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Abstract: We obtain exact Bardeen black holes to the regularized 4D Einstein–Gauss–Bonnet (EGB)
gravity minimally coupled with the nonlinear electrodynamics (NED). In turn, we analyze the
horizon structure to determine the effect of GB parameter α on the minimum cutoff values of mass,
M0, and magnetic monopole charge, g0, for the existence of a black hole horizon. We obtain an exact
expression for thermodynamic quantities, namely, Hawking temperature T+, entropy S+, Helmholtz
free energy F+, and specific heat C+ associated with the black hole horizon, and they show significant
deviations from the 4D EGB case owing to NED. Interestingly, there exists a critical value of horizon
radius, rc

+, corresponding to the local maximum of Hawking temperature, at which heat capacity
diverges, confirming the second-order phase transition. A discussion on the black holes of alternate
regularized 4D EGB gravity belonging to the scalar-tensor theory is appended.

Keywords: regular black hole; nonlinear electrodynamics; thermodynamics

1. Introduction

Lovelock’s theorem [1] encapsulates that in four-dimensional (4D) spacetimes, the
Lagrangian density leads to the second-order equation of the motion, respects the metricity,
and diffeomorphism invariances are just the Ricci scalar with a cosmological constant term.
Higher-order terms in the curvature invariants may lead to gravitational field equations
having more than second-order derivatives of the metric, which generically at the quantum
level would lead to ghosts and instabilities. However, for D dimensional spacetime with
D > 4, the Lagrangian density having only a specific polynomial of higher-curvature
terms can lead to the second-order equation of motion; Einstein–Gauss–Bonnet (EGB)
gravity [2] and Lovelock gravity [3] are such particular examples of a natural extension
of the Einstein’s general relativity in D > 4. These theories are free from pathologies that
affect other higher-derivative gravity theories and have the same degrees of freedom as
Einstein’s general relativity. The EGB gravity theory contains quadratic corrections in
curvature tensor invariants, which also appears as the leading correction to the effective
low-energy action of the heterotic string theory [4–6]. Over the past decade, EGB gravity
had a broad interest in theoretical physics and appeared to be quite compatible with the
available astrophysical data [7,8]. Boulware and Deser [9] obtained the first black hole
solution in the 5D EGB gravity, and since then steady attentions have been devoted to black
hole solutions, including their formation, stability, and thermodynamics [10–15].

Universe 2022, 8, 232. https://doi.org/10.3390/universe8040232 https://www.mdpi.com/journal/universe

https://doi.org/10.3390/universe8040232
https://doi.org/10.3390/universe8040232
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0001-8461-5368
https://orcid.org/0000-0003-2471-1360
https://orcid.org/0000-0002-0835-3690
https://doi.org/10.3390/universe8040232
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe8040232?type=check_update&version=3


Universe 2022, 8, 232 2 of 14

This is well known that the Gauss–Bonnet (GB) correction LGB to the Einstein–Hilbert
action is a topological invariant in D < 5, e.g., for a maximally symmetric spacetime with
the curvature measure K, the variation of the GB Lagrangian LGB reads

gµσ√−g
δLGB

δgνσ
=

α(D− 2)(D− 3)(D− 4)
2(D− 1)

K2δν
µ, (1)

where
LGB = RµνρσRµνρσ − 4RµνRµν + R2, (2)

and R, Rµν, and Rµ
νγδ are, respectively, the Ricci scalar, Ricci tensor, and Reimann tensor,

and g is the determinant of the metric tensor gµν. Further, the contribution of LGB to all the
components of Einstein’s equation are also proportional to (D− 4), therefore it does not
have any contribution on the gravitational dynamics in D = 4; where K is the spacetime
curvature measure. However, this can be compensate by re-scaling the coupling constant by
α→ α/(D− 4), and the four-dimensional theory is defined as the limit D → 4 at the level
of equations of motion [16]. Thereby the GB action bypasses all conditions of Lovelock’s
theorem [1] and makes a non-trivial contribution to the gravitational dynamics even in 4D.
Since its inception, several works devoted to 4D EGB gravity have been reported, namely
the stability, quasinormal modes, and shadows of spherically symmetric black hole [17–19],
charged black holes in AdS space [20,21], rotating black holes and their shadows [22,23],
Vaidya-like radiating black holes [24], and relativistic stars solutions [25]. The motion of a
classical spinning test particle [26,27], gravitational lensing [28,29], and thermodynamical
phase transitions in AdS space [30] have also been investigated. The generalizations to the
higher-order regularized Einstein–Lovelock theory are presented in Refs. [31,32]. The static
spherically symmetric black hole solution in the novel 4D EGB gravity reads as [16]

ds2 = − f (r)dt2 + f (r)−1dr2 + r2(dθ2 + sin2 θ dφ2), (3)

with

f (r) = 1 +
r2

2α

(
1±

√
1 +

8Mα

r3

)
, (4)

such that at the short distances the gravitational force is repulsive and thus an infalling
particle never reaches r = 0, however, the curvature invariant diverges at r = 0 [16].

The idea of 4D regularization of EGB gravity was pioneered by Tomozawa [33], and
later Cognola et al. [34] reintroduced it by accounting quantum corrections due to a GB
invariant within a classical Lagrangian approach. However, several works have reported
subtleties of the Glavan and Lin [16] regularization procedure. Nevertheless, some con-
sistent and standard alternate regularization procedures for 4D EGB gravity were also
proposed, which contrary to the Glavan and Lin [16] findings, mainly belong to the special
class of scalar-tensor theory of gravity [32,35–40]. However, noteworthily, none of the
critics [35,41,42] disprove dimensional regularization procedure of Glavan and Lin [16]
at least for the case of maximally symmetric or spherically symmetric spacetimes. It is
only because this dimensional regularization procedure depends on the choice of higher-
dimensional spacetime metric, and Glavan and Lin’s [16] procedure may not work well
for spacetimes beyond the spherical symmetry that alternate regularization procedures
were proposed. Moreover, it is worth mentioning that although these alternate regulariza-
tion procedures are completely different in spirit, the static spherically symmetric black
hole solutions of these alternate 4D regularized theories [32,35,38,40] are exactly same as
obtained by Glavan and Lin [16] as demonstrated in Appendix A. Furthermore, the static
and spherically symmetric black hole solution [16,33,34] of 4D EGB gravity is identical
as those found in semi-classical Einstein’s equations with conformal anomaly [43,44], in
gravity theory with quantum corrections [34]. In addition, observations, namely, EHT
black hole shadow [22,23], cosmology, binary black hole systems, perihelion precession of
Mercury, the precession of S2 around Sgr A*, gravitational waves from binary neutron star
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merger, and table-top experiments [45], have been used to investigate the validity of 4D
EGB gravity and to placed constraints on the GB coupling parameter. Moreover, studying
the non-trivial higher-curvature gravity effects in 4D EGB black hole spacetimes is vital for
better understanding the validity of the theory.

The first ever regular black hole solution in general relativity was presented by
Bardeen [46] that is asymptotically flat at large r, and near the origin behaves as de-Sitter,
such that all curvature invariants take finite values at r = 0. Later, Ayon-Beato and Gar-
cia [47] invoked non-linear electromagnetic field (NED) to show that the Bardeen black hole
is an exact solution of general relativity minimally coupled to NED. Since then, significant
interest developed in finding regular black hole solutions [48–60] and an enormous advance
in the analysis and uncovering properties of regular black holes have been reported [61–67].
Discussions of Bardeen’s solution on issues of quasinormal modes, stability [68–74], particle
acceleration [75], and the thermodynamics have been carried out [76–82]. Additionally, sev-
eral extensions of the Bardeen black hole have been considered, which includes Bardeen de
Sitter [83,84], Bardeen anti-de Sitter [85], Bardeen’s solution to non-commutative inspired
geometry [80], and also in higher dimensional spacetimes [76]. Recently, Bardeen black
hole solutions have also been found and discussed in the EGB gravity theory [86,87].

This paper presents the spherically symmetric static Bardeen-like regular black holes
of the regularized 4D EGB gravity coupled with the NED field. We also showed an identical
solutions in the physically motivated alternate regularized 4D EGB gravity, based on the
Kaluza–Klein-like dimensional reduction procedure. Three parameters characterize the
black hole metric, mass M, GB coupling parameter α, and the magnetic charge g coming
from the NED. We discuss the structure of black hole horizons, which depending on the
values of black hole parameters, can describe the extremal black holes with degenerate
horizons and nonextremal black holes with two distinct horizons. Analytic expressions
for the various thermodynamical quantities, including the temperature, free energy, and
specific heat, are obtained. The paper is organized as follows: We begin in Section 2 with
the construction of the spherically symmetric black holes in novel 4D EGB gravity coupled
with the NED. Section 3 is devoted to the study of black hole thermodynamics and phase
transitions. Finally, we summarize our main findings in Section 4.

2. Bardeen Black Holes in 4D Einstein–Gauss–Bonnet Gravity: Exact Solutions
and Horizons

The action for the EGB gravity minimally coupled with the NED field in the D-
dimensional spacetime, reads [67,86,88]

IG =
∫

dDx
√
−g
[

1
16π

(
R + α′LGB

)
− 1

4π
L(F )

]
, (5)

where α′ = α/(D− 4) is re-scaled GB coupling constant, and the Lagrangian density L(F )
is a function of invariant F = FµνFµν/4 with Fµν = ∂µ Aν − ∂ν Aµ being the electromagnetic
field tensor for the gauge potential Aµ. Varying the action (5) with metric tensor gµν, yields
the equations of gravitational field as follows

Gµν + α′Hµν = Tµν ≡ 2
(
LFFµσFν

σ − gµνL(F )
)

, (6)

where

Gµν = Rµν −
1
2

Rgµν,

Hµν = 2
(

RRµν − 2RµσRσ
ν − 2RµσνρRσρ − RµσρδRσρδ

ν

)
−1

2
LGBgµν, (7)
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and Tµν is the energy momentum tensor for the NED field. We consider the Lagrangian
density for the NED field in the D dimensional spacetime [76,86]

L(F ) = (D− 1)(D− 2)µ′D−3

4gD−1

( √
2g2F

1 +
√

2g2F

) 2D−3
D−2

, (8)

where

F =
g2(D−3)

2r2(D−2)
.

Here, g is the magnetic monopole charge of NED. We are using Lagrangian density associ-
ated with magnetic monopole charge because this kind of NED field generates a globally
regular black hole solutions. Whereas the Lagrangian density associated with electric
charge changes with the change in radial coordinate, the Lagrangian density associated
with electric charge can not produce regular black holes globally [51]. Additionally, regular
black holes sourced by the electric charge usually do not recover the Maxwell linear electro-
dynamics in the weak field limits. The D-dimensional static, spherically symmetric metric
ansatz [67,86] reads

ds2 = − f (r)dt2 + f (r)−1dr2 + r2dΩ2
D−2, (9)

with f (r) is the metric function to be determined and

dΩ2
D−2 = dθ2

1 +
D−2

∑
i=2

[
i

∏
j=2

sin2 θj−1

]
dθ2

i , (10)

is the line element of a (D− 2)-dimensional unit sphere [89,90]. Using field Equations (7)
and metric ansatz (9), in the limit D → 4 we get the following (r, r) equation [91]

r3 f ′(r) + α
(

f (r)− 1
)(

f (r)− 1− 2r f ′(r)
)
+ r2( f (r)− 1

)
= − 6µ′g2r4

(r2 + g2)5/2 , (11)

which yields the following solution

f±(r) = 1 +
r2

2α

(
1±

√
1 +

8Mα

(r2 + g2)3/2

)
, (12)

where µ′ = M is identified as the black hole mass parameter. The metric Equation (9) for
D → 4 and f (r) in Equation (12) describes a static spherically symmetric Bardeen-like
regular black hole in 4D EGB gravity coupled with the NED field, which in the limits of
g = 0 goes over to the black hole solution of Ref. [16]. However, for the special case of
vanishing GB coupling, α → 0, the metric (9) retains the spherically symmetric Bardeen
black hole [46].The “±” sign in Equation (12) refers to two different branches of solutions.
To analyze the general structure of the solution, we take the asymptotically large r limit,
r → ∞, to obtain

lim
r→∞

f+(r) = 1 +
2M

r
+

r2

α
+O

( 1
r3

)
,

lim
r→∞

f−(r) = 1− 2M
r

+O
( 1

r3

)
. (13)

One can easily see that the negative branch of the solution goes over to the well-known
Schwarzschild black hole solution, whereas the positive branch does not correspond to any
physical case when α → 0. Boulware and Deser [9] have also shown that 5D EGB black
holes with the “+” branch sign are unstable, and the graviton degree of freedom is a ghost,
while the branch with the “-” sign is stable and is free of ghosts. Hence, we will take only
the negative branch f−(r) of the solution hereafter. Furthermore, it is legitimate to give 4D
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EGB solutions a physical interpretation, investigate their properties, and compare them
with the corresponding ones in Einstein’s gravity can then help shed some light on the
validity of 4D EGB gravity.

The presence of coordinate singularity of the metric Equation (9) at f (r) = 0 signifies
the existence of the horizons, which are the real and positive roots of the equation

(r2 + g2)3/2(r2 + α)− 2Mr4 = 0, (14)

From Figure 1, one can notice that for given values of g and α (or M and α), there
exists an extremal value M0 (or g0), such that for M > M0 (or g < g0), there exist two
distinct horizons r± and for M < M0 (or g > g0), there are no horizons. Similarly, for given
values of M and g, one can find the extremal value of α = α0. Here, r− and r+, respectively,
represent the Cauchy and the event horizon. For extremal value of parameters, namely
M = M0 or g = g0 or α = α0, the two horizons r±, coincide and leads to an extremal
black hole with degenerate horizon r+ = r− ≡ rE. It can be noticed that the maximum (or
minimum) cutoff value of charge g0 (or M0) increases (decreases) as we increase the value
of GB coupling constant α (cf. Figure 1).
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Figure 1. Metric function f (r) vs r for Bardeen black holes for various values of parameters.

3. Black Hole Thermodynamics

Next, we obtain exact expressions for the thermodynamical quantities like, Arnowitt–
Deser–Misner mass (M+), Hawking temperature (T+), entropy (S+), Helmholtz’s free
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energy (F+), and heat capacity (C+) associated with the black hole horizon r+. The solution
of equation f (r+) = 0, where r+ is the event horizon radius, leads to the mass

M+ =
r+
2

[(
1 +

α

r2
+

)(
1 +

g2

r2

) 3
2

]
, (15)

which in the absence of charge g, goes to the value of mass for 4D EGB black holes [20]

M+ =
r+
2

[
1 +

α

r2
+

]
, (16)

whereas in the limit of vanishing coupling parameter α = 0, reduces to mass of Schwarzschild
black holes [86,92]

M+ =
r+
2

. (17)

The surface gravity, κ=
√
− 1

2 5µ χν5µ χν, at the horizon of black hole reads as

κ =
1

2π

∂ f (r)
∂r
|r=r+ =

1
2r+

[
r2
+(r

2
+ − α)− 2g2(r2

+ + 2α)

(r2
+ + g2)(r2

+ + 2α)

]
. (18)

Now, by using the relation T+ = κ/2π [93,94], we get the expression for the Hawking
temperature associated with black hole horizon, which reads

T+ =
1

4πr+

[
r2
+(r

2
+ − α)− 2g2(r2

+ + 2α)

(r2
+ + g2)(r2

+ + 2α)

]
. (19)

For the g = 0, Equation (19) reduces to the temperature of 4D EGB black holes [20]

T+ =
1

4πr+

[
r2
+ − α

r2
+ + 2α

]
, (20)

and further in the limit of α → 0, we obtained the temperature of Schwarzschild black
holes [86,92]

T+ =
1

4πr+
. (21)

We depict the Hawking temperature behavior with horizon radius r+ for different
values of g and α in Figure 2. It is evident that, during the Hawking evaporation, as
the black hole horizon size shrinks, the temperature initially increases with decreasing
r+, reaches a maximum value, and then rapidly decreases and eventually vanishes for
some particular value of r+. The vanishing temperature implies the extremal black hole
with degenerate horizons, such that T+ < 0 corresponds to the no-black hole states. The
Hawking temperature possesses a local maximum at a particular value of horizon radius,
say rc

+ – critical horizon radius. Since the Hawking temperature has the maximum value
at rc

+, the first derivative of the temperature vanishes at a critical radius, leading to the
divergence of specific heat. The value of critical horizon radius increases with magnetic
monopole charge g and GB coupling constant α (cf. Figure 2). By taking into account the
first law of black hole thermodynamics, dM+ = T+dS+, we obtain the entropy of the black
hole as [94,95]

S+ =
A
4

[√
1 +

g2

r2
+

(
1− 16

3
α

r2
+

+
2g2

3r2
+

(3r2
+ + 2α)

)
+

1
r2
+

(3g2 + 4α) log(r+ +
√

g2 + r2
+)

]
, (22)
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where A = 4πr2
+ and for the Bardeen black holes in the 4D EGB gravity gets modified due

to the presence of GB coupling constant α and charge g. It is worthwhile to mention that
black hole entropy Equation (22) does not follows the usual entropy-area law, S+ = A/4,
where A = 4πr2

+ is the black hole event horizon area. For g = 0, we get

S+ =
A
4

[
1− 16

3
α

r2
+

+
4α

r2
+

log(2r+)

]
, (23)

and further in the limit of α = 0, it reduces to

S+ =
A
4

. (24)
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Figure 2. Hawking temperature T+ vs horizon radius r+ for various values of g and α.

It is precisely the entropy of the Schwarzschild black hole and the area law holds. It is
imperative to find the regions of the global stability of a thermodynamical system. Hence,
we further study the behavior of Helmholtz’s free energy (F+) of our model. Helmholtz’s
free energy determines the global stability of a thermodynamical system, such that a
thermodynamical system with F+ < 0 is globally stable, whereas the system with F+ > 0 is
globally unstable. The Helmholtz’s free energy of Bardeen black holes in 4D EGB gravity
can be obtained by using the relation, F+ = M+ − T+S+, [86] as

F+ =
r+
4

[
2(1 +

α

r2
+

)(1 +
g2

r2 )
3
2 −

r2
+(r

2
+ − α)− 2g2(r2

+ + 2α)

3r4
+

√
r2
+ + g2(r2

+ + 2α)

×

3r2
+ − 16α + 2g2(3r2

+ + 2α) +
3r2

+√
r2
+ + g2

(3g2 + 4α) log(r+ +
√

r2
+ + g2)

],

(25)
for g = 0, we get the free energy of 4D EGB black hole

F+ =
r+

4(r2
+ + 2α)

[
2(1 +

α

r2
+

)(r2
+ + 2α)− (r2

+ − α)

(
1− 16α

3r2
+

+
4α

r2
+

log(2r+)

)]
, (26)
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which, in the limit of α → 0, goes over to the Helmholtz’s free energy of Schwarzschild
black holes [86],

F+ =
r+
4

. (27)

The behavior of Helmholtz’s free energy is shown in Figure 3. However, Helmholtz’s
free energy is negative (F+ < 0) for some small values of r+, and the black hole temperature
is negative for these states. However, for black hole states with T+ ≥ 0, Helmholtz’s free
energy is always positive (F+ > 0). Therefore, Bardeen 4D EGB black holes are globally
unstable as F+ > 0. Further, to check the local thermodynamical stability of black holes, we
analyze the behavior of specific heat (C+) of the black holes. The positive (negative) specific
heat signifies the black holes’ local thermodynamical stability (instability). By using the
relation, C+ = ∂M+

∂r+
/ ∂T+

∂r+
[88,91], we get the expression of specific of Bardeen black holes in

4D EGB gravity

C+ = −2πr2
+

 (1 +
g2

r2
+
)(r2

+ + 2α)2
(

1− α
r2
+
− 2 g2

r2
+
(r2

+ + 2α)

)
r4
+ − α(5r2

+ + 2α)− A g2

r2
+
− B g4

r4
+

, (28)

with
A = 7r4

+ + α(31r2
+ + 22α) and B = 2(r2

+ + 2α)2.

In the absence of magnetic charge, g = 0, we obtain the heat capacity of 4D EGB
black holes

C+ = −2πr2
+

 (r
2
+ + 2α)2

(
1− α

r2
+

)
r4
+ − α(5r2

+ + 2α)

, (29)

which in the limit of α = 0 retain the following value

C+ = −2πr2
+, (30)

which can be identified as the value for the Schwarzschild black hole [86,92].
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Figure 3. The Helmholtz free energy F+ vs horizon r+ for different values of g and α.
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The numerical results of specific heat (C+) for varying horizon radius for different
values of g and α of Bardeen black holes in 4D EGB gravity is shown in Figure 4. Specific
heat diverges and flips its sign from positive to negative at a critical radius rc

+; hence the
black hole exhibits a second-order phase transition which takes the black hole from a local
stable state to an unstable state. Hence, the black holes with smaller horizon radius r+ < rc

+

are locally stable, whereas the black holes with larger horizon radius r+ > rc
+ are locally

unstable. Further, a black hole is always globally thermodynamically unstable for all r+.
Moreover, the black hole temperature increases with increasing r+ for r+ < rc

+, whereas
it decreases for r+ > rc

+ (cf. Figure 2). Interestingly, the value of the critical radius rc
+

increases as we increase the value of g and α.
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Figure 4. Specific heat C+ vs horizon r+ for different values of g and α.

4. Discussion

In the absence of a well-defined theory of quantum gravity, attention is devoted to
phenomenological approaches to solve singularity problems arising in classical general
relativity/EGB theory and studying possible implications. So an essential line of research
to understand the inside of a black hole is tantamount to investigating classical black holes
and their consequences, with regular, i.e., nonsingular, properties. In view of this, we
have examined static spherically symmetric Bardeen black hole solution in the EGB gravity
theory in 4-dimensional spacetime by re-scaling the GB coupling constant α→ α/(D− 4)
at the level of the equation of motion with source as the NED field, and it belongs to the
class of the three-parameter family of static and spherically symmetric black holes. We
analyzed the black hole horizon structure and found that for a fixed value of GB coupling
constant α and magnetic monopole charge g, there is a minimal value of mass, M0, below
which no black hole solution exists. For M = M0, black holes possess degenerate horizons,
and two distinct horizons for M > M0. Similarly, we find the extremal values of g = g0
and α = α0 for which black hole admits degenerate horizons r− = r+ = rE.

We made a detailed analysis of Helmholtz free energy F+ and heat capacity C+ to
check the thermodynamical stability of the black holes. We found that Bardeen black holes
in 4D EGB gravity are globally thermodynamically unstable as Helmholtz’s free energy
is always positive. While analyzing the local thermodynamical stability through specific
heat C+, we found that there exists a critical value of horizon radius rc

+ at which black
holes show second-order phase transition with diverging specific heat. The black holes
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with r+ < rc
+ are locally stable with C+ > 0, whereas the black holes with r+ > rc

+ having
negative specific heat are locally unstable.

Further, considering the AdS background for these 4D EGB Bardeen black holes may
lead to exciting phenomena, like, phase structure, particle production rates, greybody
factor, and critical phenomena. The possibility of further generalizing these results to 4D
Lovelock gravity is an interesting problem for the future. Such investigations now have a
clear astrophysical relevance; they can be fascinating from a future perspective.

Furthermore, it could be considered an effective theory with a specific prescription.
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Appendix A. Black Holes of Alternate Regularized 4D EGB Gravity

Glavan and Lin [16] obtained 4D EGB black hole solution (4). Here, we derive the
solution by alternate regularization techniques and check if we get the same solution by
them. We use the Kaluza–Klein-like dimensional compactification of the D-dimensional
EGB gravity on a (D− 4)-dimensional maximally symmetric space [37,40] for obtaining
the well-defined action principle for the regularized 4D EGB gravity minimally coupled
with NED. This model is based on the idea of Mann and Ross [96] for obtaining the D → 2
limit of Einstein GR and leads to the scalar-tensor theory of gravity that belongs to a family
of Horndeski gravity. Following [40], we reduce the D-dimensional EGB gravity (5) to
(D− p) dimensional maximally symmetric space of curvature proportional to λ:

ds2
D = ds2

p + exp[2Φ]dΣ2
D−p, (A1)

where ds2
p is the p-dimensional line element, dΣ2

D−p is the line element on the internal
maximally symmetric space and Φ is the scalar field. We rescaled the GB coupling as
α→ α/(D− p) and 4-dimensional reduced EGB gravitational action reads as

I4 =
∫

d4x
√−g

[
R+ α

(
ΦLGB + 4Gµν∂µΦ∂νΦ− 2λRe−2Φ − 4(∂Φ)2�Φ + 2

(
(∂Φ)2)2

−12λ(∂Φ)2e−2Φ − 6λ2e−4Φ
)
− 4L(F )

]
, (A2)

and corresponds to the regularized 4D EGB gravity action with rescaled GB coupling
constant. One can obtain the covariant field equations by varying the action (A2) for metric
tensor gµν and scalar field Φ(r) [35]. To study the static spherically symmetric black hole
solution, we consider the metric ansatz and scalar field as follows

ds2
4 = − exp[−2χ(r)] f (r)dt2 +

dr2

f (r)
+ r2dΩ2

2, Φ = Φ(r). (A3)

On substituting the ansatz (A3) to action I4 in (A2), we obtain the effective Lagrangian
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Leff = e−χ
[
2(1− f − r f ′) +

2
3

(
3r2 f 2Φ′3 + 2r

(
−r f ′ + 2r f χ′ − 4 f

)
f Φ′2

−6
(
−r f ′ + 2r f χ′ − f + 1

)
f Φ′ − 6( f − 1)

(
f ′ − 2 f χ′

))
αΦ′

+4αλe−2Φ
(

r2 f ′Φ′ − 2r2 f χ′Φ′ − 3r2 f Φ′2 + r f ′ + f − 1
)
− 6αλ2r2e−4Φ − 4r2L(F )

]
. (A4)

On using the Euler–Lagrange equations, we obtain the dynamical equations for metric
functions f (r) and χ(r), and scalar field Φ(r). Considering the special case of χ(r) = 0 [40],
these equations for the internally flat spacetime (λ = 0), respectively, read as

exp[Φ]α
(

1− (1− rΦ′)2 f
)
(Φ′2 + Φ′′) = 0, (A5)

exp[3Φ]α

[(
2Φ′ + (1− rΦ′)2 f ′

)
f ′ − f ′′ − 2(1− rΦ′)

(
−2Φ′2 + Φ′′ − 3rΦ′Φ′′

)
f 2

+
(
(1− rΦ′)2 f ′′ + 2Φ′′ − 2(−1 + rΦ′) f ′

(
−3Φ′ + 2rΦ′2 − rΦ′′

))
f

]
= 0, (A6)

exp[3Φ]

[
1− 2r2L(F )− (r + 2αΦ′) f ′ +

(
− 1 + αΦ′

(
− 2(1 + f )Φ′ + r2 f Φ′3

+2
(

3 + rΦ′(−3 + rΦ′)
)

f ′
)
+ 4α

(
− 1 + (−1 + rΦ′)2 f

)
Φ′′
)

f

]
= 0. (A7)

Solving Equation (A5), leads to the solution for the scalar field as follows:

Φ(r) = log
[ r

L

]
+ log[cosh(ξ)− sinh(ξ)], ξ(r) =

∫ r

1

du
u
√

f (u)
, (A8)

where L is an integration constant. For the scalar field (A8), the dynamical equation for
Φ(r) in (A6) is automatically satisfied, and using the 4D NED Lagrangian density L(F )
from Equation (8), Equation (A7) yield the solutions for metric function f (r) as

f±(r) = 1 +
r2

2α

(
1±

√
1 +

8Mα

(r2 + g2)3/2

)
. (A9)

Though this approach of 4D regularization of EGB gravity is noteworthily different
in spirit from the one proposed by Glavan and Lin [16], interestingly, the two theories
yield exactly the same static spherically symmetric black hole solutions. Nevertheless, a
larger class of black hole solutions may exist in the 4D effective scalar-tensor gravity theory
followed by the Kaluza–Klein approach [35,38,40]. We would not however like to address
the issues of a consistent 4D EGB theory, and so on, rather, our concern is for the regular
black hole solution, which eventually turns out the same in both theories.

Note added in proof: After this work was completed, we learned of a similar work by
Singh and Siwach [97], which appeared in arXiv a couple of days before.
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