here b, c, pb and pc are functions that only depend on time, and τi = −iσi/2 are a
su(2) basis satisfying

[
τi, τj

]
= εij

kτk, with σi being the Pauli matrices. Substituting these
into the full Hamiltonian of gravity written in Ashtekar connection variables, one obtains
the symmetry reduced Hamiltonian constraint adapted to this model as [2]

H = −Nsgn(pc)

2Gγ2

[
2bc
√
|pc|+

(
b2 + γ2

) pb√
|pc|

]
, (30)

while the diffeomorphism constraint vanishes identically due to homogenous nature of the
model. This classical Hamiltonian is not different from other classical Hamiltonian since we
have only changed the variables from metric to connection ones. The real difference comes
about once we write Equation (27) in terms of holonomies instead of connection components.

Since the spatial hypersurfaces have a topology R× S2, the symplectic 2-form is

Ω =
1

8πGγ

∫
R×S2

d3x dAi
a(x) ∧ dẼa

i (y). (31)

However, the part of the integral over R diverges and we will not be able to obtain
a kinematical structure, i.e., a Poisson bracket. To remedy this and since the model is
homogeneous, one can restrict the range of integration in R to I = [0, L0] and later take the
limit L0 → ∞. This we symplectic 2-form becomes

Ω =
1

8πGγ

∫
I×S2

d3x dAi
a(x) ∧ dẼa

i (y)

=
1

2Gγ
(dc ∧ dpc + 2db ∧ dpb), (32)

and consequently the fundamental Poisson brackets are

{c, pc} =2Gγ, {b, pb} =Gγ. (33)

Using Equations (24), (26), and (29), one obtains

gxx(T) =
pb(T)

2

L2
0 pc(T)

, (34)

gθθ(T) =
gφφ(T)
sin2(θ)

= gΩΩ(T) = pc(T). (35)
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These results correspond to a generic lapse function associated with a generic time co-
ordinate T. If in the above we choose the time and the lapse function to be the Schwarzschild
time t and its lapse respectively, and then compare the results with Equation (23), we obtain

N(t) =
(

2GM
t
− 1
)− 1

2
, (36)

gxx(t) =
pb(t)

2

L2
0 pc(t)

=

(
2GM

t
− 1
)

, (37)

gθθ(T) =
gφφ(T)
sin2(θ)

= gΩΩ(T) = pc(t) = t2. (38)

This shows that

pb =0, pc =4G2M2, on the horizon t = 2GM, (39)

pb →0, pc →0, at the singularity t→ 0. (40)

3.2. Dynamics, Expansion Scalar and Raychaudhuri Equation

3.2.1. Generic θ and dθ
dτ

Comparing the metric Equation (3) with Equations (34) and (35), and also using
Equation (47), we notice

X2 =
pb(T)

2

L2
0 pc(T)

, (41)

Y2 =pc(T). (42)

Replacing Equations (41) and (42) in the timelike expansion Equation (10) yields

θ = ±
(

ṗb
Npb

+
ṗc

2Npc

)
. (43)

Notice that the above results are generic for any lapse and its associated time and also
valid in both classical and effective regimes. The difference between these two regimes comes
later due to the different equations of motion which we will replace in the above expansion
formula. For the null case, we again replace Equations (41) and (42) into Equation (19) to obtain

θ = ± ṗc

Npc
. (44)

Using the above expressions for X, Y, N in the timelike Raychaudhuri Equation (13),
we obtain

dθ

dτ
=

1
N2

(
− Ṅ ṗb

Npb
− Ṅ ṗc

2Npc
+

p̈b
pb
−

ṗ2
b

p2
b
+

p̈c

2pc
− ṗ2

c
2p2

c

)
. (45)

The same method for the null Raychaudhuri Equation (22) yields

dθ

dλ
=

1
N2

(
− Ṅ ṗc

Npc
− ṗb ṗc

pb pc
+

p̈c

pc
− ṗ2

c
2p2

c

)
. (46)

These last two expressions are also generic results and are valid for any time, lapse,
and in both classical and effective regimes.

Notice that the fiducial parameter L0 is not explicitly present neither in θ nor in dθ
dτ

above. Of course, it is hidden in the classical solutions of pb and c (see below), but wherever
we have a term such as ṗb

pb
or p̈b

pb
, etc., L0 will be canceled out. Hence the above physical

expressions are independent of L0 as they should be.
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3.2.2. Classical Dynamics

In order to obtain the explicit expressions for θ and dθ
dτ from above relations, we need

the equations of motion and their solutions. To this end we choose a lapse function

N(T) =
γ sgn(pc)

√
|pc(T)|

b(T)
. (47)

The advantage of this lapse function is that the equations of motion of c, pc decouple
from those of b, pb and it makes it possible to solve them. Replacing this lapse function
into Equation (30) yields

H = − 1
2Gγ

[(
b2 + γ2

) pb
b

+ 2cpc

]
. (48)

Using this Hamiltonian together with the Poisson brackets Equation (33), we can
obtain the classical equations of motion

db
dT

={b, H} = −1
2

(
b +

γ2

b

)
, (49)

dpb
dT

={pb, H} = pb
2

(
1− γ2

b2

)
. (50)

dc
dT

={c, H} = −2c, (51)

dpc

dT
={pc, H} = 2pc. (52)

These equations should be supplemented by the weakly vanishing (≈0) of the Hamil-
tonian constraint Equation (48), (

b2 + γ2
) pb

b
+ 2cpc ≈ 0. (53)

This system can be solved to yield the solutions in generic time T. In order to write the
solutions in Schwarzschild time t, one compares the form of pc(T) with its Schwarzschild
couterpart pc = t2 and this reveals that to go from T to t, we should make a transformation
of the form T = ln(t). Doing that we obtain

b(t) =± γ

√
2GM

t
− 1, (54)

pb(t) =L0t

√
2GM

t
− 1, (55)

c(t) =∓ γGML0

t2 , (56)

pc(t) =t2, (57)

where the constants of integration in these solutions are fixed using Equations (37)–(39).

3.2.3. Classical θ and dθ
dτ : Timelike Congruence

To obtain the expressions for expansion and Raychaudhuri equation for a timelike
congruence, we replace Equations (49)–(52) and Equation (47) in Equation (43) to

θ = ± 1
2
√

pc

(
3b
γ
− γ

b

)
= ± −2t + 3GM

t2
√

2GM
t − 1

. (58)

where in the last step to get an explicit expression in terms of the Schwarzschild time t
we have made use of Equations (54)–(57). The ± corresponds to ingoing vs. outgoing
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geodesics. Since in the interior t ≤ 2GM, from 3
2 GM ≤ t ≤ 2GM, the ingoing (negative

branch) of the expansion is positive while for t < 3
2 GM, this branch becomes negative and

continues to become more negative until at t→ 0 it goes to θ → −∞.
Notice that the above expression in terms of b, pc contains three terms that are all

negative (since pc is always positive as is seen from Equation (57)). This guarantees that
there will be a caustic point at the region where classically we identify as the singularity.
The plots of expansion and Raychaudhuri equation are in Schwrazschild time are presented
in Figure 1. It is clear from this plot that both of them diverge at the singularity at t→ 0.

θ

d θ

d τ

0.0 0.5 1.0 1.5 2.0
-50

-40

-30

-20

-10

0

10

t(GM)

Classical with G  1 M

Figure 1. Classical timelike θ and dθ
dτ diverge as we approach t→ 0. The divergence at the horizon is

due to the choice of Schwarzschild coordinate system. The dashed line is where θ changes sign.

We can use Equations (47), (49)–(52) and (54)–(57) in the same way in Equation (45)
to obtain

dθ

dτ
= − 1

2pc

(
1 +

9b2

2γ2 +
γ2

2b2

)
=
−2t2 + 8GMt− 9G2M2

(2GM− t)t3 . (59)

3.2.4. Classical θ and dθ
dτ : Null Congruence

The expression Equation (19) for the null expansion is actually simpler than its time-
like counterpart. As in the previous section, once we replace Equations (49)–(52) and
Equation (47) into Equation (19) we get

θ = ± 2b
γ
√

pc
= ±2

t

√
2GM

t
− 1. (60)

where once again in the last step we have used Equations (54)–(57). Here, as opposed to the
timelike case Equation (58), θ remain negative everywhere in the interior where t < 2GM
and there are no roots to the expansion scalar. This makes sense since usually the existence
of roots of the expansion scalar points to the existence of a horizon. Furthermore, the
ingoing branch of the expansion scalar goes to θ → −∞ as t→ 0.
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To obtain the form of the Raychaudhuri equation, we use Equations (47), (49)–(52),
and Equations (54)–(57) in Equation (46) to obtain

dθ

dλ
= − 2b2

γ2 pc
= − 2

t2

(
2GM

t
− 1
)

, (61)

which clearly is always negative in the interior. Since θ is negative at least at one point
in the interior and ω̃ab = 0, the theorem we mentioned in Appendix A guarantees the
existence of caustic point(s) in the interior, which from the above is seen to be at t→ 0. This
can also simply be deduced by noting that both θ and dθ

dτ are always negative in the interior
and tend to −∞ as t→ 0. This behavior can be seen in Figure 2.

θ

d θ

d λ

0.0 0.5 1.0 1.5 2.0
-50

-40

-30
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t(GM)

Classical with G  1 M

Figure 2. Classical null θ and dθ
dλ diverge as we approach t → 0. Notice that θ always remains

negative and has no roots.

3.2.5. Classical Kretschmann Scalar

In our variables the Kretchammn scalar becomes

K =
12
(
b2 + γ2)2

γ4 p2
c

(62)

which in terms of the Schwarzschild time turns out to be

K =
48G2M2

t6 (63)

and unsurprisingly it diverges at t → 0 or equivalently at pc → 0. Notice that pc is the
radius of the infalling 2-spheres as can be seen from Equation (57).

4. Effective Schwarzschild Interior

The main idea in this section is to find the modified equations of motion of the interior,
and use them to compute the effective expansion and Raychaudhuri equation for null and
timelike cases. We consider two models, one coming from loop quantum gravity (LQG)
and the other one from generalized uncertainty principle (GUP).
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4.1. Loop Quantum Gravity

In LQG, the configuration variable is not the connection, but the holonomy of the
connection hξ [A], .i.e., path-ordered exponential of the connection Ai

a along some curves
ξ in space. The canonically conjugate momenta to this variable is the smeared flux of the
densitized triad over a two dimensional spatial surface. As a consequence, to derive a
quantum Hamiltonian, one goes back to Eqaution (27) and writes the curvatures Fi

ab in
terms of holonomies instead of the connection. Once this expression is derived classically,
then one quantizes the Hamiltonian on a suitable Hilbert space. On this Hilbert space, only
the operators ĥξ [A] exists. There is no operator corresponding to A. As a consequence
the Hilbert space of LQG is unitarily inequivalent to the usual Schrodinger representation.
Another type of quantization which mimics LQG quantization which is usually used is
called polymer quantization. This quantiztion introduces parameters into the theory called
polymer scales that set the minimal scale of the model. Close to this scale quantum effects
become important. In case of the present model such a polymer quantization leads to
polymer scales µb, µc associated with the radial and angular minimum scales [2,6,13,68].

After applying the polymer quantization to the model and obtaining the quantum
Hamiltonian as mentioned above, one finds an effective Hamiltonian by either using a path
integral approach, or by acting the quantum Hamiltonian on suitable states [34,42–46,69].
These methods will lead to an effective Hamiltonian that can also be heuristically obtained
by replacing

b→ sin(µbb)
µb

, (64)

c→ sin(µcc)
µc

(65)

in the classical Hamiltonian which yields an effective Hamiltonian constraint,

H(N)
eff = − N

2Gγ2

[(
sin2(µbb)

µ2
b

+ γ2

)
pb√
pc

+ 2
sin(µbb)

µb

sin(µcc)
µc

√
pc

]
. (66)

In LQG, there exist two general schemes regarding these µ parameters. In one, called
the µ0 scheme, µ parameters are considered to be constants [2,24,30,70]. Applying such
a scheme to isotropic and Bianchi-I cosmological models, however, has shown to lead to
incorrect semiclassical limit. To remedy this and other issues regarding the appearance
of large quantum effects at the horizon or dependence of physical quantities on fiducial
variables, new schemes referred to as the µ̄ scheme or “improved dynamics” have been
proposed in which µ parameters depend on canonical variables [5,13,49,68]. This scheme
is itself divided into various different ways of expressing the dependence of µ param-
eters on canonical variables. In addition, new µ0 schemes have also been put forward
(e.g., Refs. [6,26]) with the intent of resolving the aforementioned issues. In case of the
Schwarzschild interior due to lack of matter content, it is not clear which scheme does not
lead to the correct semiclassical limit. Hence for completeness, in this paper, we will study
the modifications to the Raychaudhuri equation in the constant µ scheme, which here we
call the µ̊ scheme, as well as in two of the most common improved schemes, which we
denote by µ̄ and µ̄′ schemes. These schemes were originally introduced in [71,72]. In the µ̊
scheme, the polymer parameter is taken to be a constant, while in the µ̄ and µ̄′ schemes,
this parameter depends on the canonical momenta, but this dependence is difference for
each of the last two schemes, as we will see in the following sections.

In order to be able to find the deviations from the classical behavior, we need to use
the same lapse as we did in the classical part. Using Equation (64), the lapse Equation (47)
becomes (assuming pc ≥ 0)

N =
γµb
√

pc

sin(µbb)
. (67)
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Using this in Equation (66) yields

Heff = −
1

2γG

[
pb

[
sin(µbb)

µb
+ γ2 µb

sin(µbb)

]
+ 2pc

sin(µcc)
µc

]
. (68)

The parameters µb, µc here are written in a generic form meaning that they can be
either µ̊, µ̄ or µ̄′ depending on the scheme we are considering. Furthermore, note that
both Equations (66) and (68) reduce to their classical counterparts Equations (30) and (48)
respectively for µb, µc → 0, as expected.

4.1.1. µ̊ Scheme

As mentioned before, in this scheme, one assumes that the polymer or minimal scales
µ̊b, µ̊c are constants. The equations of motion corresponding to Equation (68) become

db
dT

={b, Heff} = −
1
2

[
sin(µ̊bb)

µ̊b
+ γ2 µ̊b

sin(µ̊bb)

]
, (69)

dpb
dT

={pb, Heff} =
1
2

pb cos(µ̊bb)

[
1− γ2 µ̊2

b

sin2(µ̊bb)

]
, (70)

dc
dT

={c, Heff} = −2
sin(µ̊cc)

µ̊c
, (71)

dpc

dT
={pc, Heff} = 2pc cos(µ̊cc). (72)

Notice that the µ̊b → 0 and µ̊c → 0 limit of these equations corresponds to the classical
equations of motion. The solutions to these equations in terms of the Schwarzschild time t
(after a transformation T = ln(t)) and finding the integration constants by matching the
limit µ̊b, µ̊c → 0 to classical solutions, are given by

b(t) =
cos−1

[√
1 + γ2µ̊2

b tanh
(√

1 + γ2µ̊2
b ln
[

2
√

t
2GM

γµ̊b

])]
µ̊b

, (73)

pb(t) =

γµ̊bL0GM
(

γ2µ̊2
c L2

0G2 M2

4t2 + t2
)√

1−
(
1 + γ2µ̊2

b
)

tanh2
(√

γ2µ̊2
b + 1 ln

[
2
√

t
2GM

γµ̊b

])
t2
√

γ2µ̊2
c L2

0G2 M2

4t4 + 1
(

γ2µ̊2
b −

(
1 + γ2µ̊2

b
)

tanh2
(√

1 + γ2µ̊2
b ln
[

2
√

t
2GM

γµ̊b

])
+ 1
) , (74)

c(t) =−
tan−1

(
γµ̊c L0GM

2t2

)
µ̊c

, (75)

pc(t) =
γ2µ̊2

c L2
0G2 M2

4t2 + t2. (76)

Since pc represents the radius of two spheres, it is interesting to see that it never
reaches zero. This is the first sign that the singularity is resolved as we will see in the
following. The plot of the behavior of these solutions can be seen in Figure 3. The timelike
expansion Equation (43) in this case becomes

θTL
(µ̊) = ±

1
γ
√

pc

[
sin(µ̊bb)

µ̊b
cos(µ̊cc)− γ2

2
µ̊b

sin(µ̊bb)
cos(µ̊bb) +

sin(2µ̊bb)
2µ̊b

]
. (77)
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Figure 3. Solutions of the EoM of the µ̊ case. (a) Solutions to the equations of motion in µ̊ case as a
function of the Schwarzschild time t. (b) Close up of the EoM of pc close to t = 0. We can see that pc

never vanishes.

Up to the second order in µ̊b, µ̊c, the negative branch of this expression can be written as

θTL
(µ̊) = −

1
2
√

pc

(
3b
γ
− γ

b
+ bγ

(
1
3
− b2

γ2

)
µ̊2

b −
b
γ

c2µ̊2
c

)
+O

(
µ̊4
)

. (78)

The first two terms are the classical ones that contribute to a negative expansion or
focusing. The last term, which is an effective term, is always positive and given the behavior
of b, c in this scheme seen from Equations (73) and (75), it becomes very large as t→ 0. The

third term is also an effective term and becomes positive for b2 > γ2

3 , which is indeed the
case from the solution Equation (73). These two effective terms take over close to where the
classical singularity used to be and stop the congruence from infinitely focusing. In fact the
full nonperturbative plot Figure 4, obtained by replacing the solutions Equations (73)–(76)
into Equation (77), reveals that the effective terms perfectly cancel the classical focusing
terms such that θTL

(µ̊) becomes zero at t = 0.
The Raychaudhuri Equation (45) in this case also turns out to be

dθTL
(µ̊)

dτ
=

1
4γ2 pc

{
−γ2 +

5
4µ̊2

b
+

6 sin2(µ̊bb)
µ̊2

b

[
sin2(µ̊cc)− cos2(µ̊cc)

]
− 3 cos2(µ̊bb)

2µ̊2
b

+
7 sin4(µ̊bb)

4µ̊2
b

+
cos4(µ̊bb)

4µ̊2
b

− 4 sin2(µ̊bb)
µ̊2

b
cos(µ̊bb) cos(µ̊cc)

−γ4 µ̊2
b

sin2(µ̊bb)
+ γ2

[
sin2(µ̊bb)− cos2(µ̊bb)

]}
. (79)

Once again we see that perturbatively

dθTL
(µ̊)

dτ
≈ − 1

2pc

(
1 +

9b2

2γ2 +
γ2

2b2 −
(

b2 +
7b4

2γ2 −
γ2

6

)
µ̊2

b −
7b2c2

γ2 µ̊2
c

)
+O

(
µ̊4
)

. (80)

We see that the first three terms are the classical ones leading to focusing. The terms

proportional to µ̊2
b are all positive contributing to defocusing except the term γ2

6 which is
small and close to t→ 0 is much smaller that the other two terms. The term proportional
to µ̊2

c is always positive. These effective terms take over close to t→ 0 and stop focusing of

the congruence. The full nonperturbative behavior of
dθTL

(µ̊)

dτ can be derived numerically by

replacing (73)–(76) into (79). It is plotted in Figure 4. It is seen that
dθTL

(µ̊)

dτ becomes quite large
and positive close to t→ 0, then dips a little bit below zero and the goes to zero at t = 0.
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Figure 4. θTL
(µ̊)

and
dθTL

(µ̊)

dτ . (a) Left: Classical vs. timlike θ in the µ̊ scheme as a function of the

Schwarzschild time t. The effective expansion θTL
(µ̊)

goes to zero as t → 0. Right: Close up of the

left figure close to t = 0. (b) Left: Classical vs. timlike dθ
dτ in the µ̊ scheme as a function of the

Schwarzschild time t. The effective
dθTL

(µ̊)

dτ goes to zero as t→ 0. Right: Close up of the left figure close
to t = 0.

Hence, a common theme in Figure 4 is that both θTL
(µ̊) and

dθTL
(µ̊)

dτ become zero as t→ 0,
and neither of them ever blows up anywhere inside the black hole. This is a clear proof
that the singularity is resolved. Furthermore, it can be seen that the effective and classical
expansion and Raychaudhuri equation match very well far from the region used to be the
singularity at t = 0. However, close to this region, quantum effects starts to take over and
turn the curves around, stopping them from blowing up.

Null expansion and Raychaudhuri equations have nicer expressions. For the null
expansion from Equations (44), (67), and (69)–(72) we obtain

θNL
(µ̊) = ±

2
γ
√

pc

sin(µ̊bb)
µb

cos(µ̊cc), (81)

whose negative branch for small µ̊b, µ̊c is

θNL
(µ̊) =

1
γ
√

pc

(
−2b +

b3

3
µ̊2

b + bc2µ̊2
c

)
+O

(
µ̊4
)

. (82)

The first term is the classical term and while it is negative, contributing to the focusing,
the other terms that are effective are always positive given the solutions Equations (73)–(76).
They actually take over and stop the focusing of the congruence. The corresponding
nonperturbative behavior is depicted in Figure 5, where it is seen that the expansion stops,
turns around and reaches zero at t = 0.



Universe 2022, 8, 349 15 of 37

θc l

θe f f

0.0 0.5 1.0 1.5 2.0
-200

-100

0

100

200

t(GM)

G 1M , μb  0.01 μc, γ  0.27

0.00 0.02 0.04 0.06 0.08 0.10
-200

-100

0

100

200

t(GM)

G 1M , μb  0.01 μc, γ  0.27

(a)

d θc l

d λ

d θe f f

d λ

0.0 0.5 1.0 1.5 2.0
-40000

-20000

0

20000

40000

60000

80000

100000

t(GM)

G 1M , μb  0.01 μc, γ  0.27

d θc l

d λ

d θe f f

d λ

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
-40000

-20000

0

20000

40000

60000

80000

100000

t(GM)

G 1M , μb  0.01 μc, γ  0.27

(b)

Figure 5. θNL
(µ̊)

and
dθNL

(µ̊)

dλ . (a) Left: Classical vs. null θ in the µ̊ scheme as a function of the Schwarzschild

time t. The effective expansion θNL
(µ̊)

goes to zero as t→ 0. Right: Close up of the left figure close to

t = 0. (b) Left: Classical vs. null dθ
dλ in the µ̊ scheme as a function of the Schwarzschild time t. The

effective
dθNL

(µ̊)

dλ goes to zero as t→ 0. Right: Close up of the left figure close to t = 0.

We can also derive an expression for the Raychaudhuri equation in this null case.
Using Equations (67) and (69)–(72) in Equation (46) yields

dθNL
(µ̊)

dλ
=

2
γ2 pc

sin2(µ̊bb)
µ̊2

b

[
2 sin2(µ̊cc)− cos(µ̊bb) cos(µ̊bc)

]
, (83)

which, if Taylor expanded for small µ̊b, µ̊c yields

dθNL
(µ̊)

dλ
≈ 1

γ2 pc

(
−2b2 +

5b4

3
µ̊2

b + 5b2c2µ̊2
c

)
+O

(
µ̊4
)

. (84)

The effective terms are both positive and based on our previous discussion, become
very large close to t = 0. In this case too, the full nonperturbative solution depicted in

Figure 5 shows that
dθNL

(µ̊)

dλ becomes positive close to t = 0 before vanishing at t = 0.
We can also look at the Kretschmann scalar to confirm the resolution of the singularity

in the effective regime. The expression for the Kretschmann scalar K in terms of the
canonical variables for µ̊ case is quite large and we do not write it down here. However,
we can first look at its terms up to the second order in µ̊b, µ̊c,

K =
2

γ2 p2
c

[
12b2 +

6b4

γ2 + 6γ2 − µ̊2
b

(
b6

γ2 + 3b4 + 3γ2b2 + γ4
)]

+O
(

µ̊4
)

. (85)

Interestingly, while the classical terms (the first three terms) are always positive, the
effective terms proportional to µ̊2

b are all negative and counter the classical terms. These
terms become large close to the region used to be the singularity and stop K from diverging.
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In fact K becomes zero at t = 0. This can be checked from the full numerical nonperturbative
behavior of K as a function of the Schwarzschild time t in Figure 6. As we can see, K never
diverges in the interior, and although it has a large increase close to t = 0, the quantum
effects become so large in that region that turn the curve back towards zero, and we obtain
K → 0 as t→ 0. This together with the above results regarding the expansion scalar and
the Raychaudhuri equation definitely prove that the singularity is removed in this model.

Kretschmann scalar
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(b)

Figure 6. K in the µ̊ case. (a) The Kretschmann scalar K for the µ̊ case as a function of the
Schwarzschild time t. (b) Close up of K close to t = 0. It is seen that K remains finite everywhere in
the interior and vanishes for t = 0.

4.1.2. µ̄ Scheme

In this scheme µ̄b, µ̄c are assumed to depend on the triad components as

µ̄b =

√
∆
pb

, (86)

µ̄c =

√
∆
pc

, (87)

where ∆ is related to the minimum area in loop quantum gravity. Using the same lapse as
Equation (67) but keeping in mind the above dependence of µ̄b, µ̄c, one can easily obtain
the equations of motion as

db
dT

=
1
4

(
b cos(µ̄bb)− 3

sin(µ̄bb)
µ̄b

− γ2 µ̄b
sin(µ̄bb)

[
1 + b cos(µ̄bb)

µ̄b
sin(µ̄bb)

])
, (88)

dpb
dT

=
1
2

pb cos(µ̄bb)

[
1− γ2 µ̄2

b

sin2(µ̄bb)

]
, (89)

dc
dT

=c cos(µ̄cc)− 3
sin(µ̄cc)

µ̄c
, (90)

dpc

dT
=2pc cos(µ̄cc). (91)

The solutions to these equations can be derived numerically by demanding the so-
lutions match the classical ones very close to the horizon at t = 2GM. These are plotted
in Figure 7.
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Figure 7. Solutions to the equations of motion in the µ̄ case as a function of the Schwarzschild time t.
Once again, pc never vanishes.

Analytical solutions to these equations are hard to obtain, but one can numerically
solve them. The constants of integration are determined by matching these solution with
the classical ones very close to the horizon for ∆→ 0. The expressions for timelike θTL

(µ̄) and
dθTL

(µ̄)

dτ turn out to be

θTL
(µ̄) =±

1
2γ
√

pc

{
2

sin(µ̄bb)
µ̄b

cos(µ̄cc) +
[

sin(µ̄bb)
µ̄b

− µ̄b
sin(µ̄bb)

γ2
]

cos(µ̄bb)
}

, (92)

dθTL
(µ̄)

dτ
=

1
8pc

{
−3 +

sin2(µ̄bb)
µ̄2

b

[
17

2γ2 −
8

γ2 cos(µ̄bb) cos(µ̄cc)− 16
γ2 cos(2µ̄cc)

]

−3γ2

2
µ̄2

b

sin2(µ̄bb)
−
[

5
2γ2

sin2(µ̄bb)
µ̄2

b
+

γ2

2
µ̄2

b

sin2(µ̄bb)
+ 1

]
cos(2µ̄bb)

}
. (93)

Notice that these expressions should in fact be thought of being in terms of ∆. Further-
more, note that the form of θTL

(µ̄) is exactly the same as the µ̊ case but with µ̊ replaced by µ̄.
The perturbative expansion of these expressions for small ∆ become (negative branch for
the expansion scalar)

θTL
(µ̄) ≈−

1
2γ
√

pc

[
3b− γ2

b
−
(

b3

pb
+

bc2

pc
− bγ2

3pb

)
∆
]
+O

(
∆2
)

, (94)

dθTL
(µ̄)

dτ
≈− 1

2pc

[
1 +

9b2

2γ2 +
γ2

2b2 −
[

15b4

4γ2 pb
+

9b2c2

γ2 pc
+

b2

2pb
+

γ2

12pb

]
∆
]
+O

(
∆2
)

. (95)

The behavior of the solution to the canonical variables is such that the combination of
the effective terms above are not only positive, but also become very large and balance the
classical terms and lead to cancellation of focusing of the congruence at t = 0. This can be

seen from the full nonperturbative behavior of θTL
(µ̄) and

dθTL
(µ̄)

dτ depicted in Figure 8.
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Figure 8. θTL
(µ̄)

and
dθTL

(µ̄)

dτ . (a) Left: Classical vs timlike θ in the µ̄ scheme as a function of the

Schwarzschild time t. The effective expansion θTL
(µ̄)

goes to zero as t → 0. Right: Close up of

the left figure close to t = 0. (b) Left: Classical vs. timlike dθ
dτ in the µ̄ scheme as a function of the

Schwarzschild time t. The effective
dθTL

(µ̄)

dτ goes to zero as t→ 0. Right: Close up of the left figure close
to t = 0.

In the same way, we can compute the null expansion scalar and Raychaudhuri equation
using Equations (44) and (46) and the equations of motion of this scheme. Doing so,
one obtains

θNL
(µ̄) =±

2
γ
√

pc

sin(µ̄bb)
µ̄b

cos(µ̄cc), (96)

dθNL
(µ̄)

dλ
=

2
γ2 pc

{
sin2(µ̄bb)

µ̄2
b

[
3
2
− 3

2
cos(2µ̄cc)− cos(µ̄bb) cos(µ̄cc)

]}
,

with perturbative forms (negative branch for the expansion scalar)

θNL
(µ̄) ≈−

1
γ
√

pc

[
2b−

(
b3

3pb
+

bc2

pc

)
∆
]
+O

(
∆2
)

, (97)

dθNL
(µ̄)

dλ
≈ 1

γ2 pc

[
−2b2 +

(
5b4

3pb
+ 7b2c2

)
∆
]
+O

(
∆2
)

. (98)

One can make similar observation about these expressions by noting that the effective
terms are positive and take over close to t = 0. These observations are confirmed by
plotting the full nonperturbative expressions in Figure 9, where it is seen that nowhere

inside the black hole does either θNL
(µ̄)

or
dθNL

(µ̄)

dλ blow up.
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Figure 9. θNL
(µ̄)

and
dθNL

(µ̄)

dλ . (a) Left: Classical vs. null θ in the µ̄ scheme as a function of the Schwarzschild

time t. The effective expansion θNL
(µ̄)

goes to zero as t→ 0. Right: Close up of the left figure close to

t = 0. (b) Left: Classical vs. null dθ
dλ in the µ̄ scheme as a function of the Schwarzschild time t. The

effective
dθNL

(µ̄)

dλ goes to zero as t→ 0. Right: Close up of the left figure close to t = 0.

The Kretschmann scalar in this case has a similar behavior to the previous case.
However, while it does not diverge, it becomes quite large at t→ 0. By looking at its profile
in Figure 10, we see that not only it does not diverge anywhere in the interior, but also it
becomes zero as t→ 0. Since the full expression for K in this case is also very large, let us
first check the perturbative expression up to ∆,

K =
1
p2

c

[
12 +

12b4

γ4 +
24b2

γ2

− ∆
(

b6

γ4 pb
+

76b4c2

γ4 pc
+

7b4

γ2 pb
+

88b2c2

γ2 pc
+

7b2

pb
+

12c2

pc
+

γ2

pb

)
+O

(
∆2
)

. (99)

The same pattern emerges here too similar to the previous case where the correction
terms are all negative, given the behavior of the solutions to the equations of motion,
particularly of pb, pc. These effective terms will counter the classical terms and become large
close to the region used to be the singularity, thus stopping K from diverging. However,
in this model, K does not vanish at t = 0. Based on the value we chose for ∆, we obtain
K ≈ 3× 1036 for t = 0. This is seen from the full numerical nonperturbative behavior of K
as a function of the Schwarzschild time t in Figure 10.
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Figure 10. K in the µ̄ case. (a) The Kretschmann scalar K for the µ̄ case as a function of the
Schwarzschild time t. (b) Close up of K close to t = 0. It is seen that K remains finite everywhere in
the interior although it does not vanishes for t = 0.

4.1.3. µ̄′ Scheme

Here µ̄′b, µ̄′c have the following dependence on the triad components,

µ̄′b =

√
∆
pc

, (100)

µ̄′c =

√
pc∆
pb

, (101)

and the equations of motion in this case are

db
dT

=− 1
2

γ2 µ̄′b
sin
(
µ̄′bb
) − 1

2
sin
(
µ̄′bb
)

µ̄′b
− pc

pb

[
sin(µ̄′cc)

µ̄′c
+ c cos

(
µ̄′cc
)]

, (102)

dpb
dT

=
1
2

pb cos
(
µ̄′bb
)[

1− γ2 µ̄′2b
sin2(µ̄′bb

)], (103)

dc
dT

=
pb

2pc

[
γ2 µ̄′b

sin
(
µ̄′bb
)[1−

µ̄′b
sin
(
µ̄′bb
) b cos

(
µ̄′bb
)]
−

sin
(
µ̄′bb
)

µ̄′b

]

+
bpb cos

(
µ̄′bb
)

2pc
− sin(µ̄′cc)

µ̄′c
− c cos

(
µ̄′cc
)
, (104)

dpc

dT
=2pc cos

(
µ̄′cc
)
. (105)

These equations can also be solved numerically as before. By demanding the solutions
match the classical ones at the horizon t→ 2GM, we obtain the behavior of the canonical
variables as depicted in Figure 11.
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Figure 11. Solutions of the EoM of the µ̄ case. (a) Solutions to the equations of motion in the µ̄′ case
as a function of the Schwarzschild time t. (b) Close up of the left figure close to t = 0. Although pc

behaves rather erratically close to t = 0, it never vanishes in this case either.

With the help of these equations and their solutions together with Eqautions (43) and (45),
we can obtain the following expressions for the expansion scalar and the Raychaudhuri equation

θTL
(µ̄′) =±

1
2γ
√

pc

{
2

sin
(
µ̄′bb
)

µ̄′b
cos
(
µ̄′cc
)
+

[
sin
(
µ̄′bb
)

µ̄′b
− γ2 µ̄′b

sin
(
µ̄′bb
) ] cos

(
µ̄′bb
)}

, (106)

dθTL
(µ̄′)

dτ
=

1
8pc

+
µ̄′b cos

(
µ̄′bb
)

sin(µ̄′cc)
2

(
b
pc
− c

2p

)
− 1

4pc
cos
(
2µ̄′bb

)
+

cos
(
µ̄′bb
)

cos(µ̄′cc)
2pc

+
c

2pbγ2
sin
(
µ̄′bb
)

µ̄′b

[
− cos(µ̄′cc)

2
[
1− cos

(
2µ̄′bb

)]
+ cos2(µ̄′bb

)
cos
(
µ̄′cc
)

+2 cos
(
µ̄′bb
)

cos2(µ̄′cc
)
−

cos
(
µ̄′bb
)

c
sin(2µ̄′cc)

2µ̄′c

]

+
b

2γ2 pc

sin
(
µ̄′bb
)

µ̄′b

[
cos(µ̄′cc)

2
[
1− cos

(
2µ̄′bb

)]
− cos2(µ̄′bb

)
cos
(
µ̄′cc
)

−2 cos
(
µ̄′bb
)

cos2(µ̄′cc
)
−

cos
(
µ̄′bb
)

b
sin(2µ̄′cc)

2µ̄′c

]

+
b

4γ2 pb

sin(µ̄′cc)
µ̄′c

[
− cos

(
µ̄′bb
)[

1− cos
(
2µ̄′bb

)]]
+

cpc

4γ2 p2
b

sin(µ̄′cc)
µ̄′c

[
cos
(
µ̄′bb
)[

1− cos
(
2µ̄′bb

)]]
+

1
2γ2 pc

sin2(µ̄′bb
)

µ̄′2b

[
1−

3 cos
(
2µ̄′bb

)
2

− cos
(
µ̄′bb
)

cos
(
µ̄′cc
)]

+
1

2γ2 pb

sin
(
µ̄′bb
)

µ̄′b

sin(µ̄′cc)
µ̄′c

[
1− cos2(µ̄′bb

)
− cos

(
2µ̄′bb

)
− γ2µ̄′bµ̄′c

pb
pc

]

+
1
2

µ̄′b
sin
(
µ̄′bb
) [( c

pb
− b

pc

)
cos
(
µ̄′cc
)
− 1

pb

sin(µ̄′cc)
µ̄′c

− γ2

2pc

µ̄′b
sin
(
µ̄′bb
) ]. (107)
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Here also the form of θTL
(µ̄′) is exactly the same as the µ̊ and µ̄ cases but with µ̊ and µ̄

replaced by µ̄′. The perturbative expressions corresponding to these results for ∆→ 0 are

θTL
(µ̄′) ≈−

1
2γ
√

pc

[
3b− γ2

b
−
(

b3

p2
c
+

bc2 pc

p2
b
− bγ2

3p2
c

)
∆

]
+O

(
∆2
)

, (108)

dθTL
(µ̄′)

dτ
≈− 1

2pc

{
9b2

2γ2 +
γ2

2b2 +

+∆

[
γ2

6pc
− b2

3pc
− 11b4

2γ2 pc
+

c2 pc

p2
b

(
1− 6b2

γ2

)
+

c3 p2
c

p3
b

(
b

γ2 +
1
3b

)]}
+O

(
∆2
)

. (109)

It is not very clear from
dθTL

(µ̄′)
dτ that whether the effective terms are overall positive or

negative since they contain a mixture of positive and negative terms. However, due to the
behavior of the solutions of the equations of motion, indeed their overall sign close to t→ 0
is positive and they almost cancel out the classical focusing terms. In fact θTL

(µ̄′) at t→ 0 is a

small positive number (in the figure its value is 13.6) while
dθTL

(µ̄′)
dτ → 0 for t→ 0. These can

be better seen in Figure 12, which depicts the full nonperturbative behavior of these terms.
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Figure 12. θTL
(µ̄′)

and
dθTL

(µ̄′ )
dτ . (a) Left: Classical vs. timlike θ in the µ̄′ scheme as a function of the

Schwarzschild time t. The effective θTL
(µ̄′)

goes to zero as t→ 0. Right: Close up of the left figure close

to t = 0. (b) Left: Classical vs. timlike dθ
dτ in the µ̄′ scheme as a function of the Schwarzschild time t.

The effective
dθTL

(µ̄′ )
dτ goes to zero as t→ 0. Right: Close up of the left figure close to t = 0.



Universe 2022, 8, 349 23 of 37

By replacing our lapse Equation (67) and differential equations of motion for this case
into Equations (44) and (46), we obtain the null expansion scalar and the Raychaudhuri
equation as follows

θNL
(µ̄′) =±

2
γ
√

pc

sin
(
µ̄′bb
)

µ̄′b
cos
(
µ̄′cc
)

(110)

dθNL
(µ̄′)

dλ
=

µ̄′c cos
(
µ̄′bb
)

sin(µ̄′cc)
p2

c
(bpb − cpc)

+
2

γ2
sin
(
2µ̄′bb

)
2µ̄′b

cos2(µ̄′cc
)[ c

pb
− b

pc

]
+

1
2

cpc cos
(
µ̄′bb
)

γ2 p2
b

sin(µ̄′cc)
µ̄′c

[
1− cos

(
µ̄′bb
)]

+
1

2γ2 pb

sin
(
µ̄′bb
)

µ̄′b

sin(µ̄′cc)
µ̄′c

[
1− cos

(
µ̄′bb
)]

+
1

γ2 pc

sin2(µ̄′bb
)

µ̄′2b

[
1− cos

(
µ̄′cc
)(

1 + 2 cos
(
µ̄′bb
)
− 2 cos

(
µ̄′cc
))]

−
sin
(
2µ̄′bb

)
2µ̄′bγ2 pb

[
bµ̄′b sin

(
µ̄′bb
) sin(µ̄′cc)

µ̄′c
+

sin(2µ̄′cc)
µ̄′c

]
−

sin
(
µ̄′bb
)

sin(µ̄′cc)
pc

. (111)

which are a bit simpler expressions compared to the timelike case. These have perturbative
forms (negative branch for the expansion scalar)

θNL
(µ̄′) ≈−

1
γ
√

pc

[
2b−

(
b3

3pc
+

bc2 pc

p2
b

)
∆

]
+O

(
∆2
)

, (112)

dθNL
(µ̄′)

dλ
≈− 2b2

γ2 pc
+

(
7b4

3γ2 p2
c
+

4b2c2

γ2 p2
b
− 2bc3 pc

3γ2 p3
b
− c2

p2
b

)
∆ +O

(
∆2
)

. (113)

For θNL
(µ̄′) in this approximation, it is clear that the effective terms are positive, and in

fact they become significant near t = 0. In case of
dθNL

(µ̄′)
dλ , it is not quite clear whether the

combination of the effective terms is positive or negative, but due to the behavior of the
solutions to the equations of motion, these turn out to be positive close to t = 0 and become
quite significant there. The full nonperturbative behavior is plotted in Figure 13 and it is

seen that both θNL
(µ̄′) and

dθNL
(µ̄′)

dλ go to zero as t→ 0. The Kretschmann scalar always in this
remains finite just as the two previous cases. Due to the erratic behavior of the solutions
to the equations of motion, K starts oscillating close to t = 0, but nevertheless it always
remains finite. Let us first check the perturbative expression of K up to ∆,

K =
1
p2

c

[
12 +

24b2

γ2 +
12b4

γ4

− ∆

(
2b6

γ4 pc
+

52b4 pcc2

γ4 p2
b

+
26b4

3γ2 pc
+

56pcb2c2

γ2 p2
b

+
26b2

3pc

+
4pcc3

3bp3
b
+

4pcc2

p2
b

+
2γ2

pc
− 4b3 p2

c c3

γ4 p3
b
− 8pcbc3

3γ2 p3
b

)]
+O

(
∆2
)

. (114)
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Figure 13. θNL
(µ̄′)

and
dθNL

(µ̄′ )
dλ . (a) Left: Classical vs. null θ in the µ̄′ scheme as a function of the

Schwarzschild time t. The effective expansion θNL
(µ̄′)

goes to zero as t→ 0. Right: Close up of the left

figure close to t = 0. (b) Left: Classical vs. null dθ
dλ in the µ̄′ scheme as a function of the Schwarzschild

time t. The effective
dθNL

(µ̄′ )
dλ goes to zero as t→ 0. Right: Close up of the left figure close to t = 0.

The correction terms in this case are not all negative, although most of them are. It
turns out that the full K behaves in the desired way. It stays finite everywhere and goes to
zero for t = 0. This can be seen from Figure 14.
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Figure 14. K in the µ̄′ case. (a) The Kretschmann scalar K for the µ̄′ case as a function of the
Schwarzschild time t. (b) Close up of K close to t = 0. It is seen that K remains finite everywhere in
the interior and vanishes for t = 0.

4.2. Generalized Uncertainty Principle

In the case of the generalized uncertainty principle (GUP), the standard Heisenberg
algebra of the system is effectively modified. Inspired by the above, and the fact that a
corrected quantum algebra also implies suitable modifications of the corresponding Poisson
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algebra, one can assume that the fundamental Poisson brackets between the canonical
variables also get modified as

{b, pb} = GγF1(b, c, pb, pc, βb, βc), (115)

{c, pc} = 2GγF2(b, c, pb, pc, βb, βc), (116)

where the modifications are encoded entirely in F1 and F2, and hence the non-deformed
classical limit is obtained by setting F1 = 1 = F2. Here, βi refer to the parameters by which
the algebra is modified. Such modification will result in the effective equations of motion

db
dT

= {b, H} = −1
2

(
b +

γ2

b

)
F1, (117)

dpb
dT

= {pb, H} = pb
2

(
1− γ2

b2

)
F1, (118)

dc
dT

= {c, H} = −2cF2, (119)

dpc

dT
= {pc, H} = 2pcF2. (120)

which should also be supplemented by weakly vanishing of the Hamiltonian constraint
Equation (48). Notice that in this approach the Hamiltonian does not get modified and
the effective modifications to the equations of motion come from the modifications to the
Poisson algebra.

The above equations of motion Equations (117)–(120) can now be substituted into the
timelike expansion Equation (43) and Raychaudhuri Equation (45) to yield (with N =

γ
√

pc
b

as before):

θ
(TL)
GUP = ± 1

2γ
√

pc

(
bF1 −

γ2F1

b
+ 2bF2

)
, (121)

and

dθ
(TL)
GUP
dτ

=
1

2γ2 pc

[(
b2 − γ2

)
Ḟ1 + 2b2 Ḟ2 − F2

1

(
b2

2
+

γ4

2b2 + γ2
)
− 2b2F1F2 − 2b2F2

2

]
(122)

in terms of the canonical variables. For the null case, using Equations (44) and (46) we get

θ
(NL)
GUP =

2bF2

γ
√

pc
, (123)

dθ
(NL)
GUP
dλ

=
2b2

γ2 pc

(
Ḟ2 − F1F2

)
. (124)

As can be seen from Equations (115) and (116), the modifications to the Poisson algebra
is controlled by functions F1 and F2. A generic class of modifications, containing terms up
to second order in canonical variables and with no cross terms, can be written as

Fi = 1 + α
(i)
b b + α

(i)
c c + β

(i)
b b2 + β

(i)
c c2 + α

′(i)
b pb + α

′(i)
c pc + β

′(i)
b p2

b + β
′(i)
c p2

c , (125)

where αl , βl , α′l , β′l parameters (with l = b, c) encode the quantum gravity effects associated
to the noncommutativity of the model, and i = 1, 2. We will consider the four most common
cases appearing in the literature,

Model 1 : F1 =1 + βbb2, F2 =1 + βcc2, (126)

Model 2 : F1 =1 + α′b pb, F2 =1 + α′c pc, (127)

Model 3 : F1 =1 + αbb, F2 =1 + αcc, (128)

Model 4 : F1 =1 + β′b p2
b, F2 =1 + β′c p2

c . (129)
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In each model, we can consider the parameters αl , βl , α′l , β′l to be positive, negative
or zero. It turns out that only in configuration-dependent cases models 1 and 3 and
just for certain signs of αl , βl , α′l , β′l will both θ and the Raychaudhuri equation remain
finite everywhere in the interior. In fact, finding the solutions to the equations of motion
Equations (117)–(120) by using either of the momentum-dependent case Equation (127) or
(129) and replacing the solutions into any of Equations (121)–(124), one can never obtain a
finite value for them as t→ 0 for any value of α′b, α′c, β′b, β′c. This means that the momentum-
dependent cases are not viable for modeling GUP if we demand the singularity of the black
hole model we are using is resolved. On the other hand configuration-dependent cases do
in fact allow for such a possibility. This is summarized in Table 1.

Table 1. Comparison of GUP models with regard to the possibility of singularity resolution.

Model Dependence of GUP
Modifications on Expansion and RE Finite for

1 Configuration βb < 0 and βc < 0

2 Momenta No values of α′b and α′c

3 Configuration αb < 0 and αc > 0

4 Momenta No values of β′b and β′c

Let us first consider model 1. The solution to the equations of motion in this model are
plotted in Figure 15. From this figure we see that none of the variables diverge or vanish in
the interior, and everywhere in the interior b, pb, pc > 0 while c < 0. For the chosen values
of βb, βc, for t→ 0 we obtain b ≈ 4 and c ≈ −4.
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Figure 15. Solutions of the EoM of GUP model 1. (a) Solutions to the effective equations of motion for
model 1 as a function of the Schwarzschild time t. (b) Close up of the left figure close to t = 0. Note
that none of the variables diverge or vanish in the interior, and everywhere in the interior b, pb, pc > 0
while c < 0.

For this model we obtain the expressions for the timelike case

θ
(TL)
GUP(1) =±

b
2γ
√

pc

[
3− γ2

b2 + 2βcc2 + βb

(
b2 − γ2

)]
, (130)

dθ
(TL)
GUP(1)

dτ
=

1
γ2 pc

[
−9b2

4
− γ4

4b2 −
γ2

2

−βbb2
(

2b2 + γ2
)
+

β2
bb2

4

(
γ4 − 3b4 − 2γ2b2

)
− β2

cc2b2
(

5c2 + 7
)
− βbβcb2c2

]
(131)
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Solving the equations of motion Equations (117)–(120) with Equation (126) and replac-

ing the solutions in the above two expressions, we obtain the behavior of θ
(TL)
GUP and dθ

(TL)
GUP
dτ as

a function of the Schwarzschild time t. It turns out that only the case with both βb < 0 and
βc < 0 will yield expressions that are always finite in the interior. With such choice of β’s
we can numerically find the expressions for Equations (130) and (131), which are plotted
in Figure 16. Interestingly, although the expansion scalar θ

(TL)
GUP dips towrads the negative

values and its rate of change dθ
(TL)
GUP
dτ peaks towards positive values when we get closer to

t → 0, at some points quantum effects take over and turn them both back towards zero.
The qualitative behavior is similar to the cases in LQG but the difference is that in those
cases, the expansion scalar in some regions actually becomes positive and then goes to zero,
while here the expansion remain negative (after initially being positive) and it goes to zero
from below.
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Figure 16. θ
(TL)
GUP(1) and

dθ
(TL)
GUP(1)
dτ . (a) Classical vs. timelike θ in GUP model 1 as a function of the

Schwarzschild time t. (b) Left: Classical vs. timelike dθ
dτ in GUP model 1 as a function of the

Schwarzschild time t. Both the effective effective expansion θ
(TL)
GUP(1) and its rate of change

dθ
(TL)
GUP(1)
dτ go

to zero as t→ 0. Right: Close up of the left figure close to t = 0.

To get an analytical sense of the expressions, we see that for the negative branch of the
expansion scalar, Equation (130), the correction terms are all positive (note that βb < 0 and
βc < 0) and it is these terms that overcome the classical negative terms close to t→ 0 and
turn the curve around. In the same way, in Equation (131) and up to the first order in β’s,
the correction term −βbb2(2b2 + γ2) is positive and has the same effect.

The expressions for the null case for this model become
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θ
(NL)
GUP(1) =±

2b
γ
√

pc

(
1 + βcc2

)
= ± 2b

γ
√

pc
F2, (132)

dθ
(NL)
GUP(1)

dλ
=

1
γ2 pc

[
−2b2 − 2βbb4 − 2βcc2b2

(
4βcc2 + 5

)
− 2βbβcb4c2

]
. (133)

Clearly, with negative βb and βc, the correction term in the negative branch of the
expansion scalar is positive, and counters the negative classical term. Up to the first order
in β, the same is true in the Raychaudhuri equation. In fact the full numerical results once

again show that both θ
(NL)
GUP(1) and

dθ
(NL)
GUP(1)
dτ remain finite everywhere inside the black hole as

can be seen in Figure 17.
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Figure 17. θ
(NL)
GUP(1) and

dθ
(NL)
GUP(1)
dλ . (a) Classical vs. null θ in GUP model 1 as a function of the

Schwarzschild time t. (b) Classical vs. null dθ
dτ in GUP model 1 as a function of the Schwarzschild

time t. Both the effective expansion θ
(NL)
GUP(1) and its rate of change

dθ
(NL)
GUP(1)
dλ go to zero as t→ 0.

We can also compute the expression for the effective Kretschmann scalar K in this case.
This expression is quite large and we do not write it down here. However, the plot of the K
in this case is presented in Figure 18. We can clearly see that K remains finite everywhere
in the interior particularly for t → 0, although it has a big bump close to this time. This
confirms that the quantum effects take over very close to t = 0 and keep the curvature
finite. In fact K → 0 as t→ 0.

Another model for which it is possible to resolve the singularity is model 3 which is the
other configuration-dependent case. For the timelike congruence in this model we obtain

θ
(TL)
GUP(3) =±

1
2γ
√

pc

[
3b− γ2

b
+ αb

(
b2 − γ2

)
+ 2αccb

]
, (134)

dθ
(TL)
GUP(3)

dτ
=

1
2γ2 pc

[
−9b2

2
− γ4

2b2 − γ2 − 10αccb2

−αbb
(

7b2

2
+

γ4

2b2 + 2γ2
)
− α2

bb4 − α2
bb2
(

γ2 + 6c2
)
− 2αbαcb3c

]
. (135)
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Figure 18. K in GUP model 1. (a) The Kretschmann scalar K for model 1 as a function of the
Schwarzschild time t. (b) Close up of K close to t = 0. It is seen that K remains finite everywhere in
the interior and vanishes for t = 0.

It turns out that, as mentioned before, in this model the only case where both the
expansion scalar and its rate of change are finite in the interior is when αb < 0 and αc > 0.
This can be checked by finding the solutions to the equations of motion for all the cases of
the signs of αb, αc and checking the behavior of the expansion scalar and Raychaudhuri
equation based on them. Having this in mind, we notice that up to the first order in
α’s, the correction term proportional to αb in the negative branch of θ

(TL)
GUP(3)is positive for

b2 > γ2 which is always the case when we get close to t = 0. The other correction term
θ
(TL)
GUP(3) proportional to αc is positive for bc < 0 which is guaranteed to always hold in

the interior based on the solutions to the equations of motions in this model. Up to the

same order, the correction term in
dθ

(TL)
GUP(3)
dτ proportional to αb is clearly always positive. The

term proportional to αc is positive for c < 0 which is also guaranteed to hold based on the
solutions to the equations of motion. Hence, the first order correction terms contribute to
defocusing of the geodesics. This is indeed the case if we also consider the full form of the
expressions as can be seen from Figure 19.

We see a difference in this model compared to model 1. Unlike model 1, in model 3

neither θ
(TL)
GUP(3) nor

dθ
(TL)
GUP(3)
dτ become zero at t = 0. They both take a finite values (negative

and positive, respectively) as can be seen from Figure 19.
The behavior of null congruence for this model results in the following expressions,

θ
(NL)
GUP(3) =±

2b
γ
√

pc
(1 + αcc) = ± 2b

γ
√

pc
F2, (136)

dθ
(NL)
GUP(3)

dλ
=− 2

γ2 pc

[
b2 + αbb3 + 3αcb2c + αbαcb3c + 2α2

c b2c2
]
. (137)
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Figure 19. θ
(TL)
GUP(3) and

dθ
(TL)
GUP(3)
dτ . Both effective expressions go to finite values as t → 0. (a) Left:

Classical vs. timelike θ in GUP model 3 as a function of the Schwarzschild time t. Right: Close up of
the left figure close to t = 0. (b) Left: Classical vs. timelike dθ

dτ in GUP model 3 as a function of the
Schwarzschild time t. Right: Close up of the left figure close to t = 0.

Given the behavior of the equations of motion and the signs of αb, αc, clearly the
correction term up to the first order in α’s in the negative branch of θ

(NL)
GUP(3) is positive. The

same is true for similar terms in
dθ

(NL)
GUP(3)
dλ . As is expected the full expressions behave in a

way that both θ
(NL)
GUP(3) and

dθ
(NL)
GUP(3)
dλ remain finite everywhere in the interior. This is shown

in Figure 20.
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Figure 20. θ
(NL)
GUP(3) and

dθ
(NL)
GUP(3)
dλ . Both effective expressions vanish as t→ 0. (a) Classical vs. null θ in

GUP model 3 as a function of the Schwarzschild time t. (b) Classical vs. null dθ
dτ in GUP model 3 as a

function of the Schwarzschild time t.
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We see that unlike the timelike case, the null case, θ
(NL)
GUP(3) and

dθ
(NL)
GUP(3)
dλ actually end up

being zero for t = 0.
Finally we can derive the Kretschmann scalar K for this model and plot is against t.

this is depicted in Figure 21. Once again we see that although there is a big bump in K
close to t = 0, the quantum effects take over close to that time and turn the curve around
such that k → 0 as t → 0. This again confirms that the singularity is resolved due to
quantum effects.
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Figure 21. K in GUP model 3. (a) The Kretschmann scalar K for model 3 as a function of the
Schwarzschild time t. (b) Close up of K close to t = 0. It is seen that K remains finite everywhere in
the interior and vanishes for t = 0.

5. Discussion

In this work, we have reviewed some of our previous works on probing the interior
structure and singularity resolution of the Schwarzschild black hole in LQG and GUP
frameworks using expansion scalar and Raychaudhuri equation. We have also presented
new results regarding the Kretschmann scalar in both frameworks in addition to new
numerical results about GUP models, which leads to eliminating some of them with respect
to their ability to resolve the singularity of Schwarzschild interior.

We first present the general form of timelike and null geodesics in the Kantowski-
Sachs spacetime which is isometric to the interior of the Schwarzschild black hole. We
then derive the timelike and null expansion scalars and their rate of change, i.e., the
Raychaudhuri equation for congruences in this metric. All of these quantities depend on
the time derivative of metric components or canonical variables, and hence on the solutions
to the equations of motion. If the classical Hamiltonian gets modified due to quantum
effects, the resulting effective Hamiltonian would yield different equations of motion and
hence we will obtain modified expansion scalar and Raychaudhuri equation. This is the
route we follow.

We first write the Hamiltonian in terms of the Ashtekar-Barbero connection adapted to
this model. Using the equations of motion derived from this Hamiltonian, we compute the
expansion scalar θ and its rate of change dθ

dτ ( dθ
dλ in the null case, with λ the curve parameter)

for this classical system. Not surprisingly, both θ and dθ
dτ diverse at the center of the black

hole where t→ 0, where t is the Schwarzschild time in the interior. We then turn into LQG,
or more precisely polymer quantization of the Hamiltonian. We use three main schemes of
this method, which are different based on the form of the minimum scale introduced in the
theory. Using the resulting effective Hamiltonian, we find the new modified solutions to the
equations of motion, and find timelike and null θ and dθ

dτ ( dθ
dλ ). We show that these effective

quantities remain finite everywhere in the interior and never diverge even at t = 0. This
is shown to be true for all three schemes we studied. We also compute the Kretschmann
scalar K analytically and numerically and show that in all three schemes, K remain finite
everywhere in the interior. This shows that LQG definitely resolves the singularity.
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We then turn to the GUP approach. By modifying the algebra of the canonical variables
using GUP parameters α, β we study four most commonly considered model in GUP. Using
modified equations of motion, once again we derive timelike and null θ and dθ

dτ ( dθ
dλ ) for

all the four models. Interestingly, we find that only two of these models, for which the
canonical algebra is modified by introducing additional configuration-related terms, have
the ability to resolve the singularity. Furthermore not all of the cases of GUP parameters
α, β in these two models lead to the singularity resolution. In one of the models (model 1)
where the canonical algebra is modified by introducing quadratic terms in configuration
variables, the GUP parameters should be both negative to achieve singularity resolution.
In the other model (model 3) where the canonical algebra is modified by linear terms in
configuration variables, one of the parameters should be negative while the other should
be positive, i.e., αb < 0 and αc > 0. Even the inverse of this case, where αb > 0 and αc < 0,
does not work. In both of these models with these specific choice of the GUP parameters,
not only timelike and null θ and dθ

dτ ( dθ
dλ ) remain finite everywhere in the interior, but also

the Kretschmann scalar does so.
Hence, we have reaffirmed previous works that claim that all of the LQG models based

on a certain polymer quantization resolve the Schwarzschild singularity. Furthermore, we
have presented new results excluding certain GUP models by means of their abilities to
resolve such a singularity in this Hamiltonian first order framework.

It is interesting to apply this method to works within LQG that use approaches
other than the polymer quantization or models which deal with the full spacetime of the
Schwrazschild balck hole. One can also apply this method to the full spacetime of the
Schwarzschild model but using the GUP framework. These are all interesting works that
can be followed in the future.
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Appendix A. Raychaudhuri Equation

One of the ways to probe the classical and effective structure of spacetime is by
investigating the behavior of geodesics. More precisely, how a congruence of timelike or
null geodesic evolves over time. This analysis is intimately related to the geodesic deviation
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and to the so-called expansion scalar and its rate of change, the Raychaudhuri equation, as
we will see below.

Consider a family of curves in a region of spacetime such that through each point in
that region, one and only one geodesic passes. This is called a congruence. If every curve
in the congruence is timelike/null, then conguence is called timelike/null. In what follows
we briefly review both type of these congruences and how they evolve over time.

Appendix A.1. Timelike Congruence

Suppose we have a congruence of timelike geodesics with unit timelike tangent
vectors1 {Ua}, where

gabUaUb =− 1, Ua∇aUb =0. (A1)

Using these curves, we can decompose the spacetime metric gab as

gab = hab −UaUb, (A2)

where hab is called the transverse metric. The metric hab is spatial in the sense that it is
orthogonal to the timelike Ua

habUb = 0 = habUa (A3)

which is simple to check from Equation (A2). It is also essentially a three dimensional
metric on the hypersurfaces transverse to Ua, and this can be seen by taking the trace
of Equation (A2) which leads to ha

a = 3. The (1, 1) tensor ha
b is a projection operator

onto the transverse hypersurfaces to Ua since Ba
cBc

b = Ba
b, which can also be seen from

Equation (A2).
In order to study the evolution of the congruence, we consider the tensor

Bab = ∇bUa, (A4)

which is sometimes called the expansion tensor, and its Ba
b version measures the amount of

failure of the deviation vector between the geodesics in the congruence from being parallel
transported. This tensor is also spatial since it is orthogonal to Ua

BabUb = 0 = BabUa. (A5)

This is the result of the curves being geodesics, i.e., Equation (A1).
We algebraically decompose Bab into its trace part, symmetric traceless part and

antisymmetric part as

Bab =
1
3

θhab + σab + ωab. (A6)

Here
θ = Ba

a (A7)

is the trace of Bab and is called the expansion scalar, and describes the fractional change
of the area of the cross-section area of the congruence per unit time. The symmetric
traceless part

σab = B(ab) −
1
3

θhab (A8)

is called the shear tensor. It measures how the cross-section is deformed from a circle. The
antisymmetric part

ωab = B[ab] (A9)

is called the vorticity (or rotation) tensor, and encodes the overall rotation of the cross-
section while the area remains unchanged. The factor 1

3 is the result of the transverse
hypersurfaces being three dimensional. Both σab and ωab are spatial tensors, i.e., and their
contraction with Ua vanishes.
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These quantities and their rates of change along the geodesic in proper time incor-
porate important information about the structure of spacetime particularly, the geodesics
incompleteness and singularities. The most important of these rates of change is the rate of
change of the expansion scalar along the geodesics, dθ

dτ , where τ is the proper time along
the geodesic. It can be computed to yield

Ua∇aθ :=
dθ

dτ
= −1

3
θ2 − σabσab + ωabωab − RabUaUb. (A10)

Here, σ2 = σabσab is called the shear parameter and ω2 = ωabωab is the vorticity
parameter. In the presence of matter that obeys strong energy condition the last term
RabUaUb is always nonnegative, and it vanishes for the vacuum case.

The above equation is called the Raychaudhuri equation, and is a purely geometrical
identity. Since σab and ωab are spatial tensors, σ2 > 0, ω2 > 0. So, in cases where the strong
energy condition holds, the first second and the fourth terms on the right hand side of
Equation (A10) (including the signs behind them) are all negative and contribute to the
convergence of geodesics as we move along them. The only term with a positive sign is
the third term ω2, which contributes to divergence of geodesics. Hence, if it was not for
the vorticity parameter, the rate of change of the expansion scalar would always have been
negative, which leads to the geodesics increasingly converge as we move along them. In
fact this is the case where Ua are hypersurface-orthogonal. In that case we have

dθ

dτ
≤ −1

3
θ2 (A11)

which can be solved to yield
1

θ(τ)
≥ 1

θ(τ0)
+

1
3

τ. (A12)

Then if we have an initially-converging congruence, i.e., θ(τ0) < 0, we arrive at a
caustic point where θ → −∞ in a finite proper time

τ ≤ −3
1

θ(τ0)
. (A13)

This caustic point could be the result of bad coordinates or a real physical singularity
in spacetime. The Raychaudhuri equation is the backbone of the theorems of Hawking and
Penrose about geodesic incompleteness and singularities in general spacetimes.

Appendix A.2. Null Congruence

For the null congruences with geodesics parametrized by λ, we consider the subspace
normal to the null vector field ka tangent to the geodesics. To do that, introduce a auxiliary
null vector field la such that

kala = −1. (A14)

Using these two null vectors, we can decompose the metric as

gab = hab − 2k(alb), (A15)

where once again hab is the transverse metric on the hypersurface transverse to ka and la.
This hypersurface and its metric hab is two dimensional which can be confirmed by noticing
ha

a = 2. The tensor ha
b is again a projection operator onto these transverse hypersurfaces.

We can once again define
Bab = ∇bka, (A16)

but while this tensor is orthogonal to ka, it is not orthogonal to la. It turns out the purely
transverse part Bab,

B̃ab = hc
ahd

bBcd (A17)
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is the tensor that is orthogonal to both ka and la. This tensor can explicitly written as

B̃ab = Bab + kalcBcb + kbBaclc + kakbBcdlcld. (A18)

Once again we can decompose B̃ab as

B̃ab =
1
2

θ̃hab + σ̃ab + ω̃ab, (A19)

where

θ̃ =B̃a
a (A20)

σ̃ab =B̃(ab) −
1
2

θhab (A21)

ω̃ab =B̃[ab] (A22)

are the expansion scalar, and shear and vorticity tenors, respectively. The factor 1
2 is the

result of the transverse hypersurfaces being two dimensional. Again, both σ̃ab and ω̃ab are
spatial tensors.

The Raychaudhuri equation is now derived by considering the evolution of θ̃ along
the geodesics

ka∇a θ̃ :=
dθ̃

dλ
= −1

2
θ̃2 − σ̃abσ̃ab + ω̃abω̃ab − Rabkakb. (A23)

Notice that θ̃ is unique and independent of la since θ̃ = B̃a
a = Ba

a = ∇aka, and so is
the Raychaudhuri equation above. The interpretation of Equation (A23) is similar to the to
the timelike case and leads to the existence of caustic points in many situations.

In what follows we will use both the expansion and the Raychaudhuri equation
for both the null and timelike cases to study the effective behavior of the interior of the
Schwarzschild black hole.

Note
1 We use lower case Latin letter for abstract indices and Greek indices for components.
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