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Abstract: Understanding the dynamics of strongly coupled non-Abelian gauge theories constitutes
one of the ongoing grand challenges in theoretical physics. This has been motivated by the need to
understand long-distance behavior of quantum chromodynamics, and by the possible phenomeno-
logical applications in dynamical electroweak symmetry breaking or strongly coupled and composite
dark sectors. In this review, we start by briefly outlining these motivations, and then discuss how
first principle lattice methods have been adapted to provide results on vacuum phase diagrams of
strongly coupled gauge theories with different gauge groups and various fermion representations.
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1. Introduction

Fundamental interactions of nature are described in terms of Yang–Mills theories [1],
and it is therefore imperative to understand in detail how specific Yang–Mills theories
behave. The construction of models for the forces of nature is based on identification of the
relevant degrees of freedom and their symmetries. Once these have been determined, one
needs to address the question about how the gauge symmetry Gc and global symmetries G
are realized in the vacuum of the theory.

The specific and familiar example of this general framework is provided by the low
energy QCD, which is based on the gauge symmetry Gc = SU(3). Taking the matter content
to be three massless quarks, the theory is described by the Lagrangian

L = −1
4
(Fa

µν)
2 + q̄Li /DqL + q̄Ri /DqR, (1)

where a = 1, . . . 8 and the summation over three quark flavors is implicit. The global
symmetry U(3)× U(3) of the classical Lagrangian corresponds to the independent rotations
of different left-handed quarks qL and right-handed quarks qR among themselves. However,
the U(1) transformation

qL → eiαqL, qR → e−iαqR (2)

is anomalous, not surviving the quantization of the theory. Hence, the global symmetry
is G = SU(3) × SU(3) × U(1). The degrees of freedom and gauge and global symmetry
implied by the above Lagrangian have been well established by observations to yield correct
dynamics of the strong interaction at high energy processes. This is because these degrees
of freedom become weakly coupled at high energies due to asymptotic freedom [2,3], and
this in turn allows them to be probed by scattering leptons off nucleons [4,5] or in hadronic
collisions [6]. For perturbative aspects of QCD, see e.g., [7,8].

However, it has also been established that the degrees of freedom appearing in the
Lagrangian are not observed directly at experiments, but they are permanently confined
into gauge-singlet bound states [9]. This strong coupling property of QCD has been
observed in lattice simulations of the theory; for lattice QCD, see e.g., [10].
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Returning to the symmetries of the theory, from experiments it is also known that the
subgroup H = SU(3) × U(1) of the global symmetry group G remains an explicit symmetry
of the hadronic spectrum. This pattern of explicit and hidden symmetries is realized by the
formation of the quark-antiquark condensate at strong coupling. Such color singlet quark
bilinear is of the form q̄F

LqF′
R , and assuming the vacuum expectation value

〈q̄F
LqF′

R 〉 = ∆δFF′ , (3)

leads to the symmetry breaking pattern of SU(3) × SU(3)×U(1) down to SU(3) × U(1),
where the remaining SU(3) is the vectorial subgroup corresponding to simultaneous rota-
tions of left- and right-handed quarks with the same SU(3) transformation. In real QCD, the
quarks are not exactly massless as we have assumed in the example sketched here, but they
are light in comparison to the intrinsic scale of the strong dynamics. Then the symmetry is
approximate, but the applicability of the above symmetry breaking pattern is manifested
by the appearance of eight light pseudoscalar mesons, the pions, kaons and the eta.

In beyond the Standard Model (BSM) model building based on new non-Abelian gauge
dynamics with new fermionic matter, degrees of freedom has been applied to address the
naturalness problem of the Higgs sector. With new QCD-like technicolor dynamics [11,12] op-
erating at the terascale, the electroweak symmetry breaks and the Higgs boson is identified
with the lightest scalar excitation of the condensate of the new fermions. To address the
shortcomings of the scaled-up QCD-scenario, the technicolor gauge theory is expected to
emerge with gauge and matter degrees of freedom for which the theory is near-conforma,
i.e., governed by a nontrivial infrared fixed point (IRFP). This is also known as walking
technicolor [13]. For more detailed reviews, see e.g., [14,15].

Another direction of BSM model building addresses particle dark matter [16] arising as
composite states of non-Abelian gauge dynamics operating in an isolated hidden sector. Such
states can have natural symmetries guaranteeing their stability and suppressed interactions
with ordinary matter which allow them to escape current bounds on direct detection.

The story of strong dynamics in QCD is well known, the theory pieces fit nicely
together, and it provides a basis for our intuition about strong interaction. However,
the situation for other possible Yang–Mills theories is not obvious. Motivated by the
model building examples described above, we are interested in more general settings of
non-Abelian gauge theory coupled with some number N f of massless fermions. We are
interested to understand when there needs to be confinement at long distances and when
there may exist other symmetry breaking patterns.

In this review, we discuss the progress achieved in this respect over the past decade. In
Section 2 we describe what kind of qualitative phase diagrams we would expect for a given
gauge theory. Then, in Section 3 we define a lattice model and methodology, which can be
used to probe the vacuum phase diagrams. In Section 4 we discuss as concrete example the
case of SU(2) gauge theory with fermions in the adjoint or fundamental representations.
In both of these cases, the conformal window seems to be well established. Then, in
Section 5 we describe the results for different gauge groups, and in Section 6 we outline
some prospects of further studies in this field and conclude the paper.

2. Estimates of Gauge Theory Phase Diagrams

In supersymmetric gauge theories, one may approach questions about their nonper-
turbative behavior using analytic methods [17,18]. We are interested in vacuum phase
diagrams of non-supersymmetric theories, and must ultimately apply lattice field theory
methods to determine their long distance behavior. In this section, we will apply perturba-
tion theory and estimates of chiral symmetry breaking [19,20] to sketch phase diagrams
which provide guide for nonperturbative computations.

Starting with large enough number of fermions, so that the theory is not asymptotically
free, N f > Nas

f , where Nas
f is determined by the zero of the 1-loop coefficient of the

beta-function. In this case the screening of matter fields overwhelms the gauge boson
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antiscreening and the coupling becomes weaker towards the infra-red. The vacuum phase
is that of weakly coupled massless gauge bosons and fermions. The electrically charged
probe experiences the potential

Vel(r) ∼
1

r ln(rΛUV)
, (4)

analogously with QED.
The two-loop beta-function is needed to understand the behavior of the theory with

N f just below Nas
f . The perturbative expansion of the beta-function is

β(g) = µ
dg
dµ

= − β0

(4π)2 g3 − β1

(4π)4 g5 + . . . , (5)

where
β0 =

11
3

C2(G)− 4
3

T(R)N f (6)

and the two loop coefficient is

β1 =
34
3

C2
2(G)− 20

3
C2(G)T(R)N f − 4C2(R)T(R)N f . (7)

In the above equations for general SU(Nc) representation R the generators Ta
R, a = 1, . . . , N2

c −
1 are normalized via tr(Ta

RTb
R) = T(R)δab and the quadratic Casimir is given by

Ta
RTb

R = C2(R)1. Furthermore, the adjoint representation is denoted by G.
Using the expressions for β0 and β1 we see first that Nas

f = 11C2(G)/(4T(R)). Then,
for N f < Nas

f , the first coefficient is positive while the second coefficient will be negative as
long as

N f >
34C2(G)2

(20C2(G) + 12C2(R))T(R)
= N∗f (8)

Then, for values of N f in the range Nas
f > N f > N∗f the two-loop beta-function may

have a zero, β(g∗) = 0, at positive coupling

g2
∗ = −

β0

β1
(4π)2. (9)

If we treat N f and Nc as continuous variables and define

ε = (Nas
f − N f )/Nc, (10)

then, for small ε, the fixed point g2∗ � 1 and the perturbation theory analysis is valid [21].
At the fixed point the theory is scale invariant and electric probe charges experience the
Coulomb force,

V(r) ∼ 1
r

, (11)

and the vacuum phase is called the non-Abelian Coulomb phase.
Lowering N f at fixed Nc, the above analysis implies a fixed point until the value of

N f becomes small enough, that the two-loop coefficient of the beta function changes sign.
Then the beta function is negative and QCD-like behavior at strong coupling ensues. Of
course these arguments extend to values of g2∗ so large that perturbation theory cannot be
trusted anymore.

Qualitatively, one is led to expect that there exists a conformal window extending over
the values of

Ncrit
f < N f < Nas

f , (12)
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where Ncrit
f is a lower bound which needs to be estimated taking into account the strong

coupling dynamics beyond perturbative beta-function.
To gain a little insight on how Ncrit

f arises, we can search for chiral symmetry breaking
solutions of the truncated gap equation for the fermion two-point function. Nontrivial
solutions exist only if the coupling is sufficiently large,

α ≥ αc =
π

3C2(R)
. (13)

Given a fixed point α∗ = g2∗/(4π2) as implied by Equation (9), one argues that the fixed
point persists only as long as the critical coupling αc remains larger than the putative fixed
point coupling α∗. Therefore, based on the two-loop beta function and the constraint from
the critical coupling for chiral symmetry breaking, we can derive the estimate for the value
of N f at the lower boundary by solving α∗ = αc to obtain

Ncrit
f =

(66C2(R) + 17C2(G))C2(G)

10T(R)(3C2(R) + C2(G))
(14)

which lies above the limiting value of N∗f implied by the existence of IRFP in the two-loop
beta function, β1 = 0.

Based on these results, we can draw sketches of phase diagrams for a given fermion
representation. It was shown in [22,23] that there are only few higher representations
for which the conformal window may exist. Practically these are the fundamental repre-
sentation (F), the adjoint (G) and the two-index symmetric (2S) and antisymmetric (2AS)
representations. The relevant group theory factors are given in Table 1 for the gauge group
SU(Nc).

Table 1. The group theory factors for adjoint, fundamental and two-index (anti)symmetric represen-
tations of SU(Nc). The last column gives the dimension of the representation.

R T(R) C2(R) d(R)

G Nc Nc N1
c − 1

F 1/2 (N2
c − 1)/(2Nc) Nc

2S 1
2 (Nc + 2) (Nc − 1)(Nc + 2)/Nc Nc(Nc + 1)/2

2AS 1
2 (Nc − 2) (Nc + 1)(Nc − 2)/Nc Nc(Nc − 1)/2

In the left panel of Figure 1 we show the phase diagrams for the fundamental represen-
tation and two-index antisymmetric representation and in the right panel the corresponding
diagram for the adjoint representation and the two-index symmetric representations.

2 3 4 5
Nc

5

10

15

Nf

2 3 4 5
Nc

1

2

3

4

Nf

Figure 1. Estimates of phase diagrams as a function of numbers of colors and flavors for different
fermion representations. The shaded regions show the conformal windows in the left panel for
the fundamental (purple) and 2-index antisymmetric (cyan) representations, and for the adjoint
and 2-index symmetric representations in the right panel. The dotted lines show where the second
coefficient of the beta function changes sign.

For Nc = 3 the two-index antisymmetric representation coincides with the antifunda-
mental representation and for Nc = 2 the two-index symmetric representation coincides
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with the adjoint representation. The conformal windows of different representations show
very different dependencies on the number of flavors: For fundamental representation the
conformal window lies at relatively large number of flavors which increases with increasing
Nc. For two-index antisymmetric representation the location of the conformal window
moves to lower number of flavors as Nc is increased, but remains above N f = 5 in the limit
Nc → ∞. For two-index symmetric representation the conformal window moves toward
larger N f as Nc is increased, but the dependecy is very mild: in this case the conformal
window is always below N f = 5. For the adjoint representation the dependency is most
simple as the conformal window lies between constant values of N f for any Nc.

The phase diagrams in Figure 1 show what one should qualitatively expect, but quanti-
tatively this must be explored using lattice simulations. If the behaviors inferred from these
qualitative estimates were confirmed in first principle studies, they could be used to indicate
best candidate models to underlie e.g., dynamical electroweak symmetry breaking.

3. The Lattice Formulation

We now turn to the lattice implementation which allows a study of the phase diagrams
established in the previous section. We discuss in detail the particular lattice discretization,
which we have used in the investigations whose results we will then discuss in the next
section. In this section we first describe the lattice action and then the methodology which
can be applied to measure the evolution of the coupling and the anomalous dimension
of the quark mass operator as well as the anomalous dimension of the leading irrelevant
operator i.e., the slope of the beta-function at the critical point.

3.1. The Lattice Action

One of the main issues when applying lattice methods to theories which may be
different than QCD is that the methods known to work well for QCD may not be directly
applicable. This is particularly true for theories with IRFP: the coupling will evolve very
slowly, and one must learn to deal with strong coupling over much wider range of scales
than in QCD where asymptotic freedom sets in precociously.

Our computations are based on the lattice model defined by the action

S = (1− cg)SG(U) + cgSG(V) + SF, (15)

where U and V denote, respectively, the unsmeared and smeared gauge link matrices. To
define the smeared gauge links the hypercubic truncated stout smearing (HEX) is used.

The smearing leads to reduction of discretization errors and allows simulations at large
couplings. It was observed in [24], that using partially smeared action enables simulations
at stronger physical couplings, and the mixing is quantified by the parameter cg in the
above action. The properties of the gauge action are not sensitive to the precise value of cg,
and for concreteness we choose cg = 0.5.

The gauge action above is

SG(U) = βL ∑
x;µ<ν

(
1− 1

2
Tr
[
Ux,µUx+µ̂,νU†

x+ν̂,µU†
x,ν

])
, (16)

where βL = 2Nc/g2
0.

For the fermions we use the Wilson–clover fermion action

SF = a4 ∑
x

[
ψ̄(x)(i /DW + m0)ψ(x)

+ acswψ̄(x)
i
4

σµνFµν(x)ψ(x)
]

,
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where /DW is the standard Wilson Dirac operator. The gauge link matrices contained in SF
are constructed from smeared link matrices V in appropriate representation corresponding
to fermions.

In addition to the bare coupling βL and the mixing coefficient cg, the lattice action is
parametrized by the hopping parameter κ = 1/(2m0 + 8) and the Sheikholeslami–Wohlert
clover coefficient csw. For smeared gauge links, it is expected [24–26] that the tree-level
value csw = 1 is a good approximation. We therefore choose csw = 1 and note that in
principle the validity of this assumption can be verified by measuring its non-perturbative
value using the Schrödinger functional tuning method [27] at small volume.

The set of boundary conditions we use are defined as follows: In the spatial boundaries
the fields are taken periodic. At the temporal boundaries x0 = 0 and x0 = L we use
Dirichlet boundary conditions, setting fermion fields to zero and gauge link matrices
to unity, U = V = 1. There are slight exceptions to these when using the Schrödinger
functional method for the measurement of the running coupling; we discuss this in more
detail below.

The hopping parameter κ is fixed to the critical value κc by tuning the theory to the
chiral limit where the quark mass M(t = L/2) vanishes. This quark mass is determined
using the PCAC relation [28],

aM(t) =
1
4
(∂∗t + ∂t) fA(t)

fP(t)
. (17)

Here, the pseudoscalar current and density correlation functions are

fA(t) = −a6 ∑
y,z
〈Aa

0(x, t) ζ̄(y)γ5λaζ(z)〉 (18)

fP(t) = −a6 ∑
y,z
〈Pa(x, t) ζ̄(y)γ5λaζ(z)〉, (19)

where ζ and ζ̄ are boundary quark sources at x0 = 0, and the axial current and density can
be expressed as

Aa
µ(x) = ψ̄(x)γµγ5λaψ(x) (20)

Pa(x) = ψ̄(x)γ5λaψ(x) (21)

Here, λa is an appropriate generator acting on the flavour indices of the quark fields.
In practice, for an analysis at each different value of Nc, N f and R, the critical values

κc(βL) is determined on one of the largest lattices considered and these same values are
then used for all lattices. The resulting errors in the determined mass are on the level of
10−5 and compatible with M = 0.

3.2. Measurement of the Coupling

There are two methods which have been widely applied to measure the scale evolution of
the coupling. These are the Schrödinger functional [29–31], i.e., the background field method,
and the gradient flow method [32,33]. We now briefly discuss each of them in turn and then
explain how the running of the coupling is quantified using the step scaling method.

3.2.1. Schrödinger Functional Method

The Schrödinger functional is the propagation amplitude from some field configuration
at boundary x0 = 0 to another configuration at x0 = L. The spatial boundaries are taken to
be periodic for gauge fields and periodic up to a global phase for fermions.

To set up the measurement of the coupling, the values of the gauge link matrices
at the temporal boundaries must be such that they generate a constant background field
configuration of least action. Schematically, the boundary fields are parametrised by
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dimensionless parameters; let us denote the collection of such parameters as η. Then the
non-perturbative definition of the coupling is, schematically,

∂Γ
∂η

∣∣∣∣∣
η=η0

=
k
g2 , (22)

where Γ is the effective action and the normalization k is a known function which depends
on L/a and the parameter η, and determined so that the above definition matches with
the perturbative evaluation. The details of the above description depends on the on the
underlying gauge field; see e.g., [27].

In our explicit examples, we consider gauge group SU(2) and then the gauge link
boundary matrices depend only on one parameter. Explicitly, they are given by

Ui(x, t = 0) = e−iησ3a/L, (23)

Ui(x, t = L) = e−i(π−η)σ3a/L (24)

with η = 0.25π. Furthermore, in this case the fermion fields are set to zero at the tempo-
ral boundaries and have twisted periodic boundary conditions in the spatial directions:
ψ(x + Lî) = exp(iπ/5)ψ(x).

3.2.2. Gradient Flow Method

An alternative definition of the running coupling is based on the Yang–Mills gradient
flow method [32–35]. To set up this method, a fictious new coordinate, the flow time t is
introduced together with a gauge field Bµ(x; t) related to the original continuum gauge
field Aµ such that Bµ(x; t = 0) = Aµ(x). With this initial condition, this new field is
evolved by the flow equation

∂tBµ = DνGνµ , (25)

where Gµν(x; t) is the field strength of Bµ and Dµ = ∂µ + [Bµ, · ].
To leading order in perturbation theory in SU(N) gauge theory, the field strength

evolves as [32]

〈E(t)〉 = −1
4
〈GµνGµν〉(t) =

3(N2 − 1)g2
0

128π2t2 +O(g4
0). (26)

The flow removes the UV divergences systematically, by smoothing the gauge field over the
radius r ∼

√
8t, and automatically renormalizes gauge invariant observables [36]. Hence,

one can define the coupling at scale µ = 1/
√

8t nonperturbatively as

g2
GF(µ) =

128π2

3(N2 − 1)
t2〈E(t)〉

∣∣
t=1/8µ2 . (27)

To leading order, this matches with perturbation theory.
On the lattice, the continuum flow field is replaced by the lattice link variables Uµ(x; t)

which are evolved according to

∂

∂t
Uµ(x; t) = −g2

0

(
∂

∂Uµ(x; t)
SGF[U]

)
Uµ(x; t) (28)

with the initial condition Uµ(x; t = 0) = Uµ(x). The flow evolution action action SGF
needs to be chosen, and we use the tree-level improved Lüscher–Weisz pure gauge theory
action [37]. There is also choice of discretization when measuring observables for 〈E(t)〉,
and we use the clover discretization in our analysis.

To render the coupling defined in Equation (27) free of both lattice artifacts and finite
volume effects, the scale needs to be limited into a regime 1/L� µ� 1/a. The lattice size
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is therefore related to the renormalization scale by defining a dimensionless parameter ct
as described in Refs. [38–40]:

µ−1 = ctL =
√

8t. (29)

Ref. [40] suggests a range of ct = 0.3–0.5 for the SF scheme. Within this range the cutoff
effects, statistical variance and boundary effects [41], are reasonably small. In order to
minimize the effects of the fixed boundaries at x0 = 0 and L, we measure the expectation
value of the gauge field energy (26) only on the central time slice x0 = L/2.

3.3. Step Scaling Analysis

Using either definition of the coupling, its evolution is quantified using the finite
lattice spacing step scaling function Σ(u, s, L/a) and its continuum limit σ(u, s) introduced
in Ref. [29]. It describes the change of the measured coupling when the linear size of the
system is increased from L to sL, while keeping the bare coupling g2

0 (and hence the lattice
spacing) constant:

Σ(u, s, L/a) = g2
GF(g2

0, sL/a)
∣∣∣
g2

GF(g2
0 ,L/a)=u

(30)

σ(u, s) = lim
a/L→0

Σ(u, s, L/a), (31)

where u denotes g2
GF as measured from the smaller volume. Often used choice is s = 2.

The step scaling function is related to the β-function by

−2 ln(s) =
∫ σ(u,s)

u

dx√
xβ(
√

x)
. (32)

Close to the fixed point, where the running is slow and |β| small, we can approximate the
β-function by

β(g) ≈ β̄(g) =
g

2 ln(s)

(
1− σ(g2, s)

g2

)
. (33)

The estimating function β̄(g) is exact at a fixed point but deviates from the actual β-function
as |g− g∗| becomes large.

3.4. Determination of Anomalous Dimensions
3.4.1. The Fermion Mass Anomalous Dimension

The mass anomalous dimension, γ = −d ln mq/d ln µ, can be determined by several
different methods. We describe here the step scaling method, which is based on the use
of Dirichlet boundary conditions and measurement of the running of the pseudoscalar
density renormalization constant [42,43]

ZP(L) =
√

Nc f1

fP(L/2)
, (34)

where the correlation function fP(t) is given in Equation (19) and is normalized using the
boundary-to-boundary correlator

f1 =
−a12

NcL6 ∑
u,v,y,z

〈
ζ̄ ′(u)γ5λaζ ′(v) ζ̄(y)γ5λaζ(z)

〉
, (35)

where ζ ′ and ζ̄ ′ are boundary fields at x0 = L.
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Now we can define the mass step scaling function as [42]

ΣP(u, s, L/a) =
ZP(g0, sL/a)
ZP(g0, L/a)

∣∣∣∣
g2(g0,L/a)=u

(36)

σP(u, s) = lim
a/L→0

ΣP(u, s, L/a). (37)

We choose s = 2 and find the continuum step scaling function σP by measuring ΣP at
L/a = 6, 8, 10 and 12 and performing a quadratic extrapolation.

The mass step scaling function is related to the anomalous dimension γ by [43]

σP(u, s) =
(

u
σ(u, s)

)d0/(2b0)

exp

[
−
∫ √σ(u,s)
√

u
dx
(

γ(x)
β(x)

− d0

b0x

)]
, (38)

where b0 = β0/(16π2) in terms of the one-loop coefficient β0 of the beta function and d0 is
the corresponding one-loop coefficient for the anomalous dimension, γ1-loop = d0g2.

Close to the fixed point, expression (38) simplifies considerably: if we denote the
function estimating the anomalous dimension γ(u) by γ̄(u), we have

log σP(g2, s) ' −γ̄(g2)
∫ sµ

µ

dµ′

µ′
= −γ̄(g2) log s, (39)

⇒ γ̄(g2) = − log σP(g2, s)
log s

. (40)

The estimator γ̄(g2) is exact at a fixed point g2 = g2∗, where β(g2) vanishes, and deviates
from the actual anomalous dimension when β is large. We denote the anomalous exponent
at the fixed point with γ∗ = γ̄(g2∗) = γ(g2∗).

We note that the anomalous dimension of the fermion mass can also be inferred
from the scaling of the spectral density of the massless Dirac operator [44]. The explicit
calculation of the eigenvalue distribution is numerically costly, but recent advances in
applications of stochastic methods [45] have made the mode number of the Dirac operator
numerically accessible. This quantity allows the determination of the mass anomalous
dimension [46].

Yet another way to access γ∗ is via the spectrum: if the IR behavior of the theory is
governed by a nontrivial fixed point, the hadron masses scale towards zero as

MH ∼ m1/(1+γ∗)
q . (41)

Provided sufficiently precise measurement of the spectrum, this would allow for the
determination of γ∗.

3.4.2. The Leading Irrelevant Exponent

The leading irrelevant exponent of the coupling γg is defined as the slope of the
β-function. As we have discussed in the previous subsection, on the lattice the evolution of
the coupling is measured with the step scaling function. In the vicinity of the fixed point
g∗, the approximate result of Equation (33) holds. This can then in turn be related to the
slope γ∗g as follows:

β(g) = µ
dg
dµ
≈ β̄(g) = γ∗g(g− g∗). (42)

This allows one to determine γ∗g from the measurement of the beta-function.
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4. Case Study: SU(2) Gauge Theory with Fermions on the Lattice

In SU(2) gauge theory the interesting fermion representations are the fundamental and
the adjoint, which coincides in two-color case with the two-index symmetric representation.
In the following subsections, we will discuss separately the numerical results we have
obtained for the lattice model described in the previous section with fermions either in
the adjoint [47–50] or fundamental representation [51–54]. For theories whose infrared
behavior is governed by such nontrivial fixed point, we have also investigated scheme
independent critical exponents [49,52–54].

The simulations are done using the hybrid Monte Carlo (HMC) algorithm with the
2nd order Omelyan integrator [55,56] and the chronological initial condition for the fermion
matrix inversion [57]. The length of the trajectory is fixed to 2 units and the step size is
tuned so that the acceptance rate is at least 80%. The measurements are taken after every
trajectory and the number of trajectories in each simulation varies up to 200,000. The
fermion matrix inversion is acclelerated using the Hasenbusch method [58,59].

4.1. Fermions in the Adjoint Representation

The first consistent study of SU(2) gauge theory with adoint representation fermions
was given in [47,48]. In the first of these two papers, the vacuum spectrum of the theory
was measured. While the results of [47], compatibly with an earlier investigation [60],
seemed to suggest that with adjoint matter both the vector and pseudoscalar masses scale
to zero linearly with the quark mass, this could be an artifact arising from the finite size of
the system. Only measuring directly the running of the coupling [48] and establishing the
existence of the infrared fixed point would strengthen the conclusion that the results on
the spectra were probing the physical vacuum phase of the theory. See also [61–63]. The
measurements of the spectra were extended to gluonic bound states in [64,65].

Our measurement of the coupling is here via the Schrödinger functional and the
measured values of g2(L/a, βL) are shown in the left panel of Figure 2. Here, to define the
step scaling function, we use s = 2 and obtain the continuum limit from measurements at
L/a = 6, 8 and 10, pairing these with lattices with L/a = 12, 16 and 20.

The step scaling function in (30) must be extrapolated to continuum. To do this
properly, requires that the measurements at different L/a and 2L/a-pairs are done at same
value of u = g2(g2

0, L/a). However, the measurements of g2 are done at a fixed set of bare
couplings, βL = 4/g2

0. To relate the couplings on different systems, we interpolate the
coupling g2(g2

0, L/a) in order to take the continuum limit.
We use here a rational interpolating function [51]

g2(g2
0, L/a) = g2

0
1 + ∑n

i=1 aig2
0

1 + ∑m
i=1 big2

0
(43)

with n = m = 3. This choice of values is based on minimization of the combined χ2 over
the degrees of freedom. To study the stability of the interpolation one repeats the analysis
after reducing n or m by one.

With the interpolating function so determined, the step scaling may be calculated at
any value of u = g2(g2

0, L/a) within the interpolation range. This then enables us to obtain
the continuum limit using the available three L/a-values. The result is extrapolated to
continuum by fitting a function of the form

Σ(u, 2, L/a) = σ(u, 2) + c(u)(L/a)−2. (44)

For consistent error propagation, the data is divided into 40 jackknife blocks and the
analysis is perform separately on the blocks.

The final continuum extrapolated σ(u, 2)/u is shown in the right panel of Figure 2,
where also the step scaling function Σ(u, 2, 10) is obtained from the largest volume alone.
Due to the too large values of Σ at small volumes and weak coupling, the continuum limit
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at small couplings deviates significantly from the perturbative value. Therefore, we expect
the L/a = 10 result to represent better the true continuum result than the extrapolated
result. For values u >∼ 2.5 of the coupling, the agreement between the continuum limit and
L/a = 10 result is remarkable.

These results indicate the existence of a fixed point. With the continuum extrapolated
result the fixed point is close to g∗2 = 2 . . . 3, while using only L/a = 10 results implies
that the fixed point is at g∗2 = 2.2(2)+0.6

−0.4. In the latter result, the first error estimate gives
the statistical error and the second includes estimated systematic error from the rational
interpolation. It should be noted that the continuum limit result implies only that the fixed
point is somewhere below g2 ∼ 3; see the right panel of Figure 2.

A A A A A A

0 4 8 12 16 20 24 28
L/a

0

1

2

3

4

5

6

7

g
2

β=1

β=1.05

β=1.1

β=1.2

β=1.3

β=1.5

β=2

β=4

β=5

β=6

β=8A

0 1 2 3 4 5
u

0.9

0.95

1

1.05

σ
(u
,2
)/
u

L/a=Continuum
L/a=10
2-loop

Figure 2. Left: The measured values of the Schrödinger functional coupling g2(g2
0, L/a) against L/a

at different βL. Right: The scaled step scaling function σ(u, 2)/u, u = g2, using only the largest
volume pairs (L/a = 10 and 20) (red hashed band) and with continuum extrapolation (green shaded
band). The black dashed curve shows the universal 2-loop perturbative result.

To evaluate the mass step scaling, we proceed similarly as in the analysis of the
running coupling. We use an interpolating function to fit the data, and in this case a simple
polynomial function is sufficient,

ZP(βL, L/a) = 1 +
n

∑
i=1

cig2i
0 . (45)

In this case the optimal χ2 over degrees of freedom is given by n = 5. The systematic error
from this step is estimated by reducing n by one and repeating the analysis.

We calculate the mass step scaling function ΣP(u, s, L/a) at L/a = 6, 8, 10 and 12. The
value for the coupling u = g2 is obtained from the rational fit in Equation (43). Finally, we
calculate the estimating function γ̄(u, a/L) and find the continuum limit γ̄(u) by fitting to
a function of the form γ̄(u, a/L) = γ̄(u) + c(u)(a/L)2.

This procedure results to the value of the anomalous dimension at the fixed point as
γ∗ = 0.2± 0.03, where the dominant uncertainty comes from the location of the fixed point,
g∗2 ≈ 2.5+0.5

−0.3. To compare with other computations, we note that in Ref. [24], using the
same scheme, a larger result (γ∗ ≈ 0.31(6)) was obtained. A different method applied in
Ref. [66], led to a result γ∗ ≈ 0.37(2).

4.2. Fermions in the Fundamental Representation

In this case, the running coupling is defined by the Yang–Mills gradient flow method [33–35].
We focus on theories with N f = 6 and N f = 8 fermion flavors for which the results indicate
existence of an IRFP.

For N f = 6 we use lattices of size L = 8, 10, 12, 16, 18, 20, 24 and 30. These allow for
step scaling analysis using either s = 2 or s = 3/2, and we use the latter choice as it allows
for more pairs of larger lattices. For N f = 8 we use L = 6, 8, 10, 12, 16, 20, 24 and 32, and
scaling s = 2.

In the simulations, the gradient flow is evolved with Lüscher–Weisz action and the
clover definition of the energy density is used. In the scale setting the parameter value
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ct = 0.3 (ct = 0.4) is used for N f = 6 (N f = 8). In the original work we also investigated
the systematic errors by varying the discretizations of the flow and observables and also
the value of ct.

To quantify the running of the coupling, we applied the step scaling analysis as in
the case of the adjoint representation: the measured results were interpolated using a
polynomial (rational) fit for N f = 6 (N f = 8). The lattice results were extrapolated to
continuum assuming leading dependence on the lattice spacing as O(a2).

Regarding this continuum extrapolation we note that since we are not using perfectly
improved observables and actions in our gradient flow [67], these source some of the cutoff
effects in the coupling g2

GF. In order to minimize these cutoff effects at the continuum
limit, we add a tunable O(a2) correction τ0 to the gradient flow coupling, as suggested in
Ref. [68]:

g2
GF =

t2

N 〈E(t + τ0a2)〉 = t2

N 〈E(t)〉+
t2

N 〈
∂E(t)

∂t
〉τ0a2 + O(a4). (46)

In practice we use
τ0 = C ln(1 + 2g2

GF), (47)

where C = 0.025 for N f = 6 and C = 0.06 for N f = 8. The results of the measurements are
summarized in Figure 3.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
gGF

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

β̄

continuum

2− loop

3− loop MS

4− loop MS

5− loop MS

L = 12− 18

L = 16− 24

L = 20− 30
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2− loop

3− loop MS
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Figure 3. Left: The continuum extrapolated β-function of the six flavor theory. The gradient flow
coupling has been measured with ct = 0.3. Right: The continuum extrapolated β-function of the
eight flavor theory. The gradient flow coupling has been measured with ct = 0.4. In both panels,
clover discretization and the τ0 improvement has been used to reduce the O(a2) errors.

From the measurement of the beta-function we can obtain the leading irrelevant
exponent γ∗g as described in Equation (42). Using the interpolated couplings, the be-
havior of the coupling near the fixed point is smooth enough to allow determination of
γ∗g = 0.648(97)+0.16

−0.1 , where the first set of errors implies the statistical errors with the
parameters used in Ref. [53], and the second set of errors gives the variance between all
measured discretizations. When the values of ct were varied, the γ∗g measurements re-
mained consistent with each other, within the errors, indicating the scheme independence
of this quantity.

However, we can also directly interpolate the finite volume β̄(g)-function (42) (where
σ(g2, s) is substituted with Σ(g2, L/a, s)), instead of the measured couplings. For the γ∗g
measurement, this reproduces the value of γ∗ obtained above. Carrying out this procedure
for N f = 8 we obtain γ∗g = 0.19(8)+0.21

−0.09.
We have also measured the anomalous dimension of the fermion mass operator using

step scaling and the spectral density methods. The results are γ∗m = 0.283(1)± 0.01 for
N f = 6 and γ∗m = 0.15± 0.02 for N f = 8. The two methods seem consistent with each
other and for six flavor theory we have shown consistency with also the value extracted
from the vacuum spectrum.

5. Overview of Results for Different Gauge Groups

Next, we present a brief overview of the current results for different fermion repre-
sentations which have been considered for SU(Nc) gauge groups. These results have been
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obtained with different lattice discretizations, in particular considering the fermion action.
We do not explain the features of these in detail, but only collect the continuum results as
stated in the literature.

Starting with the fundamental representation, the summary of the results is presented
in Figure 4. The shaded grey band shows the conformal window expected on the basis
of two-loop beta-function supplemented with the critical coupling for chiral symmetry
breaking from the gap equation analysis (see Section 2). The open rectangles correspond to
N f -values for which lattice computations suggest chiral symmetry breaking at low energies
and the colored rectangles to values of N f for which a fixed point has been observed.

2 3 4 5
Nc

5

10

15

Nf

Figure 4. Summary of results for SU(Nc) gauge theory and fundamental representation fermions.
The rectangles depict existing lattice result for Nc = 2 and Nc = 3 and different values of N f . The
colored rectangles indicate an observation of an IRFP; see text for more details.

The results for SU(2) gauge theory the current lattice results indicate that the theory
with N f = 2 breaks chiral symmetry [69,70] as does the theory with N f = 4 flavors [51,71].
As we have already discussed in Section 4, the theory with N f = 6 has a fixed point [53,54].
Consistently with this, also theories with N f = 8 flavors [52] and N f = 10 flavors [51] have
an IRFP.

For SU(3) gaguge theory, the lattice results in [72] show that from N f = 2 to N f = 6
chiral symmetry is broken. In this study, as N f increases towards N f = 6 the chiral
condensate is observed to be enhanced, which is interpreted as a signal for the approach to
the boundary of the conformal window. Furthermore, also N f = 8 theory was reported to
break chiral symmetry in [73–76] and similar result was obtained for N f = 9 theory in [77].

For SU(3) gauge theory and N f = 10 fermions the current status has not been con-
sistently established. In [78] the running was observed to slow towards the infrared, and
this was interpreted as evidence in favor of a fixed point. In [79] the observed spectrum is
consistent with IR conformality, but cannot rule out the possibility of spontaneous chiral
symmetry breaking at scales below the the infrared cutoff. Infrared conformality was also
suggested in [80,81] while spontaneous chiral symmetry breaking was observed in [82]. As-
suming that this theory has a fixed point, the value of the quark mass anomalous dimension
γ∗ can be inferred. The analysis in [79] yields γ∗ = 1.1.

For N f = 12 as well the infrared behavior has not been established without doubts.
Early work in [73] suggested that the infrared behavior is governed by an IRFP. This result
is supported by the results reported in [83,84] and similar conclusion was suggested in [85].
However, no sign of a fixed point in the twelve flavor SU(3) theory was observed in [86,87].
If this theory has a fixed point, the the computation in [88] yields the value γ∗ = 0.41 for
the anomalous dimension of the quark mass operator. Similar result has been obtained also
in [89,90] while slightly smaller values were reported in [91–93]

Similar compilation of results is presented for adjoint and two-index symmetric repre-
sentation fermion in Figure 5.
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Lattice simulations exist for SU(2) gauge theory N f = 1 and 2 Dirac fermions in
the adjoint representation. For both of these value the IRFP has been established. The
case N f = 1 is treated in [94] while N f = 2 has been studied by several independent
computations [24,47–50,63,95,96] all leading to conclusions consistent with each other; this
theory provides the most clean example of a system with an IRFP. For SU(2) theory also
N f = 1/2 and 3/2 can be simulated [96] as these correspond to Majorana fermions. For
these, N f = 3/2 has an IRFP while N f = 1/2 is observed to be outside the conformal
window consistently with the fact that this theory is N = 1 super-Yang–Mills theory for
which no fixed point should exist.

2 3 4 5
Nc

1

2

3

4

Nf

2 3 4 5
Nc

1

2

3

4

Nf

Figure 5. Summary of results for SU(Nc) gauge theory and fermions in the adjoint representation
(left panel) or two-index symmetric representation (right panel). The rectangles depict existing lattice
result for different calues of Nc and N f . The colored rectangles indicate an observation of an IRFP;
see text for more details.

Two adjoint flavors for Nc > 2 would be very interesting to investigate since the
analytic estimates for the phase diagram suggest independence on the number of colors.
Currently there exists only one study in SU(3) with two adjoints [97]. The results do not
allow to confirm or rule out an IRFP in this theory.

Finally, the theory with N f = 2 flavors in the two-index symmetric representation
has been studied for different values of Nc. The case Nc = 2 coincides with the adjoint
representation and is therefore inside the conformal window. The theory with Nc = 3
seems to be outside the conformal window [98,99], but possibly only slightly as evidenced
by the existence of a light 0++ scalar meson state [100]. Finally, for Nc = 4 no IRFP has
been observed [101].

For three colors the phase diagram of two-index antisymmetric representation would
be the same as for the fundamental representation. Beyond Nc = 3, for the two-index
antisymmetric representation there has been only one study [97] in SU(4) gauge theory with
N f = 6 fermions and the results do not allow to confirm or rule out an IRFP in this theory.

6. Conclusions and Outlook

In this review we have considered motivations for lattice calculations of gauge theory
phase diagrams as a function of the number of colors, flavors and fermion representations.
We have discussed in detail state of the art computations in SU(2) gauge theory with either
fundamental or adjoint fermion matter and reviewed the current results for SU(2) and other
SU(Nc) gauge theories.

Phase diagrams constitute a fundamental piece of information and insight on the
dynamics of gauge theories. While interesting on their own, they are an essential tool
in identifying phenomenologically interesting theories which can be utilized in building
candidate theories beyond the Standard Model. Possible applications are e.g., in dy-
namical electroweak symmetry breaking [102] or dark matter [16]. Towards the former,
near-conformal theories may explain the lightness of the Higgs in relation to the rest of
the composite spectrum [103] which remains so far unobserved at collider experiments.
Towards the latter form factors of composite states interacting with ordinary matter may
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explain why models where large enough relic density can be produced at high energy
remain hidden at low energy scatterings.

Based on the results we have described here, there are many further avenues to pursue,
and initial investigations along some of them have already started. While the existence and
properties of an IRFP is most robustly uncovered by measurement of the running coupling,
the vacuum spectra is another important observable. This is particularly interesting for
theories near the lower boundary of the conformal window, since the spectrum provides
insight into identification of phenomenologically interesting theories. There is already
accumulated evidence that the near-conformal theories do indeed feature a light scalar
state, see e.g., [81,100].

A natural and interesting further development would be to study theories with multiple
fermion representations. For initial investigations towards this direction see e.g., [104–106].
A related development is to allow the fermions to have different mass scales [81]. This leads
to decoupling and may lead to realisation of walking theories.

Finally, there has been recent development in simulating theories with very large
number of fermions, so that the theory is realized in the non-asymptotically free but
infrared free phase. It has been shown that such simulations can be done and the measured
running coupling matches consistently with perturbation theory in the weak coupling
regime [107]. Moreover, the vacuum spectrum has been measured in this theory [108], and
the result is consistent with infrared free behavior.

Future research on unveiling the phase diagrams and extending the research goals
along the lines we have discussed above should allow for more insight into the gauge theory
dynamics at strong coupling and shed more light on their phenomenological applications.
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