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Abstract: The need for modification of the Huygens–Fresnel superposition principle arises even
in the description of the free fields of massive particles and, more extensively, in nonlinear field
theories. A wide range of formulations and superposition schemes for secondary waves are captured
by Kirchhoff’s integral theorem. We discuss various versions of this theorem as well as its connection
with the superposition principle and the method of Green’s functions. A superposition scheme
inherent in linear field theories, which is not based on Kirchhoff’s integral theorem but instead relies
on the completeness condition, is also discussed.
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1. Introduction

An excellent and detailed explanation of Huygens’ principle for undergraduate stu-
dents, together with the optical-mechanical analogy and the Hamilton–Jacobi method, can
be found in the monograph by Arnold [1]. Students are introduced to a generalization
of Huygens’ principle, viz. the Huygens–Fresnel superposition principle, in the study
of general physics (see, e.g., [2]), and this principle is presented in greater detail in the
study of theoretical physics (see, e.g., [3]). The method of Green’s functions (GF), which
has found numerous applications in a large variety of different fields, is discussed in the
first volume of a two-volume monograph by Bjorken and Drell [4,5], where, in particular,
the superposition principle is used in §§ 21 and 22 to derive the equation for the Green’s
function. Further development of concepts related to the superposition principle has led to
the emergence in quantum theory of the path integral formalism, an excellent overview of
which can be found in the monograph by Dittrich and Reuter [6]. A detailed presentation of
the superposition principle for electromagnetic fields, its rationale and its generalizations,
based on Kirchhoff’s integral theory [7], is given in the monograph by Born and Wolf [8].

Thus, it is clear that the superposition principle is closely related to the GF method
which, in turn, lies at the heart of quantum field theory and the diagram technique. In the
literature, this relationship is typically mentioned only in passing, while the mathematical
aspects, modifications, and physical meaning of the generalized schemes of superposition
are treated as matters beyond dispute.

A rigorous formulation of the superposition principle is based on Kirchhoff’s integral
theorem. The generalizations to which it leads are used also in the theory of interacting
fields. In this paper, we attempt to specify the precise place of the superposition principle
in classical and quantum field theory and discuss its relationship with the GF method and
Kirchhoff’s integral theorem.

Surprisingly, the answers to the main questions can be obtained by analyzing the
dynamics of the one-dimensional oscillator. The oscillator problem from the viewpoint of
Kirchhoff’s integral theorem, as well as its connections with the superposition principle
and the GF method, is discussed in the next section. In Section 3, we consider a free
massive scalar field. For massive fields, the superposition scheme includes an integral
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over three-dimensional space. Both in the limit of zero mass and for monochromatic fields,
the canonical superposition scheme, in which the summation of the sources of secondary
waves is limited to a two-dimensional surface, arises. The statement of Kirchhoff’s theorem
depends on the asymptotic conditions imposed on the propagator at t→ ±∞. In quantum
field theory, the Feynman asymptotic conditions are used. Emphasis is therefore placed on
the versions of the theorem that satisfy the Feynman asymptotic conditions. In Section 4,
we discuss a charged scalar field in an external electromagnetic field, prove the appropriate
version of Kirchhoff’s integral theorem, and demonstrate that in an external electromagnetic
field, the superposition schemes are not fundamentally modified.

In nonlinear theories, the superposition principle holds in relation to the secondary
waves. In Section 5, we consider a class of nonlinear scalar field theories. The physical
meaning of Kirchhoff’s integral theorem is discussed, including its connections with the GF
method and the superposition principle. Vectorial generalizations of Kirchhoff’s integral
theorem for retarded Green’s function are discussed in Appendix A. The conclusions section
summarizes the discussion.

The material of this work is intended for students studying quantum field theory and
researchers specializing in the theory of the propagation of electromagnetic waves and
light phenomena.

2. The Huygens–Fresnel Superposition Principle and Kirchhoff’s Integral Theorem in
the Oscillator Problem

A free scalar field obeys the Klein–Gordon equation:

(�+ m2)φ0(x) = 0. (1)

Of interest are the general features of solutions of the wave equation, which extend
to its nonlinear modifications. The main consequences of Kirchhoff’s theorem and the
physical content of the Fresnel–Huygens superposition principle can be explained using
the example of the one-dimensional oscillator; thus, we begin by considering the evolution
of a one-dimensional harmonic oscillator. This problem can also be regarded as a problem
of the evolution of a free scalar field in momentum space.

2.1. Harmonic Oscillator

We write the equation in the form(
d2

dt2 + m2
)

φ0(t) = 0. (2)

Here, m is the frequency of the oscillator and φ0(t) is its coordinate. If φ0(t) is a spatially
homogeneous field in the Klein–Gordon equation, then m is the mass of the particle.

2.1.1. Complete Orthonormal Basis Functions

A complete set of solutions to Equation (2) is formed by the two functions

f (+)(t) =
e−imt
√

2m
and f (−)(t) =

eimt
√

2m
. (3)

The normalization and completeness conditions are expressed in terms of the Wronskian.
If ϕ and χ are two functions, then their Wronskian is equal to

W[ϕ, χ] = det
∥∥∥∥ ϕ χ

ϕ̇ χ̇

∥∥∥∥ = ϕχ̇− ϕ̇χ. (4)

The notation
ϕ
↔
∂ t χ = W[ϕ, χ]
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is often used. The normalization and orthogonality of the basis functions are represented
as follows:

iW[ f (±)∗, f (±)] = ±1 and W[ f (±)∗, f (∓)] = 0. (5)

If the functions for which we compute the Wronskian are solutions of Equation (2), then
the Wronskian is independent of time. Let φ0(t) be a solution of Equation (2). We define
the following time-independent complex numbers:

a = iW[ f (+)∗, φ0] and a∗ = −iW[ f (−)∗, φ0]. (6)

After quantization, the values a and a∗ become annihilation and creation operators.
The completeness condition takes the form

φ0(t) = f (+)(t)iW[ f (+)∗, φ0]− f (−)(t)iW[ f (−)∗, φ0]. (7)

This equation also allows for the decomposition of the solution into its positive- and
negative-frequency components:

φ0(t) = φ
(+)
0 (t) + φ

(−)
0 (t), (8)

where
φ
(±)
0 (t) = ± f (±)(t)iW[ f (±)∗, φ0]. (9)

Equation (7) is valid not only in the linear vector space spanned by the basis func-
tions (3), but also for any function evaluated at time t. The right-hand side of Equation (7)
for an arbitrary function χ(t) has the form

r.h.s. = i
(

f (+)(t) f (+)∗(t)− f (−)(t) f (−)∗(t)
)

χ̇(t)− i
(

f (+)(t) ḟ (+)∗(t)− f (−)(t) ḟ (−)∗(t)
)

χ(t).

Using the explicit form of f (±)(t), one can see that r.h.s. = χ(t). Although this property
appears fortuitous, it is rather fundamental.

Let us consider the Poisson bracket relations

{φ0(t), φ0(t)} = 0, (10)

{φ0(t), π0(t)} = 1, (11)

where π0(t) = φ̇0(t) is the canonical momentum. A simple calculation using Equation (7)
gives

{φ0(t′), φ0(t)} = f (+)(t)i{φ0(t′), W[ f (+)∗, φ0]} − f (−)(t)i{φ0(t′), W[ f (−)∗, φ0]}
= f (+)(t)i{φ0(t′), f (+)∗(t′)π0(t′)− ḟ (+)∗(t′)φ0(t′)}
− f (−)(t)i{φ0(t′), f (−)∗(t′)π0(t′)− ḟ (−)∗(t′)φ0(t′)}

= i
(

f (+)(t) f (+)∗(t′)− f (−)(t) f (−)∗(t′)
)

, (12)

{φ0(t′), π0(t)} = i
(

ḟ (+)(t) f (+)∗(t′)− ḟ (−)(t) f (−)∗(t′)
)

. (13)

By virtue of Equations (10) and (11),

f (+)(t) f (+)∗(t)− f (−)(t) f (−)∗(t) = 0, (14)

f (+)(t) ḟ (+)∗(t)− f (−)(t) ḟ (−)∗(t) = i, (15)

ḟ (+)(t) f (+)∗(t)− ḟ (−)(t) f (−)∗(t) = −i. (16)

Identity r.h.s. = χ(t) is, therefore, a consequence of the completeness condition (7) for
functions φ0(t), which are solutions of Equation (2), and the Poisson bracket relations for
the canonical variables.
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2.1.2. The Green’s Functions

A Green’s function is defined by the equation(
d2

dt2 + m2
)

∆X(t) = −δ(t). (17)

By performing the Fourier transform in time, we obtain the Green’s function in frequency
space: ∆X(ω) = (ω2 −m2)−1. For the inverse Fourier transformation,

∆X(t) =
∫ +∞

−∞

dω

2π
e−iωt 1

ω2 −m2 , (18)

it is necessary to bypass the poles on the real axis that arise for ω = ±m. There are four
possibilities, which correspond to four Green’s functions:

∆F(t′ − t) =
∫ +∞

−∞

dω

2π
e−iω(t′−t) 1

ω2 −m2 + i0

= −i
(

f (+)(t′) f (+)∗(t)θ(t′ − t) + f (−)(t′) f (−)∗(t)θ(−t′ + t)
)

, (19)

∆c
F(t
′ − t) =

∫ +∞

−∞

dω

2π
e−iω(t′−t) 1

ω2 −m2 − i0

= i
(

f (−)(t′) f (−)∗(t)θ(t′ − t) + f (+)(t′) f (+)∗(t)θ(−t′ + t)
)

, (20)

∆ret(t′ − t) =
∫ +∞

−∞

dω

2π
e−iω(t′−t) 1

ω2 −m2 + i0sgn(ω)

= −i
(

f (+)(t′) f (+)∗(t)− f (−)(t′) f (−)∗(t)
)

θ(t′ − t), (21)

∆adv(t′ − t) =
∫ +∞

−∞

dω

2π
e−iω(t′−t) 1

ω2 −m2 − i0sgn(ω)

= i
(

f (+)(t′) f (+)∗(t)− f (−)(t′) f (−)∗(t)
)

θ(−t′ + t). (22)

Each of these functions satisfies Equation (17). The difference between any two Green’s
functions is a solution of the free Equation (2).

It is instructive to verify by the direct calculation that the representation (19) satisfies
Equation (17). With the help of equation

f (x)δ′(x) = f (0)δ′(x)− f ′(0)δ(x),

one finds(
d2

dt′2
+ m2

)
i∆F(t′ − t) = 2

(
ḟ (+)(t′) f (+)∗(t)− ḟ (−)(t′) f (−)∗(t)

)
δ(t′ − t)

+
(

f (+)(t′) f (+)∗(t)− f (−)(t′) f (−)∗(t)
)

δ′(t′ − t)

=
(

ḟ (+)(t′) f (+)∗(t)− ḟ (−)(t′) f (−)∗(t)
)

δ(t′ − t)

+
(

f (+)(t) f (+)∗(t)− f (−)(t) f (−)∗(t)
)

δ′(t′ − t). (23)

Using Equations (14) and (16), we arrive at Equation (17).
In terms of quantized variables, the Feynman propagator is defined by

i∆F(t′ − t) = 〈0|Tφ̂0(t′)φ̂0(t)|0〉. (24)

The T product entering this expression occurs naturally in solutions of the evolution equation
i∂tΨ(t) = Ĥ(t)Ψ(t) of systems with a time-dependent Hamiltonian. If, at various times, Ĥ
does not commute with itself, namely, [Ĥ(t′), Ĥ(t)] 6= 0, then the solution Ψ(t) = U(t, 0)Ψ(0)
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is expressed in terms of the time-ordered exponential U(t, 0) = T exp(−i
∫ t

0 Ĥ(t′)dt′). In per-
turbation theory, ∆F(t′ − t) then arises by Wick’s theorem, which explains why ∆F(t′ − t)
plays a special role in quantum theory. The definition (24) is consistent with the definition (19).

2.1.3. Superposition Principle from Kirchhoff’s Integral Theorem

Let us compute the Wronskian of the Feynman propagator ∆F(t
′ − t) and a solution

φ0(t) of Equation (2). By taking the derivative with respect to t of W[∆F(t′ − t), φ0(t)]
and integrating the result over the interval (t1, t2), the following equation is obtained for
t1 < t′ < t2:

φ0(t′) = W[∆F(t
′ − t2), φ0(t2)]−W[∆F(t

′ − t1), φ0(t1)]. (25)

This relation is the harmonic oscillator analog of Kirchhoff’s integral theorem. Despite
the drastic simplification, the fundamental meaning is maintained and is amenable to
interpretation. According to Equation (25), the coordinate φ0(t) is determined by both the
past and the future. From the past, the Wronskian selects the positive-frequency component
of φ0(t1) and propagates it into the future up to the moment t = t′ > t1. From the future,
the Wronskian selects the negative-frequency component of φ0(t2) and propagates it into
the past up to the moment t = t′ < t2. The result is a superposition of the two waves.
Equation (2) is commonly regarded as the equation of motion of a particle (oscillator) in
the one-dimensional space. A less obvious interpretation of this equation as an evolution
equation of a wave in the zero-dimensional space is also possible. Equation (25) underlines
the second interpretation.

The analogy with quantum field theory is apparent: particles are identified with
positive-frequency solutions of wave equations, and antiparticles are identified with
negative-frequency solutions. Particles move forward in time, whereas antiparticles move
backward in time. In accordance with the Huygens–Fresnel superposition principle adapted
here for the Feynman asymptotic conditions, the wave φ0(t′) is equal to the sum of the
negative-frequency component of φ0(t2), propagating backward in time, and the positive-
frequency component of φ0(t1), propagating forward in time. Equation (25) can thus be
interpreted both in the spirit of the Huygens–Fresnel superposition principle and in the
spirit of the GF method, thereby establishing the close relationship between them.

According to Equation (25), the coordinate φ0(t′) is determined by its value and its first
derivative at the other two time points. Arguing reversely, this suggests that the evolution
equation contains time derivatives of no higher than second order.

If t′ /∈ (t1, t2), then there is a zero on the left-hand side of Equation (25):

0 = W[∆F(t′ − t2), φ0(t2)]−W[∆F(t′ − t1), φ0(t1)]. (26)

Equations (25) and (26) remain valid after the replacement ∆F with any other prop-
agator. For the retarded Green’s function, the analog of Equations (25) and (26) for
t2 → +∞ reads

φ0(t
′)θ(t′ − t1) = −W[∆ret(t

′ − t1), φ0(t1)]. (27)

Here, the positive- and negative-frequency components propagate forward in time, corre-
sponding to the usual formulation of the Huygens–Fresnel superposition principle, so that
φ0(t) is determined by the past only.
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2.1.4. Superposition Principle from the Completeness Condition

Here, we present a different formulation of the superposition principle. To begin, let
us find the Wronskian W of ∆F(t′ − t) and φ0(t). The expression (19), when substituted
into W, yields

W[∆F(t′ − t), φ0(t)] = −i f (+)(t′)W[ f (+)∗(t)θ(t′ − t), φ0(t)]

−i f (−)(t′)W[ f (−)∗(t)θ(t− t′), φ0(t)]

= −i f (+)(t′)θ(t′ − t)W[ f (+)∗(t), φ0(t)]

−i f (−)(t′)θ(t− t′)W[ f (−)∗(t), φ0(t)]

+∆(t′ − t)φ0(t)δ(t′ − t), (28)

where
i∆(t′ − t) = f (+)(t′) f (+)∗(t)− f (−)(t′) f (−)∗(t). (29)

By virtue of Equation (12),
∆(t′ − t) = {φ0(t′), φ0(t)}.

In the transition to the last lines of Equation (28), the properties of the Wronskian and
the definitions of the basis functions (3) are used. According to Equation (14), the term
∼ ∆(t′ − t)δ(t′ − t) vanishes, yielding

φ
(+)
0 (t′)θ(t′ − t)− φ

(−)
0 (t′)θ(t− t′) = −W[∆F(t

′ − t), φ0(t)]. (30)

Equation (30) can be regarded as an equation for ∆F(t′ − t). By taking the time (t)
derivative of both sides, we obtain Equation (17). The superposition principle, formalized
as in (30), thus determines the Green’s function up to a solution of the free equation. To
obtain a unique Green’s function, the asymptotic behavior must be fixed. By taking the
differences between both sides of Equation (30) for t = t2 and t = t1 < t2, we obtain
Equation (25), provided that t′ ∈ (t1, t2). If the inverse condition, t′ /∈ (t1, t2), holds,
then we obtain Equation (26). Finally, by taking the time (t′) derivative, we obtain the
superposition principle for the canonical momentum π0(t) = φ̇0(t):

π
(+)
0 (t′)θ(t′ − t)− π

(−)
0 (t′)θ(t− t′) = −W[∆F(t

′ − t), π0(t)]. (31)

The proof of Equation (30) is not based on Kirchhoff’s theorem, nor its obvious
modification. For the retarded Green’s function, the completeness condition does not lead
to a new equation (compared with (27)). In quantum field theory, the diagram technique is
based on the Feynman propagator; thus, what is of interest to us here is the superposition
principle formalized as in (25), (26) and (30).

2.1.5. Path Integral

Kirchhoff’s integral theorem can also be used as a starting point for developing path
integral method.

To show this, we note a useful relation

iW[∆F(t3 − t2), ∆F(t2 − t1)] = −θ(t3 − t2)θ(t2 − t1) f (+)(t3) f (+)∗(t1)

+θ(t1 − t2)θ(t2 − t3) f (−)(t3) f (−)∗(t1). (32)

This relation indicates that a wave propagating toward the future continues to propagate
forward in time. A similar property holds for waves propagating backward in time. We
choose a sequence of the intervals (t1, t2) ⊂ (t3, t4) ⊂ . . . ⊂ (t2n−1, t2n) and consider
t′ ∈ (t1, t2). Equation (25) being iterated n times gives
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φ0(t′) = W[∆F(t′ − t2), W[∆F(t2 − t4), W[. . . , W[∆F(t2n − t2n+2), φ0(t2n+2)] . . .]]]

+ (−)n+1W[∆F(t′ − t1), W[∆F(t1 − t3), W[. . . , W[∆F(t2n−1 − t2n+1), φ0(t2n+1)] . . .]]]. (33)

According to this equation, φ0(t2n+2) generates a secondary wave that propagates into
the past. In the neighboring instant of time t = t2n < t2n+2, it generates new secondary
wave, and so on. The same interpretation is valid for the wave propagating forward in
time. Equation (25) is reproduced with n = 0 for t−1 = t0 = t′. The mixed terms containing
forward and backward propagation do not arise as a consequence of (32). In the limit of
n→ ∞, t2− t1 → 0 and (tl+3− tl+2)→ (tl+1− tl), we arrive at the continuous product over
history. Equation (33) can be regarded as a path-integral representation in the space R1,0.

Path integral in the space R1,3 is discussed in Section 3.5.

2.2. Harmonic Oscillator with a Time-Dependent Frequency

A field theoretical version of the evolution problem with a time-dependent oscillator
frequency, in light of the superposition principle, is discussed in Section 4, where proofs
are presented. Here, we restrict ourselves to statements of the main assertions.

We consider the equation(
d2

dt2 + m2 + ∆m2(t)
)

φ(t) = 0, (34)

where ∆m2(±∞) = 0. The perturbation ∆m2(t) is switched on and off adiabatically. Let
∆F(t′, t) be the Feynman propagator for Equation (34). The following superposition
schemes hold: As a consequence of Kirchhoff’s integral theorem,

φ(t′) = W[∆F(t′, t2), φ(t2)]−W[∆F(t′, t1), φ(t1)] for t′ ∈ (t1, t2),

0 = W[∆F(t′, t2), φ(t2)]−W[∆F(t′, t1), φ(t1)] for t′ /∈ (t1, t2),

and, as a consequence of the completeness condition,

φ(+)(t′)θ(t′ − t)− φ(−)(t′)θ(t− t′) = −W[∆F(t
′, t), φ(t)],

where φ(±)(t) ∼ f (±)(t) at t → ±∞. The expansion of φ(t) into positive- and negative-
frequency components φ(±)(t) has an objective meaning because the evolution equation
is linear.

2.3. Anharmonic Oscillator

In nonlinear theories, the superposition principle requires reformulation. Its general-
ization, based on Kirchhoff’s integral theorem, preserves the idea in relation to secondary
waves. The main technical points can be illustrated by the example of anharmonic oscillator.

We add to the oscillator potential an arbitrary potential V(φ). The equation of motion
takes the form (

d2

dt2 + m2
)

φ(t) = −V′(φ(t)). (35)

2.3.1. Secondary Waves beyond Fresnel’s Superposition Scheme

Equation (25) is modified as follows:

φ(t′) = W[∆F(t
′ − t2), φ(t2)]−W[∆F(t

′ − t1), φ(t1)] +
∫ t2

t1

dt∆F(t
′ − t)V′(φ(t)). (36)
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The propagator ∆F(t) is determined from Equation (17). On the interval (t1, t2), the sum of
the first two terms satisfies the evolution equation of the harmonic oscillator. We denote
this sum as

φ0(t′) ≡W[∆F(t
′ − t2), φ(t2)]−W[∆F(t

′ − t1), φ(t1)]. (37)

The solution takes the form

φ(t′) = φ0(t′) +
∫ t2

t1

dt∆F(t
′ − t)V′(φ(t)). (38)

Given that the Green’s function properties of the harmonic oscillator are known, the solution
can be written immediately. If t′ /∈ (t1, t2), then we obtain

0 = φ0(t′) +
∫ t2

t1

dt∆F(t
′ − t)V′(φ(t)). (39)

The last two equations constitute a version of Kirchhoff’s integral theorem for the
one-dimensional anharmonic oscillator.

Equation (38) cannot be interpreted canonically. Although the first term has the
standard meaning under the Fresnel superposition scheme, the second term indicates that
a component arises among the secondary waves that is generated continuously in time.

According to the Huygens–Fresnel superposition principle, to describe the propagation
of a wave, it is sufficient to know its phase and amplitude at a fixed time. However, this is
true only in linear theories. In nonlinear theories, the propagation of a wave is determined
by its entire history (for retarded solutions, its prehistory), even if the original wave
equation is local. The dependence of the wave observables on the entire history of the
wave indicates, in general, the nonlocal nature of its evolution. Only a narrow family of
representations that contain an integral over time correspond to local but nonlinear theories.

The derivative of the potential is an additional source of secondary waves (corrections
to the coordinate), and the potential depends on the exact coordinate. This means that
Equation (38) is self-consistent and that its solution is obvious only in the context of
perturbation theory.

In quantum field theory, an equation similar to Equation (38) serves as the starting
point for the development of the diagram technique (see, e.g., [4]). The equations obtained
by replacing the Feynman propagator in Equation (38) with the retarded and advanced
propagators are used to develop the axiomatic scattering theory (see, e.g., [5]).

2.3.2. Positive- and Negative-Frequency Solutions

In the theory of interacting fields, the decomposition of solutions into positive- and
negative-frequency components makes sense only asymptotically for outgoing and incom-
ing states. We assume that the nonlinear interaction is adiabatically switched on at t→ −∞
and adiabatically switched off at t→ +∞. If positive- and negative-frequency components
φ(±)(t) are somehow defined, then the subsequent modification of Equation (30) is obvious:

φ(+)(t′)θ(t′ − t)− φ(−)(t′)θ(t− t′) = −W[∆F(t
′ − t), φ(t)] +

∫ t′

t
dτ∆F(t′ − τ)V′(φ(τ)). (40)

By taking the time (t) derivative, after some simple transformations, we obtain
φ(t) = φ(+)(t) + φ(−)(t) and Equation (17). The difference in this equation at two un-
equal time points leads to Equations (36)–(39). It might seem, therefore, that Equation (40)
is no less general than Equation (36)–(39). However, we do not have an independent
definition of the decomposition into positive- and negative-frequency components. We
are forced, therefore, to regard Equation (40) as a definition of φ(±)(t). According to this
equation, φ(±)(t) ∼ f (±)(t) at t→ ±∞.

The calculation of the first derivative of Equation (40) in t′ leads to the superposition
principle for the canonical momentum
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π(+)(t′)θ(t′ − t)− π(−)(t′)θ(t− t′) = −W[∆F(t′ − t), π(t)] +
∫ t′

t
dτ∆F(t

′ − τ)V′′(φ(τ))π(τ). (41)

This equation is consistent with the evolution equation for π(±)(t) = φ̇(±)(t).
Obviously, in nonlinear theories, a full generalization of (30) does not exist.
A field theoretical version of the anharmonic oscillator problem is discussed in

Section 5.

2.3.3. Numerical Example

We use a numerical example to demonstrate the application of the superposition
scheme (38) for the description of radial motion in the Keplerian problem. After separation
of the angular variables, the evolution problem reduces to solving a problem of one-
dimensional motion in an effective potential

U = −α

r
+

L2

2µr2 ,

where α = GM�µ, M� is the solar mass, µ is the mass of a celestial body, and L is the
angular momentum. We add and subtract from the potential U an oscillator potential

Uosc =
1
2

µm2(r− a)2

and treat Uosc as the undisturbed potential. The perturbation potential is thus V = U−Uosc.
In order to improve convergence and eliminate the need to determine optimized Uosc, the
frequency parameter m is chosen in agreement with the exact solution (see, e.g., [1]):
m = 2π/T, where T = 2πµab/L is the orbital period, a = (rmin + rmax)/2 and b =

√
pa

are the major and minor semi-axes of the ellipse and L =
√

pαµ; the variable r lies in the
interval (rmin, rmax), where rmin = p/(1 + e), rmax = p/(1− e), p is the semi-latus rectum,
and e is the eccentricity.

As a zeroth-order approximation for φ(t) ≡ r(t)− a, we choose a free solution

φ[0](t) = C[0]
+ f (+)(t) + C[0]

− f (−)(t) (42)

with unknown coefficients C[0]
± and f (±)(t) defined by Equation (3). The motion begins

at perihelion φ[0](0) = rmin − a, with the vanishing velocity φ̇[0](0) = 0. These conditions
allow C[0]

± to be fixed.
Given the lth-order approximation, r[l](t) = a + φ[l](t) can be substituted in place of

the argument of V′ in Equation (38) to produce the next-order iteration

φ[l+1](t) = C[l+1]
+ f (+)(t) + C[l+1]

− f (−)(t) +
∫ t2

t1

dτ∆F(t− τ)V′(a + φ[l](τ)), (43)

where ∆F(t) is defined by (19). The interval (t1, t2) covers an interval within which we seek
the solution. C[l+1]

± are fixed by the conditions φ[l+1](0) = rmin − a and φ̇[l+1](0) = 0.

Table 1. Expansion coefficients of free solutions in the unperturbed potential for the first two iterations
and for the exact solution (l = ∞).

l C[l]
+ C[l]

−

0 −0.142872 −0.142872
1 −0.155969− i0.040544 −0.155322− i0.068246
∞ −0.151619− i0.033743 −0.151875− i0.033990
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The numerical convergence of the recursion is a subtle issue that should be studied
separately. Assuming the convergence of the approximate sequence, we should obtain an
identity when using r(t) to evaluate the integral in Equation (38):

φ[∞](t) = C[∞]
+ f (+)(t) + C[∞]

− f (−)(t) +
∫ t2

t1

dτ∆F(t− τ)V′(a + φ(τ)). (44)

The exact solutions are parameterized in terms of the eccentric anomaly E: r =
a(1− e cos E) and t =

√
ma3/α(E− e sin E), where t is time. For our numerical estimates,

we choose α = µ = p = 1 and e = 0.2. The values t1 and t2 are taken arbitrarily; they
correspond to E1 = −1 and E2 = 7.2. The coefficients C[l]

± for l = 0, 1, ∞ found as described
above are presented in Table 1. Table 2 shows r[0], r[1] and r[∞] for seven values of E ∈ [0, 2π].
The inclusion of the secondary waves generated by the nonlinear source V′ reduces the
standard deviation χ2 = ∑(r[l] − r)2 from 0.0038 to 0.0015, whereas r[∞] coincides with r.

Equation (38) can also be derived directly, under the assumption of t ∈ (t1, t2), by using
the GF method, whereas Equations (37) and (39) are specific consequences of Kirchhoff’s
integral theorem. We verified that the free term in Equation (44) fulfills, numerically,
Equation (37) and checked Equation (39) for a sample set of time points t /∈ (t1, t2), as well.

In summary, the idea of Kirchhoff’s integral theorem was explained in this section
with a one-dimensional toy model (a harmonic oscillator). Such a pedagogical approach
illustrates formalism, while the attempt to draw a physical analogy with well-known
phenomena leads to the seemingly paradoxical observation: no waves in the R1,0 space,
but the superposition principle is there, and even the problem of celestial mechanics was
solved using Kirchhoff’s integral theorem in a technically consistent manner. A parallelism
between classical mechanics and geometrical optics was regarded as purely formal until
the advent of quantum mechanics. The possibility of solving the problems of classical
mechanics using the methods of wave optics seems to be a surprising circumstance.

Table 2. First two iterations r[l] for the approximate solution of the radial equation of motion as
compared to the exact solution r = r[∞] for seven values of E ∈ [0, 2π].

E r[0] r[1] r[∞]

0 0.8333 0.8333 0.8333
π/3 0.9079 0.9410 0.9375

2π/3 1.1131 1.1619 1.1458
π 1.2500 1.2500 1.2500

4π/3 1.1132 1.1232 1.1458
5π/3 0.9079 0.9094 0.9375

2π 0.8333 0.8333 0.8333

3. Kirchhoff’s Integral Theorem for a Free Scalar Field
3.1. Complete Orthonormal Basis Functions

A complete set of solutions to the Klein–Gordon equation is formed by the functions

f (+)
k (x) =

e−ikx
√

2ωk
and f (−)k (x) =

eikx
√

2ωk
,

where k = (ωk, k), ωk =
√

k2 + m2, x = (t, x) ∈ R1,3, and kx = ωkt− kx. These functions
correspond to the positive- and negative-frequency solutions in the oscillator problem. The
orthonormality conditions are

i
∫

dxW[ f (±)∗k′ (x), f (±)k (x)] = ±(2π)3δ(k′ − k),∫
dxW[ f (∓)∗k′ (x), f (±)k (x)] = 0. (45)
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For any function φ0(x) that is a solution of the Klein–Gordon equation,

φ0(x) =
∫ dk

(2π)3

(
f (+)
k (x)i

∫
dyW[ f (+)∗

k (y), φ0(y)]− f (−)k (x)i
∫

dyW[ f (−)∗k (y), φ0(y)]
)

. (46)

After the second quantization, the time-independent quantities

a(k) = i
∫

dyW[ f (+)∗
k (y), φ0(y)] and a∗(k) = −i

∫
dyW[ f (−)∗k (y), φ0(y)]

become annihilation and creation operators.
The first and the second terms in Equation (46) are identified with the positive- and

negative-frequency components of φ0(x). According to the completeness condition (46),
the solutions of the free equation thereby split into the sum

φ0(x) = φ
(+)
0 (x) + φ

(−)
0 (x).

This decomposition is analogous to the decomposition of Equation (8). The orthonormality
conditions (45) and the completeness condition (46) are the generalized equivalents to
Equations (5) and (7), respectively, for the oscillator problem.

Using the analogy with Equations (10)–(16) and the Poisson bracket relations

{φ0(x), φ0(y)}|x0=y0 = 0, (47)

{φ0(x), π0(y)}|x0=y0 = δ(x− y), (48)

one can prove that∫ dk
(2π)3

(
f (+)
k (x) f (+)∗

k (y)− f (−)k (x) f (−)∗k (y)
)
|x0=y0 = 0, (49)∫ dk

(2π)3

(
f (+)
k (x) ḟ (+)∗

k (y)− f (−)k (x) ḟ (−)∗k (y)
)
|x0=y0 = iδ(x− y), (50)∫ dk

(2π)3

(
ḟ (+)
k (x) f (+)∗

k (y)− ḟ (−)k (x) f (−)∗k (y)
)
|x0=y0 = −iδ(x− y). (51)

Equations (49) and (50) can be used to show that the completeness condition (46) holds for
arbitrary functions at x0 = y0.

3.2. Feynman Propagator

The equation for the Feynman propagator is

(�+ m2)∆F(x) = −δ4(x). (52)

It is easiest to find the solution in four-momentum space and then apply the Fourier
transform to convert it into coordinate space. Here, as in the oscillator problem, we must
shift the contour of the integral over k0 from the real axis in the vicinity of k0 = ±ωk. The
four possible ways to do so correspond to four Green’s functions.

The Feynman propagator can be written as follows:

∆F(x− y) =
∫ d4k

(2π)4
e−ik(x−y)

k2 −m2 + i0
(53)

= −i
∫ dk

(2π)3

(
f (+)
k (x) f (+)∗

k (y)θ(x0 − y0) + f (−)k (x) f (−)∗k (y)θ(−x0 + y0)
)

.

In comparison with Equation (19), the phase space integral is added here. After the re-
placement f (±)(t)→ f (±)k (x) and the integration over the phase space in Equations (20)–(22),
the form of the other propagators is restored. Using the analogy with Equation (23) and
Equations (49) and (51), one can verify that the propagator (53) satisfies Equation (52).
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3.3. Superposition Principle from Kirchhoff’s Integral Theorem
3.3.1. General form of the Superposition Principle

We start from the identity

φ0(ξ)δ
4(ξ − x) = ∆F(x− ξ)

(
(�ξ + m2)φ0(ξ)

)
−
(
(�ξ + m2)∆F(x− ξ)

)
φ0(ξ). (54)

The right-hand side can be written in divergence form as follows:

φ0(ξ)δ
4(ξ − x) =

∂

∂ξµ

(
∆F(x− ξ)

↔
∂

∂ξµ φ0(ξ)

)
. (55)

By taking the integral over a four-dimensional region Ω and transforming the right-
hand side into a surface integral, the equation

φ0(x)θ(x ∈ Ω) =
∫

∂Ω
dSµ

ξ

(
∆F(x− ξ)

↔
∂

∂ξµ φ0(ξ)

)
, (56)

is obtained, where θ(x ∈ Ω) is the indicator function of Ω:

θ(x ∈ Ω) =

{
1, x ∈ Ω ,
0, x /∈ Ω .

By choosing for the surface ∂Ω a hyperplane ξ0 = y0 in the past, i.e., three-dimensional
space at a time ξ0 = y0 < x0, and a three-dimensional space ξ0 = z0 at a time ξ0 = z0 > x0

in the future, and then combining these spaces at infinity, where the integral vanishes, we
arrive at

φ0(x) =
∫

dzW[∆F(x− z), φ0(z)]−
∫

dyW[∆F(x− y), φ0(y)]. (57)

If x /∈ Ω, we obtain

0 =
∫

dzW[∆F(x− z), φ0(z)]−
∫

dyW[∆F(x− y), φ0(y)]. (58)

Equation (57) states that φ0(x) is determined by its past and future. Equation (58) suggests
that the interference of secondary waves outside the interval (y0, z0) is strictly destructive.

Equation (56) and its consequences (57) and (58) constitute a version of Kirchhoff’s
theorem in the most general form; these equations hold for any choice of propagator.

3.3.2. Monochromatic Field

The Fourier transform simplifies the superposition scheme of secondary waves. We
restrict ourselves to the case of monochromatic, spatially inhomogeneous waves. Consider
the following Fourier transforms in time of the scalar field and the Green’s function:

φ0(ω, x) =
∫ +∞

−∞
dteiωtφ0(t, x), ∆F(ω, x) =

∫ +∞

−∞
dteiωt∆F(t, x). (59)

They satisfy the equations

(∆ + k2)φ0(ω, x) = 0, (∆ + k2)∆F(ω, x) = δ(x),

where k2 = ω2 −m2. The right-hand side of the identity

φ0(ω, ξ)δ(ξ − x) = −∆F(ω, x− ξ)
(
(∆ξ + k2)φ0(ω, ξ)

)
+
(
(∆ξ + k2)∆F(ω, x− ξ)

)
φ0(ω, ξ). (60)
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can be represented as the divergence

φ0(ω, ξ)δ(ξ − x) = − ∂

∂ξα

(
∆F(ω, x− ξ)

↔
∂

∂ξα
φ0(ω, ξ)

)
.

Integrating over the region Ω3, we obtain von Helmholtz’s theorem for the monochro-
matic field [9]:

φ0(ω, x)θ(x ∈ Ω3) = −
∫

∂Ω3

dSα
ξ ∆F(ω, x− ξ)

↔
∂

∂ξα
φ0(ω, ξ), (61)

which is a particular case of the third Green’s identity [10] and a precursor of Kirchhoff’s
integral theorem. The integration is performed over the surface ∂Ω3, which is the boundary
of Ω3. The equation shows that the field at the point x is determined by its values on any
surrounding surface. This surface is not required to be the wave surface. If the point x lies
outside the closed surface, then the integral vanishes. Regardless of the specific form of
∆F(ω, x), we can conclude from the form of the equation alone that if the field φ0(ω, x)
satisfies a differential equation, then this equation contains derivatives over the spatial
coordinates that are no higher than second order.

Equation (61) is used to describe the diffraction phenomena of light [3,8].
In the monochromatic, spatially inhomogeneous case, the integration is over the

surface rather than over the volume, as in Equation (57). However, because we are dis-
cussing the calculation of the Fourier transform in time, an implicit time integration enters
the problem.

3.3.3. Massless Field

For massless particles, the interference scheme for secondary waves is simplified. Let
us apply the inverse Fourier transform in Equation (61):

φ0(t, x)θ(x ∈ Ω3) = −
∫

∂Ω3

dSα
ξ

∫ +∞

−∞
dt′∆F(t− t′, x− ξ)

↔
∂

∂ξα
φ0(t′, ξ). (62)

This equation follows from Equation (56) if we select for Ω an infinite cylinder whose
spatial section Ω3 is covered by the surface of integration ∂Ω3 and the axis is parallel to the
time axis.

As is well known, the propagator ∆F(t, x) does not vanish outside of the light cone
t2 − x2 < 0. This property does not generally violate causality, as ∆F(t, x) also describes the
propagation of the wave surfaces at which the phase remains constant. In the relativistic
theory, the phase velocity vp ≡ ωk/|k| ≥ 1 is greater than the speed of light; however, it
is the group velocity vg ≡ ∂ωk/∂|k|= |k|/ωk ≤ 1 with which the propagation of signals
is associated.

In the limit of zero mass, the propagator ∆F(t, x) takes the following form (see [5],
Appendix B or Equation (29) in [11] in the massless limit):

∆F(t, x) =
i

4π2
1

t2 − |x|2 − i0
. (63)

Substituting (63) into (62) and taking into account that∫ +∞

−∞
dt′∆F(t− t′, x)e∓iωkt′ =

1
4π|x| e

∓iωk(t∓|x|),



Universe 2022, 8, 315 14 of 23

we obtain

φ0(t, x)θ(x ∈ Ω3) =
1

4π

∫
∂Ω3

dSα
ξ

[
−1

ρ

∂

∂ξα

(
φ
(+)
0 (t− ρ/c, ξ) + φ

(−)
0 (t + ρ/c, ξ)

)
+

(
∂

∂ξα

1
ρ

)(
φ
(+)
0 (t− ρ/c, ξ) + φ

(−)
0 (t + ρ/c, ξ)

)
− 1

ρ

∂ρ

∂ξα

∂

c∂t

(
φ
(+)
0 (t− ρ/c, ξ)− φ

(−)
0 (t + ρ/c, ξ)

)]
, (64)

where ρ = |ξ − x| and in the first term, the differentiation with respect to ξα does not apply
to ρ. The dependence on the speed of light c is here made explicit.

Equation (64) represents a general form of Kirchhoff’s integral theorem for the Feyn-
man asymptotic conditions. The function is determined by its values on the selected
arbitrary closed surface, taking into account the delay of the positive-frequency component
and the advancement of the negative-frequency component. This representation is possible
because massless particles travel at the speed of light, regardless of their momentum. 1 By
contrast, the speed of a massive particle depends on its momentum; therefore, the more
general representation (62) includes the integral over time delay and advance. Kirchhoff’s
theorem is a precise mathematical formulation of the Huygens–Fresnel superposition prin-
ciple. A special feature of the Feynman asymptotic conditions is that the negative-frequency
components are determined by the future. An analogue of Equation (64) for the retarded
solutions is the original version of Kirchhoff’s integral theorem. It is briefly outlined in
Appendix A and discussed in detail in Reference [8].

3.4. Superposition Principle from the Completeness Condition

As a formalization of the superposition principle for the Feynman asymptotic condi-
tions, by analogy with Equation (30), we can consider

φ
(+)
0 (x)θ(x0 − y0)− φ

(−)
0 (x)θ(−x0 + y0) = −

∫
dyW[∆F(x− y), φ0(y)]. (65)

The physical content of this equation is quite traditional: At the moment y0, the
wave is a source of secondary waves, and the propagation from point y to point x is
described by ∆F(x− y). To construct the positive-frequency waves, the past y0 < x0 must
be known, and to construct the negative-frequency waves, the future x0 < y0 must be
known. This property is reflected in the presence of the theta functions on the left-hand
side of the equation.

The proof of Equation (65) is similar to the proof of Equation (30). It is not based
on Kirchhoff’s theorem, but instead relies on the completeness condition (46) and the
expansion of the Feynman propagator into plane waves. Given that Equation (65) is
postulated, the Green’s function is uniquely determined. Indeed, let us take the derivative
over y0 on both sides of the equation. After the transformation of the integrand, we obtain
Equation (52); it must then be supplemented by asymptotic conditions.

We take the difference (65) for two instants of time, z0 and y0, such that y0 < x0 < z0.
The result is Equation (57). If x0 /∈ (y0, z0), then we obtain (58).

According to Equations (65) and (57), the field is determined by its values and first
derivatives at two time points. This property indicates the local nature of the evolution
equation. Arguing backward, since the initial conditions required to determine the field
are the field values and the first derivatives, the evolution equation may contain time
derivatives of no higher than second order. Additionally, in Equation (56), a hypersurface
∂Ω in the form of an infinite cylinder with its axis parallel to the time axis, can be chosen. In
such a case, Kirchhoff’s theorem would assert that the wave is determined by its values and
gradients on a two-dimensional surface at all times. This version of the theorem indicates
the local nature of the evolution equation in the spatial coordinates. The corresponding
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differential equation may contain derivatives of the spatial coordinates of no higher than
second order.

3.5. Path Integral

The path integral representation is a consequence of Equation (56). We choose a set
of four-dimensional regions Ω1 ⊂ Ω2 ⊂ . . . ⊂ Ωn ⊂ R1,3. By iterating Equation (56),
we obtain

φ0(x)θ(x ∈ Ω1) =
∫

∂Ω1

dSµ1
ξ1

∫
∂Ω1

dSµ2
ξ2

. . .
∫

∂Ωn
dSµn

ξn
(66)

× ∆F(x− ξ1)

↔
∂

∂ξ
µ1
1

∆F(ξ1 − ξ2)

↔
∂

∂ξ
µ2
2

. . . ∆F(ξn−1 − ξn)

↔
∂

∂ξ
µn
n

φ0(ξn).

There exists considerable freedom in choosing Ωi. A similar freedom exists in the
factorization of unitary evolution operator U(t2, t1) in quantum mechanics, where the
equation U(t2, t1) = U(t2, t)U(t, t1) holds for any instant of time t ∈ (t1, t2). While the
evolution operator is factorized in time, the integration in the path integral goes over
the coordinates in three-dimensional space. Such a representation easily follows from
Equation (66). Indeed, choosing Ωi to be cylinders with infinite radii and axes parallel
to the time axis, we arrive at a representation of this kind. The broken lines connecting
the points x and ξn ∈ ∂Ωn through ξi ∈ ∂Ωi (i = 1, . . . , n − 1) form in the continuum
limit the class of paths over which the continual integral is defined. The comparison of
Equations (56) and (66) also yields, in the limit of n→ ∞, an integral representation for the
Green’s function in the form of a continual integral.

4. Charged Scalar Field in an External Electromagnetic Field

Equations (56) and (65) and their particular cases were obtained for a free field. The
following question arises: which relations can be generalized in the presence of an external
field? We restrict ourselves to scalar electrodynamics.

4.1. Complete Orthonormal Basis Functions

Substituting the normal derivatives with respect to the space-time coordinates in the
Klein–Gordon equation with gauge covariant derivatives,

∂µ → Dµ = ∂µ + ieAµ (67)

yields the evolution equation for a complex scalar field in an external electromagnetic field,

(DµDµ + m2)φ(x) = 0. (68)

The external field is adiabatically switched on at t → −∞ and off at t → +∞. The
set of positive- and negative-frequency asymptotic solutions f (±)k (x) is complete and

orthonormal. The second-order Equation (69) has a set of independent solutions F(±)
k (x).

The asymptotic conditions can be taken as

F(±)
k (x)→ f (±)k (x) ≡ e∓ikx

√
2ωk

for t→ −∞.

All other solutions of Equation (68) are expressed as linear superpositions of the basis
functions F(±)

k (x).
It would be natural to use the prescription (67) for extending the Huygens–Fresnel

superposition principle. It can be assumed that in an external electromagnetic field, the
suitable generalization of the Wronskian is given by

WA[ϕ
∗, χ] ≡ ϕ∗(

↔
∂ t +2ieA0)χ = ϕ∗(Dtχ)− (Dt ϕ)∗χ.
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We note a useful property:

∂tWA[ϕ
∗, χ] = ∂t(ϕ∗(Dtχ)− (Dt ϕ)∗χ)

= ϕ∗(DtDtχ)− (DtDt ϕ)∗χ. (69)

It is not difficult to show that if ϕ and χ are two solutions of Equation (68), then the
following condition holds:

∂t

∫
dxWA[ϕ

∗, χ] = 0.

This condition allows us to calculate the normalization integral by sending the time
variable to negative infinity, where solutions are represented as plane waves. The orthonor-
mality conditions thus take the form

i
∫

dxWA[F
(±)∗
k′ (x), F(±)

k (x)] = ±(2π)3δ(k′ − k),∫
dxWA[F

(±)∗
k′ (x), F(∓)

k (x)] = 0.

The completeness condition is obvious:

φ(x) =
∫ dk

(2π)3

(
F(+)

k (x)i
∫

dyWA[F
(+)∗
k (y), φ(y)]− F(−)

k (x)i
∫

dyWA[F
(−)∗
k (y), φ(y)]

)
. (70)

In the theory of a charged scalar field, the canonical momenta are defined by the equa-
tions π∗(x) = Dtφ(x) and π(x) = (Dtφ(x))∗. The canonically conjugate variables satisfy

{φ(x), π(y)}|x0=y0 = {φ(x)∗, π∗(y)}|x0=y0 = δ(x− y), (71)

while other pairs have the vanishing Poisson bracket. The generalization of the correspond-
ing relations of a free scalar field can be written as follows∫ dk

(2π)3

(
F(+)

k (x)F(+)∗
k (y)− F(−)

k (x)F(−)∗
k (y)

)
|x0=y0 = 0, (72)∫ dk

(2π)3

(
F(+)

k (x)D∗t F(+)∗
k (y)− F(−)

k (x)D∗t F(−)∗
k (y)

)
|x0=y0 = iδ(x− y), (73)∫ dk

(2π)3

(
DtF

(+)
k (x)F(+)∗

k (y)− DtF
(−)
k (x)F(−)∗

k (y)
)
|x0=y0 = −iδ(x− y). (74)

Equations (72) and (73) show that the completeness condition (70) holds for arbitrary
functions evaluated at x0 = y0.

In conclusion, we note that the zeroth component of vector potential can be removed
by a gauge transformation, in which case, WA = W and other relations and their proofs
take the form more similar to the free case.

4.2. Feynman Propagator

The decomposition of the Feynman propagator over the basis functions has the form

∆F(x, y) = −i
∫ dk

(2π)3

(
F(+)

k (x)F(+)∗
k (y)θ(x0 − y0) + F(−)

k (x)F(−)∗
k (y)θ(−x0 + y0)

)
. (75)

The use of Equations (72) and (74) allows to verify by the direct calculation that

(DµDµ + m2)∆F(x, ξ) = −δ4(x− ξ). (76)



Universe 2022, 8, 315 17 of 23

4.3. Superposition Principle from Kirchhoff’s Integral Theorem

To derive Equation (55), the identity (54) was used. After recapitulating the arguments
used in the proof of Equation (69), we rewrite the divergence of

ϕ
↔
Dµ χ ≡ ϕ(Dµχ)− (D∗µ ϕ)χ,

where ϕ and χ are arbitrary functions, in the form

∂µ(ϕ
↔
Dµ χ) = ϕ(DµDµχ)− (D∗µD∗µ ϕ)χ.

Substituting ∆F(x, ξ) and φ(ξ) in place of ϕ and χ, respectively, we obtain

φ(ξ)δ4(x− ξ) =
∂

∂ξµ

(
∆F(x, ξ)(Dµ φ(ξ))− (D∗µ∆F(x, ξ))φ(ξ)

)
. (77)

By choosing as the integration region a four-dimensional space with the variable ξ0

running in the interval (y0, z0), we find for x0 ∈ (y0, z0)

φ(x) =
∫

dzWA[∆F(x, z), φ(z)]−
∫

dyWA[∆F(x, y), φ(y)]. (78)

In the opposite case of x0 /∈ (y0, z0) the left-hand side vanishes.

4.4. Superposition Principle from the Completeness Condition

The linearity of the evolution equation allows for the generalization of the superposi-
tion principle (65) in the presence of an external electromagnetic field. The completeness
condition leads to the following scheme:

φ(+)(x)θ(x0 − y0)− φ(−)(x)θ(−x0 + y0) = −
∫

dyWA[∆F(x, y), φ(y)]. (79)

Under the integral sign, the derivative entering WA also generates the term

∆(x, y) = −i
∫ dk

(2π)3

(
F(+)

k (x)F(+)∗
k (y)− F(−)

k (x)F(−)∗
k (y)

)
multiplied by φ(y)δ(x0 − y0). In view of the relationship x0 = y0 and Equation (72), this
term vanishes. By calculating the derivative of Equation (79) with respect to y0, one can
prove that the propagator obeys equation

(D∗µDµ∗ + m2)∆F(x, ξ) = −δ(x− ξ), (80)

where the differentiation is over ξ. This equation is equivalent to Equation (76), where Dµ

acts on x.
The superposition scheme for the retarded propagator is as follows

φ(x)θ(x0 − y0) = −
∫

dyWA[∆ret(x, y), φ(y)]. (81)

This equation is the analog of Equation (27). It can also be derived from Equation (77).
To conclude, the superposition schemes for a free scalar field are fundamentally valid

for a scalar complex field in an external electromagnetic field.

5. Nonlinear Field Theory

The superposition principle for secondary waves, which is the consequence of the GF
method, should be distinguished from the superposition principle as a manifestation of the
linearity of the problem. In linear theory, the wave is a source of secondary waves. In non-
linear theory, two sources of secondary waves exist: the wave itself plus a function V′(φ).
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In both cases, secondary waves satisfy free linear wave equations, so the superposition
principle applies to secondary waves universally.

5.1. Secondary Waves beyond Fresnel’s Superposition Scheme

For a Lagrangian L = Lfree −V, that contains a term V = V(φ) of a general form, the
identity (54) is modified as follows:

φ(ξ)δ4(ξ − x) = ∆F(x− ξ)((�ξ + m2)φ(ξ) + V′(φ(ξ)))− ((�ξ + m2)∆F(x− ξ))φ(ξ)

=
∂

∂ξµ

(
∆F(x− ξ)

↔
∂

∂ξµ φ(ξ)

)
+ ∆F(x− ξ)V′(φ(ξ)). (82)

For x0 ∈ (y0, z0), this equation gives

φ(x) = φ0(x)−
∫

d4ξ∆F(x− ξ)V′(φ(ξ)), (83)

where the integration over ξ0 runs over ξ0 ∈ (y0, z0) and the integral in ξ extends over all
space. The field φ0(x) is defined by the relation

φ0(x) =
∫

dzW[∆F(x− z), φ(z)]−
∫

dyW[∆F(x− y), φ(y)]. (84)

For x0 ∈ (y0, z0), φ0(x) satisfies the free Klein–Gordon equation. If x0 /∈ (y0, z0), then

0 = φ0(x)−
∫

d4ξ∆F(x− ξ)V′(φ(ξ)). (85)

In quantum field theory, Equation (83) in the infinite limits (y0, z0) = (−∞,+∞) is
used in the development of perturbation theory. Unlike in the canonical formulation of
the Fresnel superposition scheme, the integrand contains the nonlinear term V′(φ(ξ))
as an additional source of secondary waves and the integration spans the entire four-
dimensional space.

Equations (83)–(85) in nonlinear scalar field theory are analogous to Equations (36)–(38)
in the anharmonic oscillator problem.

The mass term ofL can be attributed either toLfree or to the potential V. In the last case,
Lfree describes massless particles. This might seem disadvantageous, because asymptotic
states of L are massive in general. The positive feature is that the retarded Green’s function
of massless particles, being localized on the light cone (see Equation (A1)), ensures reduction
of four-dimensional integrals in Equations (83) and (85) to three-dimensional integrals and
transformation of integrals in Equation (84) to surface integrals.

5.2. Positive- and Negative-Frequency Solutions

Interacting fields can be decomposed into a sum of positive- and negative-frequency
solutions only asymptotically. In Section 2.3.2, we demonstrated that the straightforward
generalization of the Fresnel superposition scheme to nonlinear dynamical systems is
possible and consistent; however, its value is limited to only providing the definitions of
positive- and negative-frequency solutions for arbitrary t. For the sake of completeness, we
present here a field theoretical version of the nonlinear superposition scheme (40):

φ(+)(x)θ(x0 − y0)− φ(−)(x)θ(−x0 + y0) = −
∫

dyW[∆F(x− y), φ(y)]

+
∫

d4ξ∆F(x− ξ)V′(φ(ξ)), (86)

where the integral over ξ0 runs from y0 to x0.
The derivative over y0 leads to the relation φ(t) = φ(+)(t) + φ(−)(t) and Equation (52).

The difference in Equation (86) at two different time points leads to Equations (83)–(85).
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Equation (86) ensures that φ(±)(x) is a linear superposition in k of the basis functions
f (±)k (x) at t→ ±∞.

The calculation of the first derivative of Equation (86) in x0 yields a superposition
scheme for the canonical momentum:

π(+)(x)θ(x0 − y0)− π(−)(x)θ(−x0 + y0) = −
∫

dyW[∆F(x− y), π(y)]

+
∫

d4ξ∆F(x− ξ)V′′(φ(ξ))π(ξ), (87)

where the integral over ξ0 runs from y0 to x0.

6. Conclusions

The evolution of the ideas underlying the Huygens–Fresnel superposition principle
from geometrical and wave optics to the theory of interacting fields is highly instructive.

In geometrical optics, a wave front refers to the two-dimensional surface that defines
the farthest extent to which the wave has arrived after a certain period of time. Huygens’
principle (1678), based on the Fermat principle, allows for the determination of how the
wave front is propagating.

In wave optics, the term wave front has no strict definition. Instead, the term wave
surface is used. The wave surface is the two-dimensional surface on which the phase of
the wave is constant. A.-J. Fresnel proposed the principle of superposition (1816), which
details the wave process. A wave is a result of interference of secondary waves emitted
at an earlier time. At any fixed point, it is determined by the phase and amplitude at a
wave surface corresponding to a preceding instant of time. The wave surface in the past
can be chosen arbitrarily. The superposition principle anticipates informal content of the
GF method (1828).

Kirchhoff’s integral theorem (1883) is a dynamic, four-dimensional extension of
Green’s third identity of the static potential theory. More than half a century separates
this theorem from Green’s major work [10], which introduced the basic concepts of the GF
method.2 Kirchhoff’s integral theorem provides a mathematical proof of the superposition
principle, clarifying and quantifying it.

First, the theorem demonstrates that the amplitude of the secondary waves is deter-
mined by the Wronskian of the Green’s function and the field at a previous time.

Second, the wave surfaces are not highlighted; this is perfectly consistent with the fact
that they are not necessarily observable (in the massive theory, e.g., the speed of a wave
surface of a plane wave is always greater than the speed of light). The surface must be
closed and contain the point at which the wave is calculated; otherwise, it can be arbitrarily
chosen. Outside the closed surface, the interference of the secondary waves is strictly
destructive: for any exterior point, the calculation of the surface integral yields zero.

The reasoning used in the proof can be regarded as a standard piece of the GF method;
it is of high generality, goes beyond the problem of propagation of electromagnetic waves
and allows for an understanding of how the superposition principle should be modified in
the theory of interacting fields. Note the most significant modifications:

(i) According to the Huygens–Fresnel superposition principle, a wave at a given point is
expressed as a superposition of secondary waves emitted from centers located on a
two-dimensional surface. This property arises only in massless theories, including the
theory of electromagnetic fields, where the group and phase velocities coincide with
the speed of light, which is the necessary condition for the integral over time delay
and advance to not be available in Equation (64). Kirchhoff’s integral theorem for
massive particles, Equation (62), states that a wave is determined by its values on a
closed surface at all times. The physical interpretation of this fact is quite transparent.
The Fourier expansion of a massive field contains components of various momenta
corresponding to various group and phase velocities, which leads to a spread in time
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lags. As a result, the two-dimensional integral over the sources of secondary waves is
transformed into a three-dimensional integral;

(ii) In the nonlinear theory, there is a need for a more extensive modification of the
superposition scheme. In addition to the wave itself, a nonlinear function of the
field V′(φ(ξ)) becomes the source of secondary waves. The summation runs over
distributed sources: from a two-dimensional surface in theories with massless particles
to a two-dimensional surface and the time axis in theories with massive particles and
the entirety of four-dimensional space. This type of representation holds for both local
nonlinear and nonlocal theories.

We see that after each modification, the effectiveness of the superposition principle
weakens. In the most general nonlinear case, the modified principle certainly does not
promise fast results. To determine the field, it is necessary to calculate a four-dimensional
integral in a self-consistent manner. In linear theories, the superposition principle solves
the evolution problem, but in nonlinear theories, it only offers a different formulation
of the problem. Nevertheless, relations of this type are still useful when searching for
solutions within the framework of perturbation theory, when the non-linearity is small.
In other cases, the solutions found using other techniques can be checked. The four-
dimensional representation given by Equation (83) is a consequence of Kirchhoff’s integral
theorem, but in quantum field theory, it is typically derived directly from the properties of
Green’s functions.

In the context of a field theory, the original form of the superposition principle only
has heuristic value. The superposition schemes for the secondary waves that are used to
solve specific problems are unified by Kirchhoff’s integral theorem, which exploits the
properties of the Wronskian of the Green’s functions and solutions of the wave equation
under consideration. The spectrum of such problems is quite comprehensive: from the
harmonic oscillator to scalar electrodynamics and nonlinear field theories.

In addition to the use of the GF method, which has found a variety of applications in
quantum field theory, Kirchhoff’s theorem has a wider range of corollaries. Equation (62),
which represents one version of Kirchhoff’s theorem, does not arise in quantum field theory
because of the boundary conditions, which are atypical of a scattering problem. However,
the superposition scheme represented by Equation (65), which is not based on Kirchhoff’s
theorem, is not sufficiently general because it does not extend to theories with interaction.

The statement of Kirchhoff’s integral theorem depends on the asymptotic conditions
imposed on Green’s function. In the main part of the paper, as we were interested in the
place of this remarkable principle and well-known theorem in quantum field theory, we
applied the Feynman asymptotic conditions almost universally.
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Appendix A. Kirchhoff’s Integral Theorem and Its Vector Extensions with the
Retarded Green’s Function

In the main sections of the paper, emphasis is placed on the Feynman asymptotic con-
ditions, which play a special role in quantum field theory. Here, we formulate Kirchhoff’s
integral theorem and its vectorial generalizations for the retarded Green function.

Appendix A.1. Free Massless Scalar Field

Equation (56) is essentially the third Green identity for time-dependent solutions of
the wave equation; its proof is outlined in Section 3.1. As noted earlier, Equation (56) holds
for any Green function.
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The retarded Green function in the coordinate representation has the following form
(see, e.g., [5])

∆ret(t, x) =
∫ d4q

(2π)4 e−iqx 1
q2 + i0sgn(q0)

= − 1
4π|x| (δ(|x| − t)− δ(|x|+ t))θ(t). (A1)

The product of generalized functions of a single variable is not defined. The propagator
depends on four space-time coordinates. Generalized functions of four variables allow for
products of up to four generalized functions of one variable, provided their arguments are
independent. ∆ret(t, x) is thus a well-defined generalized function.

∆ret(t, x) is localized on the upper half of the light cone t2 − x2 = 0. Substituting (A1)
in place of ∆F(t, x) in Equation (62), one arrives at the original Kirchhoff representation [7,8]

φ0(t, x)θ(x ∈ Ω3) =
1

4π

∫
∂Ω3

dSα
ξ

[
−1

ρ

∂

∂ξα
φ0(t− ρ/c, ξ) +

(
∂

∂ξα

1
ρ

)
φ0(t− ρ/c, ξ)

− 1
ρ

∂ρ

∂ξα

∂

c∂t
φ0(t− ρ/c, ξ)

]
, (A2)

where ρ = |ξ − x| and where the differentiation in ξα does not affect ρ in the first term.
The dependence on the speed of light c is here made explicit. The wave φ0(t, x) at x ∈ Ω3
is determined by its values on the closed surface ∂Ω3 considering the delay ρ/c. Linear
second-order hyperbolic partial differential equations possessing this property are well-
studied from a mathematical point of view [13–15].

Appendix A.2. Monochromatic Electromagnetic Fields with Sources

A generalization of Kirchhoff’s integral theorem, which takes into account vectorial
character of the electromagnetic field and the electromagnetic currents, was obtained by
von Ignatowsky [16]. First, however, we consider a generalization of von Helmholtz’s
theorem, following Stratton and Chu [17].

Most methods used in Section 3.3.2 for a free monochromatic scalar field apply to a
monochromatic electromagnetic field with sources after some slight modifications. We
replace scalar field φ0 by the electromagnetic field tensor Fµν = ∂ν Aµ − ∂µ Aν. In the
Lorentz gauge ∂µ Aµ = 0, the evolution equations ∂νFµν = jµ become �Aµ = jµ, where
jµ is the electromagnetic current. It is assumed that the fields are harmonic and that all
quantities contain a factor exp(−iωt), so that ∂0 jµ = −iωjµ, (ω2 +4)Aµ = −jµ, and

(ω2 +4)Fµν = −∂ν jµ + ∂µ jν.

Since the right-hand side of this equation is different from zero, the analogue of
Equation (60) takes a more complicated form:

Fµν(ω, ξ)δ(ξ − x) = ∆ret(ω, x− ξ)(−∂ν jµ(ω, ξ) + ∂µ jν(ω, ξ))

− ∂

∂ξα

∆ret(ω, x− ξ)

↔
∂

∂ξα
Fµν(ω, ξ)

. (A3)

The sum in α runs from 1 to 3, while µ, ν = 0, 1, 2, 3. By integrating over a three-
dimensional region Ω3, one obtains

Fµν(ω, x)θ(x ∈ Ω3) =
∫

Ω3

dξ∆ret(ω, x− ξ)(−∂ν jµ(ω, ξ) + ∂µ jν(ω, ξ))

−
∫

∂Ω3

dSβ
ξ ∆ret(ω, x− ξ)

←→
∂

∂ξβ
Fµν(ω, ξ). (A4)
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The dependence on the derivatives of Fµν can be eliminated [17].

Appendix A.3. Non-Monochromatic Electromagnetic Fields with Sources

In the presence of external currents, electromagnetic fields satisfy the identity

Fµν(ξ)δ4(ξ − x) = ∆ret(x− ξ)(−∂ν jµ(ξ) + ∂µ jν(ξ))

− ∂

∂ξσ

∆ret(x− ξ)

↔
∂

∂ξσ
Fµν(ξ)

. (A5)

The sum in σ runs from 0 to 3. By taking the integral over a four-dimensional region Ω,
we obtain

Fµν(x)θ(x ∈ Ω) =
∫

Ω
d4ξ∆ret(x− ξ)(−∂ν jµ(ξ) + ∂µ jν(ξ))

−
∫

∂Ω
dSσ

ξ

∆ret(x− ξ)

↔
∂

∂ξσ
Fµν(ξ)

. (A6)

The representation becomes linear in Fµν after replacing jµ with ∂νFµν. The field
derivatives are assumed to be smooth.

Equation (A6) can be simplified by choosing Ω to be an infinite cylinder, Ω = R1⊗Ω3,
whose cross section is a three-dimensional space-like region Ω3. With the use Equation (A1),
the integration over the time coordinate gives [16]

Fµν(t, x)θ(x ∈ Ω3) = − 1
4π

∫
Ω3

dξ
1
ρ
(− ∂

∂ξν
jµ(t− ρ, ξ) +

∂

∂ξµ
jν(t− ρ, ξ))

+
1

4π

∫
∂Ω3

dSα
ξ

[
−1

ρ

∂

∂ξα
Fµν(t− ρ, ξ)

+

(
∂

∂ξα

1
ρ

)
Fµν(t− ρ, ξ)− 1

ρ

∂ρ

∂ξα

∂

∂t
Fµν(t− ρ, ξ)

]
, (A7)

where ρ = |ξ − x|. In the first two lines, the differentiation with respect to ξα does not
apply to ρ.

Kirchhoff’s integral theorem (A2) and Equation (A4) extend von Helmholtz’s theo-
rem (61) in different directions. Equation (A7) constitutes, on one hand, the generalization
of Kirchhoff’s integral theorem by taking into account the vectorial character of electromag-
netic field and including the effect of electromagnetic currents and, on the other hand, the
generalization of Equation (A4) by going beyond the monochromatic field assumption.

Notes
1 In Euclidean space of dimension n ≥ 3, Green’s function has the form ∆(x) ∼ 1/(x2)(n−2)/2. Performing a Wick rotation, we find

that the Green’s function as an analytic function of the variable t = x0 has two isolated poles in the spaces of even dimension and
two root branching points in the spaces of odd dimension. This means that in the massless case, the Green’s function is effectively
localized on the light cone in the spaces of even dimension only. Here, an analogue of the representation (64) holds. In the spaces
of odd dimension, the superposition scheme involves the integration over all spatial coordinates. This property of the Green’s
function suggests that the requirement of equal phase and group velocities and the speed of light is a necessary but not sufficient
condition for the representation of superposition scheme in the form of a surface integral.

2 In 1839, G. Green came closely to the notion of the four-dimensional Green’s function. The value of the GF method in quantum
field theory is highly appreciated [12].
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