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Abstract: We present a summary of the main results within the Scale Invariant Vacuum (SIV)
paradigm as related to the Weyl Integrable Geometry (WIG) as an extension to the standard Einstein
General Relativity (EGR). After a brief review of the mathematical framework, we will highlight
the main results related to inflation within the SIV, the growth of the density fluctuations, and
the application of the SIV to scale-invariant dynamics of galaxies, MOND, dark matter, and the
dwarf spheroidals. The possible connection between the weak-field SIV equations and the notion of
un-proper time parametrization within the reparametrization paradigm is also discussed.

Keywords: cosmology: theory, dark matter, dark energy, inflation; galaxies: formation, rotation; Weyl
integrable geometry; Dirac co-calculus

1. Motivation

The paper is a summary of the current main results within the Scale Invariant Vacuum
(SIV) paradigm as related to the Weyl Integrable Geometry (WIG) as an extension to the stan-
dard Einstein General Relativity (EGR). It is a reflection of the corresponding presentation
at the conference: Alternative Gravities and Fundamental Cosmology (AlteCosmoFun’21),
organized by the University of Szczecin, Poland, 6–10 September 2021.

After a general introduction on the problem of scale invariance and physical reality,
along with the similarities and differences of Einstein General Relativity and Weyl Inte-
grable Geometry, we briefly review the mathematical framework as pertained to Weyl
Integrable Geometry, Dirac Co-Calculus, and reparametrization invariance. Rather than
re-deriving the weak-field SIV results for the equations of motion, we have decided to use
the idea of reparametrization invariance [1] to illustrate the corresponding equations of
motion. The relevant discussion on reparametrization invariance is in the section on the
Consequences of Going beyond Einstein’s General Relativity. This section precedes the
brief review of the necessary results about the Scale Invariant Cosmology idea needed in
the section on Comparisons and Applications, where we highlight the main results related
to inflation within the SIV [2], the growth of the density fluctuations [3], and the application
of the SIV to scale-invariant dynamics of galaxies, MOND, dark matter, and the dwarf
spheroidals [4]. We end the paper with a section containing the Conclusions and Outlook
for future research directions.

1.1. Scale Invariance and Physical Reality

The presence of a scale is related to the existence of physical connection and causality.
The corresponding relationships are formulated as physical laws dressed in mathematical
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expressions. The laws of physics (numerical factors in the formulae) change upon change
of scale, but maintain a form-invariance. As a result, using consistent units is paramount in
physics and leads to powerful dimensional estimates of the order of magnitude of physical
quantities based on a simple dimensional analysis. The underlined scale is closely related
to the presence of material content, which reflects the energy scale involved.

However, in the absence of matter, a scale is not easy to define. Therefore, an empty
universe would be expected to be scale invariant! Absence of scale is confirmed by the scale
invariance of the Maxwell equations in vacuum (no charges and no currents—the sources
of the electromagnetic fields). The field equations of general relativity are scale invariant
for empty space with zero cosmological constant. What amount of matter is sufficient to
kill scale invariance is still an open question. Such a question is particularly relevant to
cosmology and the evolution of the universe.

1.2. Einstein General Relativity (EGR) and Weyl Integrable Geometry (WIG)

Einstein’s General Relativity (EGR) is based on the premise of a torsion-free covariant
connection that is metric-compatible and guarantees the preservation of the length of
vectors along geodesics (δ

∥∥−→v ∥∥ = 0). The theory has been successfully tested at various
scales, starting from local Earth laboratories, the Solar system, on galactic scales via light-
bending effects, and even on an extragalactic level via the observation of gravitational
waves. The EGR is also the foundation for modern cosmology and astrophysics. However,
at galactic and cosmic scales, some new and mysterious phenomena have appeared. The
explanations for these phenomena are often attributed to unknown matter particles or
fields that are yet to be detected in our laboratories—dark matter and dark energy.

As no new particles or fields have been detected in the Earth labs for more than
twenty years, it seems reasonable to revisit some old ideas that have been proposed as a
modification of EGR. In 1918, Weyl proposed and extension by adding local gauge (scale)
invariance [5]. Other approaches were more radical by adding extra dimensions, such as
Kaluza–Klein unification theory. Then, via Jordan conformal equivalence, one comes back
to the usual 4D spacetime as projective relativity theory, but with at least one additional
scalar field. Such theories are also known as Jordan–Brans–Dicke scalar-tensor gravitation
theories [6,7]. In most such theories, there is a major drawback—a varying Newton constant
G. As no such variations have been observed, we prefer to view Newton’s gravitational
constant G as constant despite the experimental issues on its measurements [8].

In the light of the above discussion one may naturally ask: could the mysterious
phenomena be artifacts of non-zero δ

∥∥−→v ∥∥, but often negligible and with almost zero value
(δ
∥∥−→v ∥∥ ≈ 0), which could accumulate over cosmic distances and fool us that the observed

phenomena may be due to dark matter and/or dark energy? An idea of extension of EGR
was proposed by Weyl as soon as the General Relativity (GR) was proposed by Einstein.
Weyl proposed an extension to GR by adding local gauge (scale) invariance that does have
the consequence that lengths may not be preserved upon parallel transport. However, it
was quickly argued that such a model will result in a path dependent phenomenon and,
thus, contradicting observations. A remedy was later found to this objection by introducing
Weyl Integrable Geometry (WIG), where the lengths of vectors are conserved only along
closed paths (

u
δ
∥∥−→v ∥∥ = 0). Such formulation of the Weyl’s original idea defeats the

Einstein objection! Furthermore, given that all we observe about the distant universe are
waves that reach us, the condition for Weyl Integrable Geometry is basically saying that
the information that arrives to us via different paths is interfering constructively to build a
consistent picture of the source object.

One way to build a WIG model is to consider conformal transformation of the metric
field g′µν = λ2gµν and to apply it to various observational phenomena. As we will see in
the discussion below, the demand for homogeneous and isotropic space restricts the field
λ to depend only on the cosmic time and not on the space coordinates. The weak field
limit of such a WIG model results in an extra acceleration in the equation of motion that is
proportional to the velocity of the particle.
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This behavior is somewhat similar to the Jordan–Brans–Dicke scalar-tensor gravitation;
however, the conformal factor λ does not seems to be a typical scalar field as in the
Jordan–Brans–Dicke theory [6,7].

The Scale Invariant Vacuum (SIV) idea provides a way of finding out the specific
functional form of λ(t) as applicable to LFRW cosmology and its WIG extension.

We also find it important to point out that extra acceleration in the equations of motion,
which is proportional to the velocity of a particle, could also be justified by requiring
re-parametrization symmetry. Not implementing re-parametrization invariance in a model
could lead to un-proper time parametrization [1] that seems to induce “fictitious forces” in
the equations of motion similar to the forces derived in the weak field SIV regime. It is a
puzzling observation that may help us understand nature better.

2. Mathematical Framework

The framework for the Scale Invariant Vacuum paradigm is based on the Weyl Inte-
grable Geometry and Dirac co-calculus as mathematical tools for description of nature [5,9].

2.1. Weyl Integrable Geometry and Dirac Co-Calculus

The original Weyl Geometry uses a metric tensor field gµν, along with a “connexion”
vector field κµ, and a scalar field λ. In the Weyl Integrable Geometry, the “connexion”
vector field κµ is not an independent field, but it is derivable from the scalar field λ.

κµ = −∂µ ln(λ) (1)

This form of the “connexion” vector field κµ guarantees its irrelevance, in the covariant
derivatives, upon integration over closed paths. That is,

u
κµdxµ = 0. In other words,

κµdxµ represents a closed 1-form; furthermore, it is an exact form, as (1) implies κµdxµ = dλ.
Thus, the scalar function λ plays a key role in the Weyl Integrable Geometry. Its physical
meaning is related to the freedom of a local scale gauge that provides a description upon
change in scale via local re-scaling l′ → λ(x)l.

2.1.1. Gauge Change and Derivatives within the EGR and WIG Context

The covariant derivatives use the rules of the Dirac co-calculus [9] where tensors also
have co-tensor powers based on the way they transform upon change of scale. For the
metric tensor gµν this power is n = 2. This follows from the way the length of a line
segment ds with coordinates dxµ is defined via the usual expression ds2 = gµνdxµdxν.

l′ → λ(x)l ⇔ ds′ = λds⇒ g′µν = λ2gµν

This leads to gµν having the co-tensor power of n = −2 in order to have the Kronecker
δ as scale invariant object (gµνgνρ = δ

ρ
µ). That is, a co-tensor is of power n when, upon local

scale change, it satisfies:

l′ → λ(x)l : Y′µν → λnYµν (2)

2.1.2. Dirac Co-Calculus

In the Dirac co-calculus, this results in the appearance of the “connexion” vector field
κµ in the covariant derivatives of scalars, vectors, and tensors (see Table 1):

Table 1. Derivatives for co-tensors of power n.

Co-Tensor Type Mathematical Expression

co-scalar S∗µ = ∂µS− nκµS,
co-vector Aν∗µ = ∂µ Aν − ∗Γα

νµ Aα − nκν Aµ,
co-covector Aν

∗µ = ∂µ Aν + ∗Γν
µα Aα − nkν Aµ.
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where the usual Christoffel symbol Γν
µα is replaced by

∗Γν
µα = Γν

µα + gµαkν − gν
µκα − gν

ακµ. (3)

The corresponding equation of the geodesics within the WIG was first introduced in
1973 by Dirac [9] and in the weak-field limit of Weyl gauge change redivided in 1979 by
Maeder and Bouvier [10] (uµ = dxµ/ds is the four-velocity):

uµ
∗ν = 0⇒ duµ

ds
+∗ Γµ

νρuνuρ + κνuνuµ = 0 . (4)

This geodesic equation has also been derived from reparametrisation-invariant action
in 1978 by Bouvier and Maeder [11]:

δA =

P1∫
P0

δ(ds̃) =
∫

δ(βds) =
∫

δ

(
β

ds
dτ

)
dτ = 0.

2.2. Consequences of Going beyond the EGR

Before we go into a specific examples, such as FLRW cosmology and weak-field
limit, we would like to make few remarks. By using (3) in (4), one can see that the
usual EGR equations of motion receive extra terms proportional to the four-velocity and
its normalization:

duµ

ds
+ Γµ

νρuνuρ = (κ · u)uµ − (u · u)κµ (5)

In the weak-field approximation within the SIV, one assumes an isotropic and homoge-
neous space for the derivation of the terms beyond the usual Newtonian equations [11]. As
seen from (5), the result is a velocity dependent extra term κ0~v with κ0 = −λ̇/λ and~κ = 0
due to the assumption of isotropic and homogeneous space. At this point, it is important to
stress that the usual normalization for the four-velocity, u · u = ±1 with sign related to the
signature of the metric tensor gµν, is a special choice of s-parametrization—the proper-time
parametrization τ.

Recently, similar κ0~v term was derived as a consequence of non-reparametrization
invariant mathematical modeling but without the need for a weak-field approximation. The
effect is due to un-proper time parametrization manifested as velocity dependent fictitious
acceleration [1]. In this respect, the term κ0~v is necessary for the restoration of the broken
symmetry—the re-parametrization invariance of a process under study. To demonstrate
this, one can apply an arbitrary time re-parametrization λ = dt/dτ; then, the first term on
the LHS of (5) becomes:

λ
d
dt

(
λ

d~r
dt

)
= λ2 d2~r

dt2 + λλ̇
d~r
dt

. (6)

By moving the term linear in the velocity to the RHS, dividing by λ2, and by using
κ(t) = −λ̇/λ, one obtains a κ0~v-like term on the RHS. If we were to do such manipulation
in the absence of κ0~v on the LHS of (5), then the term will be generated, while if κ̃ was
present then it will be transformed κ̃ → κ + κ̃.

Furthermore, unlike in SIV, where one can justify λ(t) = t0/t, for re-parametrization
symmetry the time dependence of λ(t) could be arbitrary. Finally, as discussed in [1], the
extra term κ0~v is not expected to be present when the time parametrization of the process is
the proper time of the system. Thus, a term of the form κ~v can be viewed as restoration of
the re-parametrization symmetry and an indication of un-proper time parametrization of a
process under consideration.

In the case of the FLRW cosmology, with the assumption of homogeneity and isotropy
of space, one assumes −c2dτ2 = −c2dt2 + a(t)2dΣ2, where c is the speed of light (to be set
to 1), Σ is a three-dimensional space of uniform curvature, and a(t) is the scale factor for
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the three-dimensional space. Here, τ is the proper time parametrization, presumably of
the cosmological evolution, while t is the coordinate time of an observer who is studying
the cosmic evolution. Upon transitioning to WIG, one would have λ(x) multiplicative
factor and, in the case of λ(t) (time dependence only), one may argue that this factor
could be absorbed into a(t) along with a suitable redefinition of the coordinate time t into
dt̃ = λ(t)dt. However, this does not guarantee proper-time parametrization overall. It is
therefore likely to have un-proper time parametrization for the FLRW cosmology equations,
unless one makes sure that the re-parametrization symmetry is restored. This should
translate into scale invariance for general λ(x) conformal transformation.

2.3. Scale Invariant Cosmology

The scale invariant cosmology equations were first introduced in 1973 by Dirac [9] and
then re-derived in 1977 by Canuto et al. [12]. The equations are based on the corresponding
expressions of the Ricci tensor and the relevant extension of the Einstein equations.

2.3.1. The Einstein Equation for Weyl’s Geometry

The conformal transformation (g′µν = λ2gµν) of the metric tensor gµν in the more
general Weyl’s framework into Einstein’s framework, where the metric tensor is g′µν,
induces a simple relation between the Ricci tensor and scalar in Weyl’s Integrable Geometry
and the Einstein GR framework (using prime to denote Einstein GR framework objects):

Rµν = R′µν − κµ;ν − κν;µ − 2κµκν + 2gµνκακα − gµνκα
;α ,

R = R′ + 6κακα − 6κα
;α .

When considering the Einstein equation along with the above expressions, one obtains:

Rµν −
1
2

gµνR = −8πGTµν −Λ gµν , (7)

R′µν −
1
2

gµνR′ − κµ;ν − κν;µ − 2κµκν + 2gµνκα
;α − gµνκακα =

−8πGTµν −Λ gµν . (8)

The relationship Λ = λ2ΛE of Λ in WIG to the Einstein cosmological constant ΛE in the
EGR was present in the original form of the equations to provide explicit scale invariance.
This relationship makes explicit the appearance of ΛE as invariant scalar (in-scalar), as then
one has Λ gµν = λ2ΛE gµν = ΛE g′µν.

The above equations are a generalization of the original Einstein GR equation. Thus,
they have an even larger class of local gauge symmetries that need to be fixed by a gauge
choice. In Dirac’s work, the gauge choice was based on the large numbers hypothesis. Here,
we discuss a different gauge choice.

The corresponding scale-invariant FLRW based cosmology equations within the WIG
framework were first introduced in 1977 by Canuto et al. [12]:

8 πG$

3
=

k
a2 +

ȧ2

a2 + 2
λ̇ ȧ
λ a

+
λ̇2

λ2 −
ΛEλ2

3
, (9)

−8 πGp =
k
a2 + 2

ä
a
+ 2

λ̈

λ
+

ȧ2

a2 + 4
ȧ λ̇

a λ
− λ̇2

λ2 −ΛE λ2 . (10)

These equations clearly reproduce the standard FLRW equations in the limit λ = const = 1.
The scaling of Λ was recently used to revisit the Cosmological Constant Problem within
quantum cosmology [13]. The conclusion of [13] is that our universe is unusually large, given
that the expected mean size of all universes, where Einstein GR holds, is expected to be of a
Plank scale. In the study, λ = const was a key assumption as the universes were expected to
obey the Einstein GR equations. What the expected mean size of all universes would be if the
condition λ = const is relaxed, as for a WIG-universes ensemble, remains an open question.
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2.3.2. The Scale Invariant Vacuum Gauge (T = 0 and R′ = 0)

The idea of the Scale Invariant Vacuum was introduced first in 2017 by Maeder [14]. It
is based on the fact that, for Ricci flat (R′µν = 0) Einstein GR vacuum (Tµν = 0), one obtains
from (8) the following equation for the vacuum:

κµ;ν + κν;µ + 2κµκν − 2gµνκα
;α + gµνκακα = Λ gµν (11)

For homogeneous and isotropic WIG-space ∂iλ = 0; therefore, only κ0 = −λ̇/λ and
its time derivative κ̇0 = −κ2

0 can be non-zero. As a corollary of (11), one can derive the
following set of equations [14]:

3
λ̇2

λ2 = Λ , and 2
λ̈

λ
− λ̇2

λ2 = Λ , (12)

or
λ̈

λ
= 2

λ̇2

λ2 , and
λ̈

λ
− λ̇2

λ2 =
Λ
3

. (13)

One could derive these equations by using the time and space components of the
equations or by looking at the relevant trace invariant along with the relationship κ̇0 = −κ2

0.
Any pair of these equations is sufficient to prove the other pair of equations.

Theorem 1. Using the SIV Equations (12) or (13) with Λ = λ2ΛE one has:

ΛE = 3
λ̇2

λ4 , with
dΛE
dt

= 0. (14)

Corollary. The solution of the SIV equations is:

λ = t0/t, (15)

with t0 =
√

3/ΛE and c = 1 for the speed of light.

Upon the use of the SIV gauge, first in 2017 by Maeder [14], one observes that the
cosmological constant disappears from Equations (9) and (10):

8 πG$

3
=

k
a2 +

ȧ2

a2 + 2
ȧλ̇

aλ
, (16)

−8 πGp =
k
a2 + 2

ä
a
+

ȧ2

a2 + 4
ȧλ̇

aλ
. (17)

3. Comparisons and Applications

The predictions and outcomes of the SIV paradigm were confronted with observations
in a series of papers by the current authors. Highlighting the main results and outcomes is
the subject of current section.

3.1. Comparing the Scale Factor a(t) within ΛCDM and SIV

Upon arriving at the SIV cosmology Equations (16) and (17), along with the gauge
fixing (14), which implies λ = t0/t with t0 indicating the current age of the universe
since the Big-Bang (a = 0 and t = 0), the implications for cosmology were first discussed
by Maeder [14] and later reviewed by Maeder and Gueorguiev [15]. The most important
point in comparing ΛCDM and SIV cosmology models is the existence of SIV cosmology
with slightly different parameters but almost the same curve for the standard scale param-
eter a(t) when the time scale is set so that t0 = 1 now [14,15]. As seen in Figure 1, the
differences between the ΛCDM and SIV models declines for increasing matter densities.
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1.0

Expansion rate:  LCDM & scale invariant

a(t)

t

LCDM

SIV

Figure 1. Expansion rates a(t) as a function of time t in the flat (k = 0) ΛCDM and SIV models in the
matter dominated era. The curves are labeled by the values of Ωm.

3.2. Application to Scale-Invariant Dynamics of Galaxies

The next important application of the scale-invariance at cosmic scales is the derivation
of a universal expression for the Radial Acceleration Relation (RAR) of gobs and gbar.
That is, the relation between the observed gravitational acceleration gobs = v2/r and the
acceleration from the baryonic matter due to the standard Newtonian gravity gN by [4]:

g = gN +
k2

2
+

1
2

√
4gNk2 + k4 , (18)

where g = gobs, gN = gbar. For gN � k2 : g→ gN but for gN → 0⇒ g→ k2 is a constant.

As seen in Figure 2, MOND deviates significantly for the data on the Dwarf Spheroidals.
This is well-known problem in MOND due to the need of two different interpolating functions,
one in galaxies and one at cosmic scales. The SIV universal expression (18) resolves this issue
naturally, with one universal parameter k2 related to the gravity at large distances [4].

-8

-9

-10

-11

-12

-13
-14           -13           -12          -11           -10            -9             -8

lo
g 

g o
b

s 
[m

 s
-2

]

log gbar [m s-2]

Comparison of the RAR with
SIV theory and   MOND

SIV

MOND

Figure 2. Radial Acceleration Relation (RAR) for the galaxies studied by Lelli et al. (2017). Dwarf
Spheroidals as binned data (big green hexagons), along with MOND (red curve), and SIV (blue curve)
model predictions. The orange curve shows the 1:1-line for gobs and gbar. Due to to the smallness of
gobs and gbar the application of the log function results in negative numbers; thus, the corresponding
axes’ values are all negative.
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The expression (18) follows from the Weak Field Approximation (WFA) of the SIV
upon utilization of the Dirac co-calculus in the derivation of the geodesic equation within
the relevant WIG (4) (see Maeder and Gueorguiev [4] for more details, as well as the original
derivation in Maeder and Bouvier [10]):

gii = −1, g00 = 1 + 2Φ/c2 ⇒ Γi
00 =

1
2

∂g00

∂xi =
1
c2

∂Φ
∂xi ,

d2−→r
dt2 = −GM

r2

−→r
r

+ κ0(t)
d−→r
dt

. (19)

where i ∈ 1, 2, 3, while the potential Φ = GM/r is scale invariant.
By considering the scale-invariant ratio of the correction term κ0(t) υ to the usual

Newtonian term in (19), one has:

x =
κ0υr2

GM
=

H0

ξ

υ r2

GM
=

H0

ξ

(r gobs)
1/2

gbar
∼ gobs − gbar

gbar
, (20)

Then, by utilizing an explicit scale invariance for canceling the proportionality factor:(
gobs − gbar

gbar

)
2
÷
(

gobs − gbar
gbar

)
1
=

(
gobs,2

gobs,1

)1/2 ( gbar,1

gbar,2

)
, (21)

by setting g = gobs,2, gN = gbar,2, and with k = k(1) all the system-1 terms, one obtains (18):

g
gN
− 1 = k(1)

g1/2

gN
⇒ g = gN +

k2

2
± 1

2

√
4gNk2 + k4.

3.3. Growth of the Density Fluctuations within the SIV

Another interesting result was the possibility of a fast growth of the density fluctua-
tions within the SIV [3]. This study accordingly modifies the relevant equations such as
the continuity equation, Poisson equation, and Euler equation within the SIV framework.
Here, we outline the main equations and the relevant results.

By using the notation κ = κ0 = −λ̇/λ = 1/t, the corresponding Continuity, Poisson,
and Euler equations are:

∂ρ

∂t
+ ~∇ · (ρ~v) = κ

[
ρ +~r · ~∇ρ

]
, ~∇2Φ = 4Φ = 4πG$,

d~v
dt

=
∂~v
∂t

+
(
~v · ~∇

)
~v = −~∇Φ− 1

ρ
~∇p + κ~v .

For a density perturbation $(~x, t) = $b(t)(1 + δ(~x, t)) the above equations result in:

δ̇ + ~∇ · ~̇x = κ~x · ~∇δ = nκ(t)δ , ~∇2Ψ = 4πGa2$bδ, (22)

~̈x + 2H~̇x + (~̇x · ~∇)~̇x = −
~∇Ψ
a2 + κ(t)~̇x. (23)

⇒ δ̈ + (2H − (1 + n)κ)δ̇ = 4πG$bδ + 2nκ(H − κ)δ. (24)

The final result (24) recovers the standard equation in the limit of κ → 0. The sim-
plifying assumption ~x · ~∇δ(x) = nδ(x) in (22) introduces the parameter n that measures
the perturbation type (shape). For example, a spherically symmetric perturbation would
have n = 2. As seen in Figure 3, perturbations for various values of n are resulting in faster
growth of the density fluctuations within the SIV than in the Einstein–de Sitter model, even
at relatively law matter densities. Furthermore, the overall slope is independent of the
choice of recombination epoch zrec. The behavior for different Ωm is also interesting, and is
shown and discussed in detail by Maeder and Gueorguiev [3].
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-4
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d

3.0             2.5            2.0            1.5            1.0           0.5
log (1+z)

EdS model

Different values of n

n = 5, 3, 2, 1

Dotted lines:
initial z=3000  and
z=500 for n=2.

Figure 3. The growth of density fluctuations for different values of parameter n (the gradient of the
density distribution in the nascent cluster), for an initial value δ = 10−5 at z = 1376 and Ωm = 0.10.
The initial slopes are those of the EdS models. The two light broken curves show models with initial
(z + 1) = 3000 and 500, with same Ωm = 0.10 and n = 2. These dashed lines are to be compared
to the black continuous line of the n = 2 model. All the three lines for n = 2 are very similar and
nearly parallel. Due to to the smallness of δ the application of the log function results in negative
numbers; thus, the corresponding vertical axes values are all negative.

3.4. SIV and the Inflation of the Early Universe

The latest result within the SIV paradigm is the presence of inflation stage at the very
early universe t ≈ 0 with a natural exit from inflation in a later time texit with value related
to the parameters of the inflationary potential [2]. The main steps towards these results are
outlined below.

If we go back to the general scale-invariant cosmology Equation (9), we can identify
a vacuum energy density expression that relates the Einstein cosmological constant with
the energy density as expressed in terms of κ = −λ̇/λ by using the SIV result (14). The
corresponding vacuum energy density ρ, with C = 3/(4πG), is then:

ρ =
Λ

8πG
= λ2ρ′ = λ2 ΛE

8πG
=

3
8πG

λ̇2

λ2 =
C
2

ψ̇2 .

This provides a natural connection to inflation within the SIV via ψ̇ = −λ̇/λ or
ψ ∝ ln(t). The equations for the energy density, pressure, and Weinberg’s condition for
inflation within the standard model for inflation [16–19] are:

ρ
p

}
=

1
2

ϕ̇2 ±V(ϕ), | Ḣinfl |� H2
infl . (25)

If we make the identification between the standard model for inflation above with the
fields present within the SIV (using C = 3/(4πG)):

ψ̇ = −λ̇/λ, ϕ↔
√

C ψ, V ↔ CU(ψ), U(ψ) = g eµ ψ . (26)

Here, U(ψ) is the inflation potential with strength g and field “coupling” µ. One can
evaluate the Weinberg’s condition for inflation (25) within the SIV framework [2], and the
result is:

| Ḣinfl |
H2

infl
=

3 (µ + 1)
g (µ + 2)

t−µ−2 � 1 f or µ < −2, and t� t0 = 1. (27)
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From this expression, one can see that there is a graceful exit from inflation at the
later time:

texit ≈ n

√
n g

3(n + 1)
with n = −µ− 2 > 0, (28)

when the Weinberg’s condition for inflation (25) is not satisfied anymore.
The derivation of the Equation (27) starts with the use of the scale invariant energy

conservation equation within SIV [2,14]:

d($a3)

da
+ 3 pa2 + ($ + 3 p)

a3

λ

dλ

da
= 0 , (29)

which has the following equivalent form:

$̇ + 3
ȧ
a
($ + p) +

λ̇

λ
($ + 3p) = 0 . (30)

By substituting the expressions for ρ and p from (25) along with the SIV identifica-
tion (26) within the SIV expression (30), one obtains modified form of the Klein–Gordon
equation, which could be non-linear when using non-linear potential U(ψ) as in (26):

ψ̈ + U′ + 3Hinfl ψ̇− 2 (ψ̇2 −U) = 0 . (31)

The above Equation (31) can be used to evaluate the time derivative of the Hubble
parameter. The process is utilizing (14); that is, λ = t0/t, ψ̇ = −λ̇/λ = 1/t ⇒ ψ̈ = −ψ̇2

along with ψ = ln(t) + const and U(ψ) = g eµ ψ = gtµ when the normalization of the field
ψ is chosen so that ψ(t0) = ln(t0) = 0 for t0 = 1 at the current epoch. The final result is:

Hinfl = ψ̇− 2 U
3 ψ̇
− U′

3 ψ̇
=

1
t
− (2 + µ) g

3
tµ+1 , (32)

Ḣinfl = −ψ̇2 − 2U
3
−U′ − U′′

3
= − 1

t2 −
(µ + 2)(µ + 1) g

3
tµ . (33)

For µ < −2 the tµ terms above are dominant; thus, the critical ratio (25) for the
occurrence of inflation near t ≈ 0 is then:

| Ḣinfl |
H2

infl
=

3 (µ + 1)
g (µ + 2)

t−µ−2 .

4. Conclusions and Outlook

From the highlighted results in the previous section on various comparisons and
potential applications, we see that the SIV cosmology is a viable alternative to ΛCDM. In par-
ticular, within the SIV gauge (16) the cosmological constant disappears. There are diminishing
differences in the values of the scale factor a(t) within ΛCDM and SIV at higher densities
as emphasized in the discussion of (Figure 1) [14,15]. Furthermore, the SIV also shows
consistency for H0 and the age of the universe, and the m-z diagram is well satisfied—see
Maeder and Gueorguiev [15] for details.

Furthermore, the SIV provides the correct RAR for dwarf spheroidals (Figure 2) while
MOND is failing, and dark matter cannot account for the phenomenon [4]. Therefore,
it seems that within the SIV, dark matter is not needed to seed the growth of structure in the
universe, as there is a fast enough growth of the density fluctuations as seen in (Figure 3)
and discussed in more detail by Maeder and Gueorguiev [3].

In our latest studies on the inflation within the SIV cosmology [2], we have identified a
connection of the scale factor λ, and its rate of change, with the inflation field ψ→ ϕ , ψ̇ =
−λ̇/λ (26). As seen from (27), inflation of the very-very early universe (t ≈ 0) is natural, and
SIV predicts a graceful exit from inflation (see (28))!
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Some of the obvious future research directions are related to the primordial nucle-
osynthesis, where preliminary results show a satisfactory comparison between SIV and
observations [20]. The recent success of the R-MOND in the description of the CMB [21],
after the initial hope and concerns [22], is very stimulating and demands testing SIV cosmol-
ogy against the MOND and ΛCDM successes in the description of the CMB, the Baryonic
Acoustic Oscillations, etc.

Another important direction is the need to understand the physical meaning and
interpretation of the conformal factor λ. As we pointed out in Section 1.2, a general
conformal factor λ(x) seems to be linked to Jordan–Brans–Dicke scalar-tensor theory that
leads to a varying Newton’s constant G, which has not been detected to date. Furthermore,
a spacial dependence of λ(x) opens the door to local field excitations that should manifest
as some type of fundamental scalar particles. The Higgs boson is such a particle, but a
connection to Jordan–Brans–Dicke scalar-tensor theory seems a far fetched idea. On the
other hand, the assumption of isotropy and homogeneity of space forces λ(t) to depend
only on time, which is not in any sense similar to the usual fundamental fields we are
familiar with.

In this respect, other less obvious research directions are related to the exploration of
SIV within the solar system due to the high-accuracy data available, or exploring further
and in more detail the possible connection of SIV with the re-parametrization invariance.
For example, it is already known by Gueorguiev and Maeder [1] that un-proper time
parametrization can lead to a SIV-like equation of motion (5) and the relevant weak-field
version (19).
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