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Abstract: In this brief review, we comment on the concept of shape invariant potentials, which is an
essential feature in many settings of N = 2 supersymmetric quantum mechanics. To motivate its
application within supersymmetric quantum cosmology, we present a case study to illustrate the
value of this promising tool. Concretely, we take a spatially flat FRW model in the presence of a single
scalar field, minimally coupled to gravity. Then, we extract the associated Schrödinger–Wheeler–
DeWitt equation, allowing for a particular scope of factor ordering. Subsequently, we compute the
corresponding supersymmetric partner Hamiltonians, H1 and H2. Moreover, we point out how
the shape invariance property can be employed to bring a relation among several factor orderings
choices for our Schrödinger–Wheeler–DeWitt equation. The ground state is retrieved, and the excited
states easily written. Finally, the Hamiltonians, H1 and H2, are explicitly presented within a N = 2
supersymmetric quantum mechanics framework.

Keywords: supersymmetric quantum mechanics; shape invariant potentials; supersymmetric
quantum cosmology

1. Introduction

Shape Invariant Potentials (SIP) constitute one of the hallmarks of supersymmetric
quantum mechanics (SQM), in the sense that it enables a prolific framework to be elaborated.
Being more specific, the presence of SIP allows us to easily obtain the set of states for a class
of quantum systems, suitably based on an elegant algebraic construction. Hence, let us
begin by mentioning that there is an algebraic structure associated with the SIP framework.
It has gradually been acquiring a twofold relevance and within most of the exactly solvable
problems in quantum mechanics [1–7].

On the one hand, such a structure has provided a method to determine eigenvalues
and eigenfunctions, by means of which a spectrum is generated. More specifically, a broad
set of those exactly solvable cases can be assembled and assigned within concrete classes;
very few exceptions are known [1–7]. The distinguishing feature of any of such classes is
that any exactly solvable case bears a shape invariant potential: supersymmetric partners are of
the same shape, and their spectra can be determined entirely by an algebraic procedure
comparable to that of the harmonic oscillator. In other words, operators can be defined,
namely A := d

dx + W(x), and its Hermitian conjugate A† := − d
dx + W(x), Hamiltonians

H1 and its superpartner H2 being expressed as A† A and AA†, respectively. From this, we
can produce and operate with other (more adequate) ladder operators for correspondingly
appropriate quantum numbers. These can be maneuvered within a J±, J3 algebra, with
comparable features to textbook ladder operators of angular momentum within either
SU(2) or SO(3); please see [1–7] for relevant details.
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On the other hand, several of these exactly solvable systems also possess a potential
algebra: the corresponding Hamiltonian can be written as a Casimir operator of an under-
lying algebra, which in particular cases is of a SO(2, 1) nature [2]. Remarkably, there is a
close correspondence: shape invariance can be expressed as constraint, which assists in
establishing the spectrum; moreover, this shape invariance constraint can be written as
an algebraic condition. For a specific set of SIP, the algebraic condition corresponds to the
mentioned SO(2, 1) potential algebra, where unitary representations become of crucial use.
Interestingly, these can be related to that of SO(3); several SIPs are as such [1–7]. On the
whole, a connection between SIP and potential algebra was attained. Nevertheless, it is also
clear that, in spite of the structural similarity between SO(2, 1) and SO(3) algebras, there
are caveats to be aware of, related to the differences between those unitary representations.

There are also a couple of additional points that we would like to emphasize. To
start with, some quantum states can be retrieved by group theoretical methods. This is
further endorsed from the connections between shape invariance and potential algebra,
wherein the former is translated into a concrete formulation within the latter [2]. As a
result, the scope of the class of potentials where that could be applied was made more
prominent [1]. Furthermore, other classes have been explored, related to harmonic oscillator
induced second order differential equations, bearing group and algebra features, which
subsequently allowed more SIP to be found [1–12]. In particular, this was further extended
toward graded algebras in [8].

Secondly, these algebraic/group theory procedures (within the concrete use of algebras
such as SO(2, 1) or SO(3)) have a striking resemblance to the approach and descriptive
language used in [13–16]; a review of this idea is found in [17]. Therein, it was pointed out
that intertwining boundary conditions, the algebra of constraints and hidden symmetries in
quantum cosmology could be quite fruitful. Specifically, group/algebraic properties within
ladder operators, either from angular momentum or from within the explicit presence of
specific matter fields (and their properties), determined a partition of wave functions and
boundary conditions, according to the Bargmann index [13–16]. Moreover, we proposed
in [17] to extend this framework towards SIP, which could include well known analytically
solvable cosmological cases. Being more clear, provided we identify integrability in terms
of the shape invariance conditions, we could eventually import those specific features of
SQM towards quantum cosmology [18–21]. That was the challenge we laid out in [17],
which is still to be addressed: we hope our review paper herein can further enthuse
someone to pick this up. A somewhat related and interesting direction to explore is to also
consider an elaboration following [22,23]; specifically, accommodating the lines in [13–17]
plus supersymmetry (SUSY) [18,19]. In brief, this paragraph conveys our central motivation
to produce this review, building from a suggestion advanced in [17].

Thirdly, the interest in the above elements notwithstanding, there are still obstacles
that ought to be mentioned, namely, about the scope of the usefulness of SIP in quantum
cosmology. In fact, the list of SIP is quite restrictive, and most potentials therein do
not emerge naturally within a minisuperspace. A few do, but for very particular case
studies [24]. The classification of spatial geometries upon the Bianchi method implies
that the potentials extracted from the gravitational degrees of freedom are very specific.
Any ’broadness’ can be introduced by inserting: (i) very specific matter fields into the
minisuperspace (and therein we ought to be using realistic potentials (as indicated by
particle physics)) or instead, (ii) try more SIP fitted choices but at the price of being very
much ad hoc, i.e., an artificial selection. Nevertheless, the list of SIP and similar cases, where
the algebraic tools could be adopted, has been extended. Although not a strong positive
endorsement, there is work [25–34] that allows us to consider that eventually an extended
notion of SIP may be soundly established, such that more cosmological minisuperspaces
can be discussed within (see e.g., [24]). For the moment, this is a purpose set in construction
and is what this review paper aims to to enthuse about and promote.

Upon this introductory section, this review is structured as follows. In Section 2, we
summarize the features of SQM that we will be employing. In particular, a few technicalities
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about SIP will be presented in Section 2.2. Then, in Section 3, we take a case study, typically
a toy model, by means of which we aim to promote work in SUSY quantum cosmology
with the novel perspective of SIP. We emphasize that this is a line of investigation that has
not yet been attempted before (see Section 3.3 for details). Section 4 conveys the Discussion
and suggestions for the outlook for future research work.

2. Supersymmetric Quantum Mechanics

In this section, let us present a brief review of some of the pillars that characterize
SQM. Then, we proceed to add a summary of the shape invariance concept. This section
contains neither new results nor any innovated procedure, but only a very short overview
of the results presented within seminal papers, e.g., [35–37].

2.1. Hamiltonian Formulation of Supersymmetric Quantum Mechanics

In order to describe SQM, let us start with the Schrödinger equation:

HΨn(x) =

[
− h̄2

2m
d2

dx2 + V(x)

]
Ψn(x) = EnΨn(x). (1)

We assume that the ground state wave function Ψ0(x) (that has no nodes1) associated with
a potential V1(x) is known. Then, by assuming that the ground state energy E0 to be zero,
the Schrödinger equation for this ground state reduces to:

H1Ψ0(x) =

[
− h̄2

2m
d2

dx2 + V1(x)

]
Ψ0(x) = 0, (2)

which leads to construct the potential V1(x):

V1(x) =
h̄2

2m
Ψ′′0 (x)
Ψ0(x)

, (3)

where a prime denotes differentiation with respect to x. It is straightforward to factorize
the Hamiltonian from the operators as follows:

A =
h̄√
2m

[
d

dx
−

Ψ′0(x)
Ψ0(x)

]
, A† = − h̄√

2m

[
d

dx
+

Ψ′0(x)
Ψ0(x)

]
, (4)

through the equation

H1 = A† A. (5)

In order to construct the SUSY theory related to the original Hamiltonian H1, the next step
is to define another operator by reversing the order of A and A†, i.e., H2 ≡ AA†, by which
we indeed get the Hamiltonian corresponding to a new potential V2(x):

H2 = − h̄2

2m
d2

dx2 + V2(x), (6)

where

V2(x) = −V1(x) +
h̄
m

[
Ψ′0(x)
Ψ0(x)

]2

. (7)

The potentials V1(x) and V2(x) have been referred to as the supersymmetric partner po-
tentials. It should be noted that H2, as the partner Hamiltonian corresponding to H1 is in
general not unique, but there is a class of Hamiltonians H(m) that can be partner Hamilto-
nians2. This point has been specified [35,38,39], conveying a better understanding of the
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relationship between SQM and the inverse scattering method, established by Gelfand and
Levitan [40,41].

In SQM, instead of the ground state wave function Ψ0(x) associated with H1, the
superpotential W(x) is introduced, being related to Ψ0(x) and its first derivative (with
respect to x) by means of

W(x) = − h̄√
2m

(
Ψ′0(x)
Ψ0(x)

)
. (8)

At this stage, it is worth expressing the operators A and A† and the supersymmetric
partner potentials V1(x) and V2(x) in terms of the superpotential. Therefore, using (8),
Equations (3), (4) and (7) are rewritten as:

A =
h̄√
2m

d
dx

+ W(x), A† = − h̄√
2m

d
dx

+ W(x), (9)

V1(x) = − h̄√
2m

W ′(x) + W2(x), V2(x) =
h̄√
2m

W ′(x) + W2(x), (10)

where the expressions for V1 and V2 in (10) constitute Riccati equations. Equations (9) and (10)
imply that W ′(x) is proportional to the commutator of the operators A and A†, and W2(x)
is the average of the partner potentials.

It is easy to show that the wave functions, the energy eigenvalues and the S-matrices
of both the Hamiltonians H1 and H2 are related. Let us merely outline the results and
abstain from proving them. In this regard, we take Ψ(1)

n and Ψ(2)
n as the eigenfunctions

of H1 and H2, respectively. Moreover, we denote their corresponding energy eigenvalues
with E(1)

n ≥ 0 and E(2)
n ≥ 0 where n = 0, 1, 2, 3, . . . is the number of the nodes in the wave

function. It is straightforward to show that supersymmetric partner potentials V1(x) and
V2(x) possess the same energy spectrum. However, we should note that, for the ground
state energy E(1)

0 = 0 associated with the potential V1(x), there is no corresponding level
for its partner V2(x). Concretely, it has been shown that:

E(2)
n = E(1)

n+1, E(1)
0 = 0, (11)

Ψ(2)
n =

[
E(1)

n+1

]− 1
2 AΨ(1)

n+1, (12)

Ψ(1)
n+1 =

[
E(2)

n

]− 1
2 A†Ψ(2)

n . (13)

In what follows, let us express some facts. (i) If the ground-state wave function Ψ(1)
0 ,

which is given by (AΨ(1)
0 = 0)

Ψ(1)
0 = N0exp

[
−
∫ x

W(x′)dx′
]

, (14)

is square integrable, then the ground state of H1 has zero energy (E0 = 0) [35]. For this case,
it can be shown that the SUSY is unbroken; (ii) if the eigenfunction Ψ(1)

n+1 of H1 (Ψ(2)
n of H2) is

normalized, then the Ψ(2)
n (Ψ(1)

n+1), will be also normalized; (iii) Assuming the eigenfunction

Ψ(1)
n with eigenvalue E(1)

n (Ψ(2)
n with eigenvalue E(2)

n ) corresponds to the Hamiltonian H1

(H2), it is easy to show that AΨ(1)
n (A†Ψ(2)

n ) will be an eigenfunction of H2 (H1) with the
same eigenvalue; (iv) In order to destroy (create) an extra node in the eigenfunction as
well as convert an eigenfunction of H1 (H2) into an eigenfunction of H2 (H1) with the same
energy, we apply the operator A (A†); (v) The ground state wave function of H1 has no
SUSY partner; (vi) Applying the operator A (A†), all the eigenfunctions of H2 (H1, except
for the ground state) can be reconstructed from those of H1 (H2); please see Figure 1.
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Figure 1. The energy levels of V1(x) and V2(x) as two supersymmetric partner potentials. The

figure is associated with unbroken SUSY. It is seen that, except an extra state E(1)
0 = 0, the other

energy levels are degenerate. Moreover, in this figure, it is shown that how the operators A and A†

connect eigenfunctions.

It has been believed that this fascinating procedure, which leads to an understanding
of the degeneracy of the spectra of H1 and H2, can be provided by applying the properties
of the SUSY algebra. Therefore, let us consider a matrix SUSY Hamiltonian (which is part
of a closed algebra including both bosonic and fermionic operators with commutation and
anti-commutation relations) containing both the Hamiltonians H1 and H2 [37]:

H =

[
H1 0
0 H2.

]
. (15)

Supersymmetric quantum mechanics begins with a set of two matrix operators, Q and
Q†, known as supercharges:

Q =

[
0 0
A 0

]
, (16)

Q† =

[
0 A†

0 0.

]
. (17)

The matrix H is part of a closed algebra in which both bosonic and fermionic operators with
commutation and anti-commutation relations are included, such that the bosonic degrees
of freedom are changed into the fermionic ones and vice versa by the supercharges.

It is straightforward to show that:

[H, Q] = [H, Q†] = 0, (18)

{Q, Q†} = H, (19)

{Q, Q} = 2Q2 = {Q†, Q†} = 2
(

Q†
)2

= 0, (20)

by which the closed superalgebra sl(1, 1) is described [42] (see also Section 3.3). Note that
the relations (18) are responsible for the degeneracy.

In SQM, when the two partner potentials have continuum spectra, it is possible to
relate the reflection and transmission coefficients. A necessary condition for providing
scattering in both of the partner potentials is that they must be finite when x → −∞ or
x → ∞.

2.2. Shape Invariance and Solvable Potentials

In the context of the non-relativistic quantum mechanics, there are a number of known
potentials (e.g., Coulomb, harmonic oscillator, Eckart, Morse, and Pöschl–Teller) for which
we can solve the corresponding Schrödinger equation analytically and determine all the
energy eigenvalues and eigenfunctions explicitly. In this regard, the following questions
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naturally arise: Why are just some potentials solvable? Is there any underlying symmetry
property? What is this symmetry?

Gendenshtein was the first to answer these questions by introducing the shape in-
variance concept [43]. In fact, for such potentials, all the bound state energy eigenval-
ues, eigenfunctions and the scattering matrix can be retrieved by applying the general-
ized operator method, which is essentially equivalent to the Schrödinger’s method of
factorization [44,45].

In [43], the relationship between SUSY, the hierarchy of Hamiltonians, and solvable
potentials has been investigated from an interesting perspective (for detailed discussions
see, for instance, [35,37]). In what follows, let us describe briefly the shape invariance
concept. “If the pair of SUSY partner potentials V1,2(x, b) are similar in shape and differ only
in the parameters that appear in them, then they are said to be shape invariant” [46]. Let us be
more precise. Consider a pair of SUSY partner potentials, V1,2(x), as defined in (10). If the
profiles of these potentials are such that they satisfy the relationship:

V2(x, b) = V1(x, b1) + R(b1), (21)

where the parameter b1 is some function of b, say given by b1 = f (b), the potentials V1,2(x)
are said to bear shape invariance. In other words, to be associated within shape invariance
the potentials V1,2, while sharing a similar coordinate dependence, can at most differ in the
presence of some parameters. To make the definition of shape invariance clear, consider,
for example,

W = b tanh

(√
2m
h̄

x

)
. (22)

Then, inserting this superpotential into (10) gives us:

V1(x, b) = − b(b + 1)

cosh2
(√

2m
h̄ x

) + b2,

V2(x, b) = − b(b− 1)

cosh2
(√

2m
h̄ x

) + b2.
(23)

The above expressions show that one can rewrite V2 in terms of V1, as expressed in (10)
where, in this example, b1 = b− 1, and R(b1) := 2b1 + 1. Thus, the potentials V1,2 bear
shape invariance in accordance with the definition (10). Then, to use the shape invariance
condition, let us assume that (10) holds for a sequence of parameters, {bk}k=0,1,2,..., where,

bk = f ◦ f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
k times

(b) = f k(b), k = 0, 1, 2, . . . , b0 := b. (24)

Consequently,
H2(x, bk) = H1(x, bk+1) + R(bk). (25)

Now, we write H(0) = H1(x, b), H(1) = H2(x, b), and we define H(m) as:

H(m) := − h̄2

2m
d2

dx2 + V1(x, bm) +
m

∑
k=1

R(bk) = H1(x, bm) +
m

∑
k=1

R(bk). (26)

Using (25), we can extract H(m+1) as:

H(m+1) = H2(x, bm) +
m

∑
k=1

R(bk). (27)
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Therefore, in this way, we are able to set up a hierarchy of Hamiltonians H(k) for various
k values.

Employing condition (21) and the hierarchy of Hamiltonians [37], the energy eigenval-
ues and eigenfunctions have been obtained for any shape invariant potential when SUSY is
unbroken. It should be noted that there is a correspondence between the condition (21) (as-
sociated with SQM) and the required mathematical condition applied in the method of the
factorization of the Hamiltonian [47]. Although the terminology and ideas associated with
these methods are different, they can be considered as the special cases of the procedure
employed to handle second-order linear differential equations [48,49]. Notwithstanding the
above, it has been believed that a better understanding of analytically solvable potentials
could be achieved by SUSY and shape invariance. Let us elaborate more on this aspect.

H2 contains the lowest state with a zero energy eigenvalue, according to the SQM
concepts discussed in Section 2. As a result of (11), the lowest energy level of H(m) has the
value of:

E(m)
0 =

m

∑
k=1

R(bk). (28)

Therefore, it is simple to realize that because of the chain H(m) → H(m−1) . . . → H(1)(:=
H2) → H(0)(:= H1), the nth member in this sequence carries the nth level of the energy
spectra of H(0) (or H1), namely [35]:

E(0)
n =

n

∑
k=1

R(bk), E(0)
0 = 0. (29)

Let us now return to the example (22). We rewrite (21) as:

V1(x, b) = V2(x, b− 1) + b2 − (b− 1)2. (30)

We can generate bk from b0 = b as bk = b− k. Hence, the energy spectrum from V1(x, b)
yields:

E(0)
n =

n

∑
k=1

R(bk) =
n

∑
k=1

(b2 − b2
k) = b2 − b2

n = b2 − (b− n)2. (31)

It is worth noting that, according to the requirement (21), the well-known solvable potentials
(such as those were listed in the first paragraph of this subsection) are all shape invariant
and, therefore, their energy eigenvalue spectra are given by (29). “In [43], Gendenshtein then
conjectured that shape invariance is not only sufficient but may even be necessary for a potential to
be solvable” [35]; In addition, let us mention that new developments have been achieved
on this domain, where new approaches (see [50–54]) have either challenged or broaden
this assertion. Moreover, by applying SUSY, it is also possible to retrieve the bound-state
energy eigenfunctions of H1 for shape invariant potentials [36]. In particular, in the same
paper, by taking Ψ1

0(x, b) as the ground-state wave function of H1 (which is given by (14)),
and employing relation (13), a relation is obtained for nth-state eigenfunction Ψ1

n(x, b) as:

Ψ1
n(x, b) = A†(x, b)A†(x, b1) . . . A†(x, bn−1)Ψ1

0(x, b). (32)

For later convenience, let us concentrate on a specific shape invariance that only
involving translation of the parameter b0 with a translation step η [27] (for other kind of
relations between the parameters, see, for instance, [37]):

b1 = b0 + η. (33)

It is feasible to introduce a translation operator as:

T(b0) = exp
(

η
∂

∂b0

)
, T−1(b0) = T†(b0) = exp

(
−η

∂

∂b0

)
, (34)
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which act merely on objects defined on the parameter space.
By composing the translation and bosonic operators, we can construct the following

generalized creation and annihilation operators:

B1(b0) = A†(b0)T(b0),
(35)

B2(b0) = T†(b0)A(b0). (36)

Applying the shape invariant potentials to solve the Schrödinger equation is similar to
the factorization method employed to the case of the harmonic oscillator potential [27].
Therefore, we have:

B2(b0)A(b0)Ψ0(x; b0) = A(b0)Ψ0(x; b0) = 0. (37)

In order to obtain the excited states, the creation operator should repeatedly act on Ψ0(x; b0):

Ψn(x; b0) = [B1(b0)]
nΨ0(x; b0). (38)

We should note that the translation operators (T and T†) and ladder operators, A and A† do
not commute with any bk-dependent and any x-dependent objects, respectively. Therefore,
the generalized creation and annihilation operators (B1 and B2) act on the objects defined
on the dynamical variable space and the objects defined on parameter space via the bosonic
operators and the translation operators, respectively. According to (37), we have:

Ψ0(x; b0) ∝ exp
(
−
∫ x

W(x̃; b0)dx̃
)

, (39)

which is transformed by a normalization constant (that should, in general, depend on
parameters b) into a relation of equality. Concretely, the action of the generalized operators
affects in determining such a normalization constant; for more details, see, [55].

Now let us obtain the relations of the energy eigenvalues and energy spectrum. From
using (34), we can write:

R(bn) = T(b0)R(bn−1)T†(b0), (40)

where

bn = b0 + nη (41)

is a generalized version of (33). Employing (40), we get:

R(bn)B1(b0) = B1(b0)R(bn−1). (42)

Equations (40) and (42) yield a commutation relation as:

[H1, (B1)
n] =

(
n

∑
k=1

R(bk)

)
(B1)

n. (43)

Applying (43) on the ground state of H1, i.e., Ψ0(x; b0), it is seen that [B1(b0)]
nΨ0(x; b0)

is also an eigenfunction of H1 with eigenvalue E(1)
n given by (29). Therefore, the energy

spectrum is:

En = E0 + E(1)
n , (44)

where the ground state energy E0 is obtained from either:

H1 = H − E0, (45)
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or, equivalently,

W(x; b)−W ′(x; b) = V(x)− E0 = V1(x). (46)

Finally, it should be noted that the above established algebraic approach is self-
consistent. More concretely, by considering supersymmetric and shape invariance proper-
ties of the system, it can be applied as an appropriate method for obtaining not only the
eigenvalues and eigenfunctions of the bound state of a Schrödinger equation, but also exact
resolutions for this equation [27].

3. SUSY Quantum Cosmology

In order to apply the formalism presented in the previous section, let us investigate a
homogeneous and isotropic cosmology, in the context of General Relativity (GR) together
with a single scalar field, φ, minimally coupled to gravity.

3.1. A Case Study: Classical Setting

By considering the Friedmann–Lemaître–Robertson–Walker (FLRW) line element3

ds2 = N(t)dt2 + a(t)2
{

dr2

1− kr2 + r2dΩ2
}

, (47)

the ADM4 Lagrangian will be5

LADM = − 3
N

aȧ2 + 3kNa + a3
(

φ̇2

2N
− NV(φ)

)
, (48)

where an over-dot denotes a differentiation with respect to the cosmic time t; N(t) is a
lapse function, a(t) is the scale factor, V(φ) is a scalar potential and k = {−1, 0, 1} is the
spatial curvature constant associated with open, flat and closed universes, respectively.

In this work, let us consider the scalar potential V(φ) to be in the form [65,66]

V(φ) = λ +
m2

2α2 sinh2(αφ) +
ϑ

2α2 sinh(2αφ), (49)

where λ may be related to the cosmological constant; m2 = ∂2V/∂φ2|φ=0 is a mass squared
parameter; α2 = 3/8 and ϑ is a coupling parameter. Moreover, we will now investigate
only the spatially flat FLRW universe. For this case, it has been shown that an oscillator–
ghost–oscillator system is produced [66–71]. More concretely, by applying the following
transformations [72–75],

X =
a

3
2

α
cosh(αφ), Y =

a
3
2

α
sinh(αφ), (50)

the Lagrangian (48) transform into

LADM = − 1
2N

ξ̇> Jξ̇ +
N
2

ξ>MJξ, (51)

where

ξ :=
(

X
Y

)
, M :=

(
2λα2 −ϑ

ϑ 2λα2 −m2

)
, J :=

(
1 0
0 −1

)
. (52)

It is straightforward to decouple (51) into normal modes γ := Σ−1ξ by means of:

γ :=
(

u
v

)
, Σ :=

(
−m−

√
m4−4ϑ2

2ϑ
−m+

√
m4−4ϑ2

2ϑ
1 1

)
, (53)
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which diagonalize the matrix M as follows:

Σ−1MΣ =

(
ω1 0
0 ω2

)
, ω2

1,2 =
3λ

4
+

m2

2
∓
√

m4 − 4ϑ2

2
. (54)

Thus, we retrieve the Lagrangian associated with a 2D oscillator–ghost–oscillator:

LADM(u, v) = − 1
2N

γ̇>I γ̇ +
N
2

γ>J γ

= −1
2

{(
1
N

u̇2 −ω2
1 Nu2

)
−
(

1
N

v̇2 −ω2
2 Nv2

)}
,

(55)

where I := Σ> JΣ, and J := Σ>MJΣ. The conjugate momenta corresponding to u and v
are:

pu =
u̇
N

, pv = − v̇
N

. (56)

Moreover, the classical Euler–Lagrange equations are given by:

d
dt

(
u̇
N

)
+ Nω2

1u = 0,
d
dt

(
v̇
N

)
+ Nω2

2v = 0. (57)

It is straightforward to show that the Hamiltonian corresponding to the ADM La-
grangian (55) is:

HADM = −N
2

{(
p2

u + ω2
1u2
)
−
(

p2
v + ω2

2v2
)}

, (58)

which, for the gauge N = 1, yields

u(t) = u0 sin(ω1t− θ), v(t) = v0 sin(ω2t). (59)

In (59), θ is an arbitrary phase factor. From using the Hamiltonian constraint, we obtain
ω1u0 = ω2v0. It is also seen that the classical paths corresponding to solutions (59), in the
configuration space (u, v), are the generalized Lissajous ellipsis.

3.2. Quantization

In order to establish a quantum cosmological model corresponding to our model, let
us proceed with the Wheeler–DeWitt equation. The canonical quantization of (58) gives

HΨ(u, v) =
(
− ∂2

∂u2 +
∂2

∂v2 + ω2
1u2 −ω2

2v2
)

Ψ(u, v) = 0. (60)

Equation (60) is separable and we can obtain a solution as:

Ψn1,n2(u, v) = αn1(u)βn2(v), (61)

where

αn(u) =
(ω1

π

)1/4 Hn(
√

ω1u)√
2nn!

e−ω1u2/2, (62)

βn(v) =
(ω2

π

)1/4 Hn(
√

ω2v)√
2nn!

e−ω2v2/2. (63)
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In relations (62) and (63), Hn(x) stands for the Hermite polynomials. Moreover, we should
note that the Hamiltonian constrain relates the parameters of the model as:(

n1 +
1
2

)
ω1 =

(
n2 +

1
2

)
ω2, n1, n2 = 0, 1, 2, . . . . (64)

The recovery of classical solutions from the corresponding quantum model is one of the
essential elements of quantum cosmology. For this aim, a coherent wave packet with
reasonable asymptotic behavior in the minisuperspace is often constructed, peaking near
the classical trajectory. We can herewith produce a widespread wave packet solution,

Ψ(u, v) = ∑
n1,n2

Cn1n2 αn1(u)βn2(v), (65)

where the summing is restricted to overall values of n1 and n2 satisfies the relation (64). Let
us consider the simplest case which is when ω1 = ω2 = ω, which means m2 = 2ϑ in the
definition of scalar field potential (49). Then, the wave packet will be:

Ψ(u, v) =
√

ω

π

∞

∑
n=0

Cn

n!2n exp
(
−ω

2
(u2 + v2)

)
Hn(
√

ωu)Hn(
√

ωv), (66)

where Cn is a complex constant. We apply the following identity to create a coherent
wave packet with suitable asymptotic behavior in the minisuperspace, peaking around the
classical trajectory:

∞

∑
n=0

tn

n!
Hn(x)Hn(y) =

1√
1− t2

exp
(

2txy− t2(x2 + y2)

2(1− t2)

)
. (67)

Using this identity and choosing the coefficients Cn in (66) to be Cn = B2n tanh ξ , with B
and ξ are arbitrary complex constants, we obtain:

Ψ(u, v) = C exp
(
−ω

4
cos(2β2) cosh(2β1)(u2 + v2 − 2η tanh(2β1)uv)

)
× exp

(
− iω

4
sinh(2β1) sin(2β− 2)(u2 + v2 − 2η coth(2β1)uv)

)
, (68)

where β1 and β2 are the real and imaginary parts of ξ = β1 + iβ2, respectively, η = ±1, and
N is a normalization factor. Figure 2a shows the density plot, and Figure 2b illustrates the
contour plot of the wave function for typical values of β1, β2, and η = 1 for the following
combination of the solutions:

Ψ(u, v) = Ψβ1,β2(u, v)−Ψβ1+δβ1,β2+δβ2(u, v). (69)

The classical solutions (59) can easily be represented as the following trajectories (for
ω1 = ω2 = ω):

u2 + v2 − 2ηuv cos(θ)− u2
0 sin2(θ) = 0. (70)

This equation describes ellipses whose major axes make angle π/4 with the positive/negative
u axis according to the choices ±1 for η. Additionally, each trajectory’s eccentricity and size
are determined by θ and u0, respectively. It can be seen that the quantum pattern in Figure 2
and the classical paths (70) in configuration space, (u, v), have a high correlation.
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(a) (b)

Figure 2. Density plot- (a), and contour plot- (b), of a wave packet. These figures are plotted for
numerical values ω = 1, β1 = 1, β2 = π/6, η = 1, δβ1 = 0.1 and δβ2 = 3π/50.

Let us point out how we can introduce a time-evolving wave-function. By employing
a canonical transformation on the (v, pv) sector of the Hamiltonian (58), we observe that
in the total Hamiltonian, the momentum associated with the the new canonical variable
appears linearly. Let us be more precise. Consider the following canonical transformation
(v, pv)→ (T, pT) given by:

v =

√
2pT

ω2
2

sin(ω2T), pv =
√

2pT cos(ω2T), {T, pT} = 1. (71)

It is easy to check out that the inverse map is given by the following relations:

pT =
1
2

p2
v +

1
2

ω2
1v2, T =

1
ω2

tan−1
(

ω2
v
pv

)
. (72)

In fact, the new set of phase space coordinates (T, pT) is related to the harmonic oscillator’s
action-angle variables, (ϕ, pϕ), by [76,77]:

ϕ = ω2T, pϕ =
pT
ω2

. (73)

The ADM Hamiltonian (58) simply takes the form:

HADM = N
(

1
2

p2
u +

1
2

ω2
1u2 − pT

)
. (74)

The classical field equations corresponding to (74) are:{
u̇ = Npu, ṗu = −Nω2

1u,
Ṫ = −N, ṗT = 0.

(75)

For N = 1, we find

T = −t, pT = const. (76)

Thus, the motion in 2D phase space (T, pT) becomes trivial, i.e., flow paths are straight
lines with constant pT . As seen, the second set of solutions for (75) implies that T plays
the role of the time parameter. Consequently, the Poisson bracket of the time parameter
and super-Hamiltonian does not vanish but instead we have {T,H} = 1 = {T, pT}, which
implies that T is not a Dirac observable, and therefore, we may consider it as a time variable;
see, for instance, [76] and references therein.
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3.3. Supersymmetric Quantization

Employing the Hamiltonian constraint upon (74), and then substituting pu = −i d
du

and pT = −i ∂
∂T = i ∂

∂t , we get a Schrödinger–Wheeler–WeDitt equation:

i
∂

∂t
Ψ(u, t) =

[
−1

2
d2

du2 +
l(l + 1)

2u2 +
1
2

ω2
1u2
]

Ψ(u, t). (77)

In the process of obtaining Equation (77), we have further used the following factor ordering
procedure:

p2
u = −1

3

(
uα d

du
uβ d

du
uγ + uγ d

du
uα d

du
xβ + uβ d

du
uγ d

du
uα

)
, (78)

where the parameters α, β, and γ satisfy the requirement α + β + γ = 0, and we have set
1
3 (β2 + γ2 + βγ) := l(l + 1).

The time independent sector of Equation (77) reads:

HlΨ
l
n(u) = El

nΨl
n(u), (79)

where

Hl := −1
2

d2

du2 +
l(l + 1)

2u2 +
1
2

ω2
1u2. (80)

According to the Equation (10), we now introduce first-order differential operators:
Al := 1√

2ω1

d
du +

√
ω1
2 u− l+1√

2ω1u ,

A†
l := − 1√

2ω1

d
du +

√
ω1
2 u− l+1√

2ω1u .

(81)

For l ∈ N, we correspondingly obtain the following supersymmetric partner Hamiltonians:
H1 = ω1 A†

l Al = − 1
2

d2

du2 +
l(l+1)

2u2 + 1
2 ω2

1u2 + ω1(l − 1
2 ) = Hl −ω1(l + 3

2 ),

H2 = ω1 Al A†
l = − 1

2
d2

du2 +
(l+1)(l+2)

2u2 + 1
2 ω2

1u2 −ω1(l + 1
2 ) = Hl+1 −ω1(l + 1

2 ).

(82)

These two Hamiltonians have the same energy spectrum except the ground state of H2:
H1Ψ(l)

n =
[

E(l)
n + ω1 − (l + 3

2 )
]
Ψ(l)

n ,

H2Ψ(l+1)
n+1 =

[
E(l+1)

n+1 −ω1(l + 1
2 )
]
Ψ(l+1)

n+1 =
[

E(l)
n −ω1(l + 1

2 )
]
Ψ(l+1)

n+1 .

(83)

It is seen that these equations refer to the shape-invariance condition, by which we, equiva-
lently, can write:

A†
l−1 Al−1 − Al A†

l =
2

ω1
. (84)

Thus, altering the sequence of operators Al and A†
l causes the value of l to change. This

demonstrates how shape-invariance properties link the various factor orderings of the
Schrödinger–Wheeler–DeWitt Equation (79). Shape-invariant potentials are well recognized
for being simple to deal with when using lowering and raising operators, similar to the
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harmonic oscillator. However, we should note that the commutator of Al and A†
l does not

provide a constant value. Namely,

[Al , A†
l ] = 1 +

l + 1
ω1u2 , (85)

which implies that these operators are not suitable to proceed with. As the eigenvalue
relation (82) shows, the potentials V1(u; b0) and V2(u; b1) introduced in (9) are given by:

V1(u; b0) =
b0(b0 + 1)

2u2 +
1
2

ω2
1u2,

V2(u; b1) =
b1(b1 + 1)

2u2 +
1
2

ω2
1u2,

(86)

where b1 = l + 1 and b0 = l. Therefore, in relation (33) this corresponds to η = 1.
According to the Section 2.2, we presume that replacing l + 1 with l in a given operator
can be accomplished via a similarity transformation, (34), and so we build an appropriate
algebraic structure via translation operator:

T(l) = exp
(

∂

∂l

)
, T−1(l) = T†(l) = exp

(
− ∂

∂l

)
. (87)

Therefore, we introduce the operators:

Bl :=
1√
2

T†(l)Al , B†
l :=

1√
2

A†
l T(l), Nl

B := B†
l Bl , (88)

which lead us to the simple harmonic oscillator (Heisenberg–Weyl) algebra

[Bl , B†
l ] = 1, [Nl

B, Bl ] = −Bl , [Nl
B, B†

l ] = B†
l . (89)

These commutation relations show that B†
l and Bl are the appropriate creation and anni-

hilation operators for the spectra of our shape-invariant potentials. The action of these
operators on normalized eigenfunctions yields:

BlΨ
l
n =
√

nΨl
n−1, B†

l Ψl
n =
√

n + 1Ψl
n+1, Nl

BΨl
n = nΨl

n, n = 0, 1, 2, . . . . (90)

Equation (79) and the last equation of the above set give:

El
n = ω1

(
2n + l +

3
2

)
. (91)

In addition, the condition BlΨl
0 = 0 gives us the ground state of the model universe for

factor ordering l by:

Ψl
0 = Cl exp

(
−ω1

2
u2 − l + 1

u2

)
, (92)

where Cl is a normalization constant. The excited states can be easily determined by
applying (37).

In what follows, let us complete our procedure by including the Grassmannian vari-
ables ψ and ψ̄, which satisfy

ψ2 = 0, ψ̄2 = 0, ψψ̄ + ψ̄ψ = 1, (93)

involving them in the Hamiltonian (80). By means of such a procedure, we can subsequently
construct a supersymmetric extension of our Hamiltonian:

HSUSY = −1
2

d2

du2 +
l(l + 1)

2u2 +
1
2

ω2
1u2 + ω1ψ̄ψ. (94)
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In our work herein, the convention of the left derivative for these variables has been
adapted. Up to now, we specified the bosonic creation and annihilation operators B and
B† in terms of the dynamical variable u and its conjugate momenta. Here, we can also
introduce fermionic creation and annihilation operators C† = ψ̄ and C = ψ. Therefore, the
Hamiltonian (94) can simply be written as:

HSUSY = 2ω1(B†B + C†C). (95)

Adapting the basic commutator and anticommutator brackets:

[B, B†] = 1, {C, C†} = 1, (96)

and considering all the others to be zero, it is easy to show that the operators:

NB = B†B, NF = C†C, Q = B†C, Q† = C†B, (97)

(where the indices B and F refer to the bosonic and fermionic quantities, respectively) will
be conserved quantities. Namely,

[Q, HSUSY] = [Q†, HSUSY] = 0, [NB, HSUSY] = [NF, HSUSY] = 0. (98)

Moreover, we have:

[Q, NB] = −Q, [Q, NF] = Q

[Q†, NB] = Q†, [Q†, NF] = −Q†,

ω1{Q, Q†} = HSUSY, Q2 =
1
2
{Q, Q} = 0,

(
Q†
)2

=
1
2
{Q†, Q†} = 0. (99)

From (98) and (99) an explicit algebra is therefore produced, where the Hamiltonian HSUSY
is a Casimir operator for the whole algebra [78]. If we use a matrix representation, then we
can write, alternatively,

ψ = C =

(
0 0
1 0

)
, ψ̄ = C† =

(
0 1
0 0

)
, (100)

HSUSY = 2ω1

(
B†

l Bl + 1 0
0 Bl B†

l

)
=

(
H1 0
0 H2

)
. (101)

4. Discussion

This paper is a review that embraces a twofold endorsement. On the one hand, it
imports SUSY features (in a quantum mechanical setting). However, the current fact is
that SUSY has not (yet . . . ) been found in nature; searches prevail for any evidence, being
it directly or indirectly. On the other hand, this review refers to quantum cosmology as
a phenomenological domain regarding the full quantization of gravity. Likewise, there
is as yet no clear-cut observational evidence of such a stage in the very early universe.
Whereas the latter is fairly expected as the cosmos is further probed, proceeding gradually
to prior times, the former, although alluringly elegant, may just be a formal framework.
So, producing a review on a topic involving these two ideas may seem twice likely to raise
discomfort. However, maybe not; perhaps SUSY quantum cosmology deserves to be kept
nearby, just over an arm’s length, so as to say6, if the occasion (or data) emerges to either
support it or at least enthuse more research about it. There are still open aspects to appraise
and the one brought up in this review is among them [18,19].

In what concerns SUSY quantum cosmology, there have been a few books in the past
30 years or so [18,19,79] plus selected reviews on the different procedures that were con-
structed and subsequently promoted [80–90]. Likewise, there are chapters (and sections)
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about SUSY quantum cosmology in well known textbooks concerning quantum grav-
ity [91–94]. In particular, the direction and extension of N = 2 SQM to SUSY quantum
cosmology was led by [95–98] and subsequently by [99,100], referring to conformal issues.

Therefore, the opportunity to produce this review enthused us to refer to and explore
a specific particular aspect that was indicated as a concrete open problem in SUSY quantum
cosmology (Nb. we emphasize many more still remain; cf. in [18,19]); concretely, investi-
gating the setting of SIP, fairly present in N = 2 SQM. This framework has been previously
developed and independently from SUSY quantum cosmology, to explore issues in super-
symmetric quantum field theory, namely SUSY breaking (which the seminal paper [101]
has made possible).

Hence, a necessary and yet to be performed analysis remains to be elaborated: explic-
itly considering SIP as we just mentioned within quantum cosmology, i.e., bringing up this
possibility and using it intertwined within SUSY quantum cosmology. This is a new idea
for other researchers to pick up and evolve forward, producing their own assertions. The
content of our review is thus very open, conveying a direction for further exploration. It
involves algebraic quantum-mechanical aspects that are present when SIP characterizes
particular models. It also deals with integrability, which SUSY seems to bring so elegantly.

In this paper, besides contributing a topical review towards this Special Issue, we
also provided a constructive example to illustrate how promising the framework can
be. Concretely, we provided a case study, consisting of a spatially flat FRW model in the
presence of a single scalar field, minimally coupled to gravity. We extracted the Schrödinger–
Wheeler–DeWitt equation containing a particular set of possible factor ordering. Next, we
computed the corresponding supersymmetric partner Hamiltonians. Intriguingly, the shape
invariance properties can be related to the several factor orderings of our Schrödinger–
Wheeler–DeWitt equation. The ground state was computed and the excited states as
well. Consistently, the partner Hamiltonians, were explicitly presented within an N = 2
SQM framework.

We implicitly made another suggestion in Section 1 (Introduction). In more detail,
we suggested building a twofold framework; on the one hand, importing the ideas em-
ployed in references [13–17], where the presence of constraints, their algebra plus a natural
integrability induces separability in the Hilbert space of solutions for the Wheeler–DeWitt
equation. On the other hand, exploring, at least to begin with on formal terms, whether any
such algebra of the constraints generators for a minisuperspace would bear any similarity
to an algebra of supersymmetry generators. In other words, perhaps producing a sequence
of new operators Al and A†

l , assisting SIP properties but also related to SUSY constraints
of a Schrödinger–Wheeler–DeWitt equation similar to (79). SIP are well recognized for
being simple to deal with. In essence, our suggestion is to explore (i) if there is any rela-
tion between SIP and the descriptive report in [13–17] and, if positive, (ii) apply it within
SUSY quantum cosmology.
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Notes
1 In [37], the excited wave functions have also been studied. More concretely, instead of the choice of a nonsingular superpo-

tential that is based on the ground state wave function Ψ0(x), a generalized procedure was presented to construct all possible
superpotentials.

2 Cf. next subsection, concretely about Equation (28).
3 Throughout this paper we work in natural units where h̄ = c = kB = 1.
4 Adler–Deser–Misner (ADM); see [56] for more details.
5 In this work, we consider a framework in which the scalar field is minimally coupled to gravity, see also [57–59]. Instead, one can

choose other interesting gravitational models where φ is non-minimally coupled, see for instance [60–64].
6 “Ah, but a man’s reach should exceed his grasp, Or what’s a heaven for?”, Robert Browning (in ‘Andrea del Sarto’ l. 97 (1855)).
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