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Abstract: In canonical gravity, general covariance is implemented by hypersurface-deformation
symmetries on thephase space. The different versions of hypersurface deformations required for full
covariance have complicated interplays with one another, governed by non-Abelian brackets with
structure functions. For spherically symmetric space-times, it is possible to identify a certain Abelian
substructure within general hypersurface deformations, which suggests a simplified realization as a
Lie algebra. The generators of this substructure can be quantized more easily than full hypersurface
deformations, but the symmetries they generate do not directly correspond to hypersurface deforma-
tions. The availability of consistent quantizations therefore does not guarantee general covariance or
a meaningful quantum notion thereof. In addition to placing the Abelian substructure within the full
context of spherically symmetric hypersurface deformation, this paper points out several subtleties
relevant for attempted applications in quantized space-time structures. In particular, it follows that
recent constructions by Gambini, Olmedo, and Pullin in an Abelianized setting fail to address the
covariance crisis of loop quantum gravity.
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1. Introduction

Canonical gravity describes the 4-dimensional, generally covariant structure of space-
time by canonical fields defined on the slices of a spatial foliation. The evolution of
these fields in time as well as transformations between different foliations are described
by the geometrical structure of hypersurface deformations. In a canonical theory, these
transformations are generated by certain phase-space functions, the diffeomorphism and
Hamiltonian constraints. In spherically symmetric models, which will be considered here,
the full set of constraints can be written as D[M] and H[N] with arbitrary spatial functions
M (of density weight −1) and N. The constraint equations D[M] = 0 and H[N] = 0, valid
for any M and N, restrict the phase-space degrees of freedom, given by the spatial metric
and its momentum related to extrinsic curvature.

At the same time, the constraints generate (i) time evolution,

Lt(N,M) f = { f , H[N] + D[M]} (1)

for a phase-space function f along a time-evolution vector field ta = Nna + Msa in space-
time with the unit normal na to a spatial slice and the tangent vector field sa = (∂/∂x)a

within the radial manifold (with coordinate x) of a spatial slice, and (ii) gauge transformations

δξ(η,ε) f = { f , H[η] + D[ε]} (2)

along a space-time vector field
ξa = ηna + εsa (3)

where ε, like M, has density weight −1.
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The reference to normal and tangential directions relative to a foliation implies crucial
differences between the mathematical formulation of hypersurface deformations in canoni-
cal gravity and the more common formulation of general covariance in terms of space-time
tensors. In space-time, vector components ξa transform, by definition, in such a way
that ξa∂/∂xa determines a unique direction independent of coordinate choices. Similarly,
the spatial vector εsa = ε∂/∂x defines a coordinate-independent direction because a scalar
of density weight −1 in one dimension transforms like a 1-form dual to ∂/∂x. The normal
deformation, however, cannot be introduced in this way because the canonical setting
does not provide a time coordinate or the corresponding ∂/∂t. Moreover, even if such a
coordinate could be introduced by hand, for instance by using t merely as a parameter as it
also appears in Hamilton’s equations, it would be impossible to endow η with a density
weight −1 in the time direction because, canonically, there is no time manifold. The only
alternative is given by the procedure that has been used since [1,2] and formalized in [3]:
The normalization of na as a unit vector (with respect to the space-time metric, which is
available in the canonical setting through the spatial metric on a slice as well as lapse N
and shift M) associates a unique normal displacement to any given function η (without
density weight).

The normal can be made unit only by reference to the metric, which provides some
of the canonical degrees of freedom. The geometrical meaning of normal hypersurface
deformations and their commutators depend on the spatial metric, resulting in structure
functions in the canonical bracket relations. As a consequence, the canonical symmetries do
not form a Lie algebra. This property is responsible for several complications well-known in
attempts of canonical quantizations of the theory, starting with [4]. It also makes it harder to
develop suitable mathematical structures for transformations generated by the constraints,
in particular in an off-shell manner when one does not insist on solving the constraint
equations. In [3], for instance, it was shown that a direct composition of transformations
generated by the constraints is meaningful in the sense of path independence (a notion
introduced in there) only on-shell.

The full structure of transformations is nevertheless required for general covariance
to be implemented properly in the solutions of a canonical theory of gravity, in particular
one that has been quantized, modified or deformed by new physical effects. While the
restricted on-shell behavior may be easier to handle, the off-shell structure is important to
make sure that the theory has a well-defined space-time structure, independently of the
dynamics. Only in this case can the theory be considered a geometrical effective theory of
some deeper and as yet unknown quantum space-time, just as different dynamical versions
of gravity given by higher-curvature effective actions make use of the same Riemannian
form of space-time. Because of its importance for covariance and the classification of
meaningful effective theories, we will review the structure of hypersurface deformations
in the beginning of our first section below, combining classic results from gravitational
physics with more recent mathematical developments [5,6].

We will focus on aspects of hypersurface deformations of importance for a suggested
simplification of the hypersurface-deformation brackets in spherically symmetric models,
given by a partial Abelianization [7], but our statements will apply also to a variety of other
reformulations that rely on phase-space dependent lapse and shift. Analyzing a partial
Abelianization in the context of hypersurface deformations, we will show that this con-
struction captures only a certain subset of these transformations and, upon modification or
quantization, does not guarantee that invariance under hypersurface deformations or gen-
eral covariance are still realized. This conclusion may be surprising because, at first sight,
a partial Abelianization appears to implement the same number of symmetry generators as
standard hypersurface deformations and uses only a linear redefinition of the generators.
However, the coefficients of these linear redefinitions are phase-space dependent, compli-
cating their mathematical description [5,6]. (Heuristically, phase-space dependent linear
redefinitions of the generators introduce new structure functions or modify existing ones.)
It is then a non-trivial question whether the redefinitions can be inverted. If they cannot be
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inverted, the redefined theory is not invariant under full hypersurface deformations and its
solutions violate general covariance. An additional construction is therefore needed in a
partially Abelianized model (or other reformulations of standard hypersurface deforma-
tions) in order to recover all space-time transformations. As shown by explicit examples,
this is not always possible if the generators have been modified by quantum corrections.

A recent paper [8] claims that it may be possible to realize general covariance in
partial Abelianizations of spherically symmetric models with different types of quantum
modifications, such as a spatial discretization. The claim is not accompanied by a successful
reconstruction of hypersurface deformations and instead relies on a technical and so far
incomplete case-by-case study of quantities that should be invariant in a covariant theory.
Using our results about general hypersurface deformation structures, we will explain why
the covariance claims of [8] cannot hold.

2. Hypersurface Deformations

Space-time vector fields with their standard Lie bracket generate the Lie algebra of
diffeomorphisms. Similarly, the transformations generated by the canonical constraints
form an algebraic structure. They are labeled by the components η and ε of a vector field ξ
used in (3) in a basis (na, sa) adapted to a spatial foliation, rather than a coordinate basis.
Their commutators

δξ2(δξ1 f )− δξ1(δξ2 f )

= {{ f , H[η1] + D[ε1]}, H[η2] + D[ε2]} − {{ f , H[η2] + D[ε2]}, H[η1] + D[ε1]}
= { f , {H[η1] + D[ε1], H[η2] + D[ε2]}} (4)

are determined by Poisson brackets {H[η1] + D[ε1], H[η2] + D[ε2]} of the constraints (using
the Jacobi identity). Because the unit normal na is normalized by using the space-time
metric, including the spatial components qab on a slice, the brackets of two canonical gauge
transformations [1,2,9] turn out to depend on the metric. In spherically symmetric models,
in which the radial part of the metric is determined by a single function, q (of density
weight 2), we have

{H[η1] + D[ε1], H[η2] + D[ε2]} = H[ε1η′2 − ε2η′1] + D[ε1ε′2 − ε2ε′1 + q−1(η1η′2 − η2η′1)] . (5)

In general, the metric components are spatial functions independent of the components η
and ε that label different gauge transformations. Unlike the Lie bracket of two space-time
vector fields, the bracket of two pairs δξi , i = 1, 2, implied by the Poisson bracket (5) does
not form a Lie algebra because coefficients determined by spatial fields qab or q cannot be
considered structure constants.

2.1. Algebroids

Instead, the brackets have structure functions or, in a suitable mathematical formula-
tion, form the higher algebraic structure of an L∞-algebroid rather than a Lie algebra [10–12].
An L∞-algebroid is defined as a vector bundle over a base manifold M with fiber F and
bracket relations on bundle sections together with suitable anchor maps that map bundle
sections to objects in the tangent bundle of M. A Lie algebroid [13], for instance, has a
Lie bracket [·, ·] on its sections and an anchor ρ that maps (as a homomorphism) bundle
sections to vector fields on the base manifold, such that the Lie bracket of vector fields is
compatible with the algebroid bracket. The anchor map also appears in the Leibniz rule

[s1, f s2] = f [s1, s2] + s2Lρ(s1)
f (6)

where s1 and s2 are sections and f is a function on the base manifold. The anchor brings
abstract algebraic relations on bundle sections in correspondence with geometrical transfor-
mations as vector fields on the base manifold. While an anchor that maps any section to the
zero vector field is always consistent with the Lie-algebroid axioms (in which case the Lie
algebroid is a bundle of Lie algebras given by the fibers), non-trivial transformations on the
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base require a larger image of the anchor. A Lie algebroid with a non-trivial anchor gener-
alizes bundles of Lie algebras. Yet more generally, and in particular in the case of structure
functions, the brackets of bundle sections obey the axioms of an L∞-algebra, a generalized
form of a Lie algebra in which the Jacobi identity is not required to hold strictly.

The introduction of the base manifold makes it possible to formalize brackets with
structure functions in terms of an L∞-algebroid. In particular for gravity, the base manifold
is (a suitable extension [6]) of the canonical phase space, given by the spatial metrics and
momenta related to extrinsic curvature. The fibers are parameterized by the components
η and ε of a gauge transformation. A section is then an assignment of spatial functions η
and ε to any metric (or a pair of a metric and its momentum). In this way, the q-dependent
structure function in (5) finds a natural home as a bracket of sections over the space of
metrics (and momenta).

Constant sections, given by pairs of η and ε that are functions on space but do not
depend on the phase-space degrees of freedom, have a bracket, implied by (4), that can be
realized as a special case of sections of a Lie algebroid [5]. General, non-constant sections
of this Lie algebroid have a bracket that may differ from what hypersurface deformations
would suggest. Non-constant sections over phase space, discussed in more detail in [6],
either violate some of the Lie-algebra relations on sections (in the controlled way of a
specific L∞-structure, as it follows from a BV-BFV extension of general relativity [14,15]) or
require a base manifold that extends the phase space of canonical gravity in a way that is
not smooth. (The latter can be formulated by using the notion of a Lie-Rinehart algebra [16]
in which functions on the base manifold are replaced with a suitable commutative algebra.

Phase-space dependent functions η and ε are also important for physics. They are
often considered in specific gravitational applications, as in the simple case of cosmological
evolution written in conformal time where the lapse function equals the scale factor, a metric
component. More importantly for our purposes, the partial Abelianization of [7] relies
on an application of phase-space dependent ε and η. Hypersurface deformations with
such non-constant sections form a Lie algebroid only on-shell [6] when the constraints are
solved. The partial Abelianization is therefore able to describe the solution space to all
constraints and its covariance transformations, but it is not guaranteed that it correctly
captures off-shell transformations which are relevant for general covariance.

Since the standard derivation of the brackets (5) assumes that η and ε are not phase-
space dependent, the general brackets must be extended by additional terms that, heuristi-
cally, result from Poisson brackets of constraints with phase-space dependent η and ε. (A
complete derivation is based on the BV-BFV analysis of [14,15]). The Poisson bracket of
two diffeomorphism constraints, for instance, can still be written in the compact form

{D[ε1], D[ε2]} = D[ε2ε′1 − ε1ε′2] (7)

but with an application of the chain rule in the derivatives. Similarly, the mixed Poisson
bracket of a Hamiltonian and a diffeomorphism constraint in general form reads

{H[η], D[ε]} = H[−εη′] + D[ηLnε] (8)

where the normal derivative Ln of a spatial function is defined by the Poisson bracket with
the Hamiltonian constraint, η1Lnη2 = {H[η1], η2}. For two Hamiltonian constraints, we
have the Poisson bracket

{H[η1], H[η2]} = D[q−1(η1η′2 − η2η′1)] + H[η1Lnη2 − η2Lnη1]. (9)

In general, the extra terms implied by phase-space dependent η and ε, such as those in
ε′ = ∂xε + (∂xqi)(∂qi ε) + (∂xki)(∂ki

ε) summing over the two independent components qi,
i = 1, 2, of a spherically symmetric spatial metric as well as two components ki of extrinsic
curvature, introduce further structure functions, such as ∂xqi and ∂xki, that depend on the
metric as well as its momenta.
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While these Poisson brackets illustrate the additional complications encountered with
phase-space dependent ε and η, they do not immediately show the algebraic nature of
general non-constant sections of hypersurface deformations. In particular, Poisson brackets
do not directly mirror relevant L∞-structures. In our following discussion, we will not
need the full algebraic structure and instead perform a comparison of different versions of
constant and non-constant sections in gravitational applications.

2.2. Partial Abelianization

As noticed in [7], certain linear combinations of H[η] and D[ε] have vanishing Poisson
brackets in spherically symmetric models. In order to specify these combinations, we have
to refer to explicit variables that determine the spatial metric and its momenta. Following
Refs. [17–19], this is conveniently done in triad variables (Ex, Eϕ) such that the spatial
metric is given by the line element

ds2 =
(Eϕ)2

Ex dx2 + Ex(dϑ2 + sin2 ϑdϕ2) (10)

in standard spherical coordinates. (For our purposes, it is sufficient to assume Ex > 0,
fixing the orientation of the triad.) The triad components are canonically conjugate (up to
constant factors) to components of extrinsic curvature, (Kx, Kϕ), such that

{Kx(x), Ex(y)} = 2Gδ(x, y) , {Kϕ(x), Eϕ(y)} = Gδ(x, y) (11)

with Newton’s constant G. (We keep a factor of two in the first relation. As implicitly done
in [7,8], this factor can easily be eliminated by a rescaling of Kx. Since this procedure would
not affect the main equations and conclusions shown below, we do not make use of this
rescaling and instead keep the original components of extrinsic curvature).

The delta functions disappear in Poisson brackets of integrated (smeared) expressions,
resulting in well-defined brackets. In particular, the diffeomorphism constraint

D[M] =
1
G

∫
dxM(x)

(
−1

2
(Ex)′Kx + K′ϕEϕ

)
, (12)

and Hamiltonian constraint

H[N] =
−1
2G

∫
dxN(x)

(
|Ex|−1/2EϕK2

ϕ + 2|Ex|1/2KϕKx + |Ex|−1/2(1− Γ2
ϕ)Eϕ + 2Γ′ϕ|Ex|1/2

)
(13)

where Γϕ = −(Ex)′/(2Eϕ) have Poisson brackets

{D[M1], D[M2]} = D[M1M′2] (14)

{H[N], D[M]} = −H[MN′] (15)

{H[N1], H[N2]} = D[Ex(Eϕ)−2(N1N′2 − N2N′1)] (16)

(for spatial functions Mi and Ni, i = 1, 2, that do not depend on the phase-space variables)
of the correct form for hypersurface deformations in spherically symmetric space-times.

Simple algebra and integration by parts shows that the linear combinations

C[L] = H[(Ex)′(Eϕ)−1 ∫ EϕLdx]− 2D[Kϕ

√
Ex(Eϕ)−1 ∫ EϕLdx] , (17)

where
∫

EϕLdx is understood as a function of x obtained by integrating EϕL from a fixed
starting point up to x, have zero Poisson brackets with one another for different L:

{C[L1], C[L2]} = 0 (18)

for all functions L1 and L2 on a spatial slice. To see this, it is sufficient to notice that the
combination eliminates any dependence on Kx and on spatial derivatives of Eϕ. The anti-
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symmetric nature of the Poisson bracket then implies that it must vanish. Explicitly, the new
combination of constraints takes the form

C[L] = − 1
G

∫
dxL(x)Eϕ

(√
|Ex|

(
1 + K2

ϕ − Γ2
ϕ

)
+ const.

)
. (19)

A free constant appears because a constant
∫

EϕLdx implies a non-vanishing lapse function
in (17), and therefore a non-trivial constraint, but corresponds to a vanishing EϕL in (19).
The new constraint C[L] therefore constrains one degree of freedom less than the original
H[N]. The free constant in (19) can be determined through boundary conditions, which
would also restrict the lapse functions allowed in gauge transformations.

At first sight, it seems that the partial Abelianization eliminates structure functions
from the brackets and may simplify quantization and the preservation of symmetries and
therefore covariance. However, the importance of metric-dependent structure functions in
the standard brackets, which make sure that deformations are defined with respect to a unit
normal that is in fact normalized, raises the question of whether an elimination of these
structure functions and their metric dependence by redefined generators can still capture
the full picture of general covariance. To answer this question, it is instructive to place
the partial Abelianization of the brackets in the context of the hypersurface-deformation
structure. Several features of the full mathematical construction are then relevant.

First, the integration of EϕL required to define C[L] as a combination of H[N] and
D[M] may seem unusual, but while this means that the relevant N and M are non-local in
space, they are local within both the fiber (spatial functions N and M) and the base (the
gravitational phase space with independent functions Ex, Eϕ, Kx and Kϕ or a suitable ex-
tension) that may be used to construct a corresponding L∞-algebroid. The combination (17)
therefore defines an admissible set of sections.

Secondly, while the section defined by (17) makes use of phase-space dependent
N and M in the Hamiltonian and diffeomorphism constraints, which are therefore not
constant over the base manifold, an Abelian bracket (18) is obtained only for functions
L1 and L2 that do not have the full phase-space dependence allowed for general sections.
In particular, if L1 or L2 are allowed to depend on (Eϕ)′ or Kx, the bracket {C[L1], C[L2]} no
longer vanishes, and it can then have structure functions. Partial Abelianization is therefore
obtained for a restricted class of sections, defined such that L does not depend on (Eϕ)′ and
Kx (while it may still have an unrestricted spatial dependence). If L does not depend on
(Eϕ)′ and Kx but on the other independent phase-space variables, Kϕ as well as Ex or on Eϕ

but not its derivatives, the bracket {C[L1], C[L2]} remains zero, but there are then structure
functions in the bracket of C[L] with the diffeomorphism constraint, analogously to (8).
Therefore, structure functions are eliminated from the brackets only for a restricted class of
sections. This observation raises the question whether full covariance can still be realized.

A restriction to constant sections over the base manifold is not unusual, for certain
purposes. A similar assumption is made in the standard form (14)–(16) of hypersurface-
deformation brackets, in which case the original N and M are often assumed to be constant
over the base (while their spatial dependence remains unrestricted). There is, however,
a crucial difference between assuming constant N and M over the base and assuming
constant L over the base: In the former case, allowing for non-constant sections produces
additional terms in the brackets, shown in (7)–(9) , that follow directly from an application
of the product rule of Poisson brackets. The partial Abelianization, however, relies on
cancellations between different structure functions in the original brackets that are no
longer realized once non-constant sections with phase-space dependent L are allowed.

In particular, allowing for phase-space dependent L and M in the (D[M], C[L]) system
makes the transformation from (N, M) to (M, L) invertible. It is then possible to write the
original H[N] as a combination of D[M] and C[L] in the partial Abelianization, regaining
the full non-Abelian brackets with metric-dependent structure functions. Restricting the
system to phase-space independent L, by contrast, implies that the transformation from
the original hypersurface-deformation structure to the brackets of D[M] and C[L] is not
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invertible. It is then unclear whether hypersurface deformations and general covariance
can be recovered from a partial Abelianization, in particular if the latter has been modified
by quantum corrections.

2.3. Modified Deformations

It has been known for some time [20–22] that spherically symmetric hypersurface
deformations can be modified consistently, maintaining closed brackets while modifying
the structure functions. The dependence on Kϕ in (13) can be generalized to

H[N] =
−1
2G

∫
dxN(x)

(
|Ex|−1/2Eϕ f1(Kϕ) + 2|Ex|1/2 f2(Kϕ)Kx + |Ex|−1/2(1− Γ2

ϕ)Eϕ + 2Γ′ϕ|Ex|1/2
)

(20)

where f1 and f2 are functions of Kϕ related by

f2(Kϕ) =
1
2

d f1(Kϕ)

dKϕ
. (21)

If this equation is satisfied, the bracket of two Hamiltonian constraints is still closed,

{H[N1], H[N2]} = D[β(Kϕ)Ex(Eϕ)−2(N1N′2 − N2N′1)] (22)

for phase-space independent N1 and N2. In this bracket, D[M] is the unmodified diffeo-
morphism constraint, but the structure function is multiplied by a new factor of

β(Kϕ) =
d f2(Kϕ)

dKϕ
=

1
2

d2 f1(Kϕ)

dK2
ϕ

. (23)

Additional terms in the bracket for non-constant sections follow immediately from the
product rule for Poisson brackets.

Similarly, the Abelianized constraint C[L] can be generalized in its dependence on Kϕ,
using the same function f1 as before:

C[L] = − 1
G

∫
dxL(x)Eϕ

(√
|Ex|

(
1 + f1(Kϕ)− Γ2

ϕ

)
+ const.

)
. (24)

Its brackets remain Abelian for phase-space independent L. There is no obvious term in
C[L] where the second function f2 might appear or the important consistency condition (21).
It therefore seems easier to modify (or quantize) the constraint C[L] compared with H[N].
However, for full hypersurface deformations and covariance to be realized in the modified
setting, we still have to make sure that the transformation from (N, M) to (L, M) can be
inverted. As shown in [23], this is possible only if we also modify the transformation (17) to

C[L] = H[(Ex)′(Eϕ)−1 ∫ EϕLdx]− 2D[ f2(Kϕ)
√

Ex(Eϕ)−1 ∫ EϕLdx] (25)

where f2 obeys the same consistency condition with f1, (21), as derived from the modified
Hamiltonian constraint. The partial Abelianization and the original form of hypersurface
deformations therefore imply equivalent results, provided one makes sure that the transfor-
mation of sections can be inverted. Only then can access to full hypersurface deformations
and covariance be realized.

3. Non-Covariant Modifications of Abelianized Brackets

A recent paper [8] by Gambini, Olmedo and Pullin (GOP) argues that general co-
variance can be realized in modified versions of spherically symmetric models, for which
a partial Abelianization of the brackets plays a crucial role: As the abstract claims, “We
show explicitly that the resulting space-times, obtained from Dirac observables of the
quantum theory, are covariant in the usual sense of the way—they preserve the quantum
line element—for any gauge that is stationary (in the exterior, if there is a horizon). The con-
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struction depends crucially on the details of the Abelianized quantization considered,
the satisfaction of the quantum constraints and the recovery of standard general relativ-
ity in the classical limit and suggests that more informal polymerization constructions of
possible semi-classical approximations to the theory can indeed have covariance problems.”

These claims raise several questions. For instance, how can the construction depend
“crucially on the details of the Abelianized quantization considered” if a partial Abelian-
ization is either completely equivalent to the non-Abelian orignal version of hypersurface
deformations (if the transformation is made sure to be invertible) or gives access to only
a subset of hypersurface deformations (if the transformation is not invertible owing to a
restriction to a subset of sections)?

A closer inspection of technical calculations performed by GOP shows that spheri-
cally symmetric hypersurface deformations are, in fact, violated in the construction. GOP
use two different kinds of modifications, a generalized dependence of C[L] on Kϕ of the
form (24), and a spatial discretization of phase-space functions and their derivatives. Be-
cause the authors use a certain combination of solutions to the constraints and gauge-fixing
conditions, it turns out that only the latter modification survives in the final expressions for
line elements that are supposed to be invariant.

However, also the former (a generalized dependence on Kϕ) is relevant because, as we
have seen, the correct form of a modification must appear in two different places, in the
constraint C[L] and in the transformation back to unrestricted hypersurface deformations.
These two appearances are clear but somewhat implicit in [8]: The modified C[L] is implied
by the modified solutions in Equation (14) in [8] (or, equivalently, (21) there, referring to the
preprint version) where f1(Kϕ) = sin2(ρKϕ)/ρ2 with a spatial function ρ. The modified
transformation back to unrestricted hypersurface deformations is implied by Equation (20)

in [8] which in our notation amounts to replacing Kϕ in (17) with
√

f1(Kϕ). Using the
same function f1(Kϕ) is crucial for the constructions in [8] because the partial gauge fixing

employed there replaces
√

f1(Kϕ) with a fixed function on space (rather than phase space).
The same gauge-fixing function is then used in both places, in the constraint C[L] or its
solutions and in the transformation back to unrestricted hypersurface deformations from
which a line element can be constructed. However, this construction, which is equivalent

to assuming f2(Kϕ) =
√

f1(Kϕ) in (25), violates the condition (21) required for unre-
stricted hypersurface deformations to follow for the modified constraint. (For the specific
f1(Kϕ) considered by GOP, f2 should have an additional cosine factor, or equivalently
have a doubled argument of the sine function.) The constructions of [8] therefore violate
hypersurface deformations.

How can GOP then claim to have performed crucial steps toward demonstrating
general covariance in this setting? Unfortunately, much of the constructions are obscured by
an application of incompletely defined mixtures of gauge fixings and idiosyncratic notions
of observables. Here, it suffices to highlight only a few of the shortcomings found in the

GOP analysis. (For more details, see [24].) Continuing with the replacement of
√

f1(Kϕ)

by a gauge-fixing function that depends only on space, GOP replace any appearance of√
f1(Kϕ) with gauge-fixing functions (on space) derived from the classical solutions for

Kϕ in two specific slicings. Implicitly, the authors simply remove the modification in

this way because they indirectly equate
√

f1(Kϕ) with Kϕ, mediated by the gauge-fixing
function. As a result, they do not test how non-classical f1(Kϕ) can be consistent with
covariance. It is also problematic that this step in a rather careless gauge-fixing procedure
replaces a phase-space function Kϕ that does not Poisson commute with the constraints
with a spatial function that does obey this commutation property. The procedure turns a
Kϕ-dependent expression for Eϕ, obtained by solving C[L] = 0, into a function that Poisson
commutes with C[L]. GOP then call the result a Dirac observable, even though Eϕ is not
gauge invariant.
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After replacing Kϕ with a spatial function, the resulting expression for Eϕ still does
not Poisson commute with the diffeomorphism constraint and is therefore not a Dirac
observable, even if Kϕ could meaningfully be replaced. The same expression for Eϕ also
depends on Ex, which is not a spatial invariant. Indeed, unlike C[L], the diffeomorphism
constraint (12) depends on Kx and therefore does not Poisson commute with Ex. GOP
arrive at their conclusion about Eϕ being a Dirac observable by misidentifying Ex as a Dirac
observable because the (loop) quantization procedure they use establishes a correspondence
between an operator Êx and labels of a spherically symmetric spin network state [17,25]
that are unchanged by the spatial shifts of a finite diffeomorphism. However, having
a correspondence between a classical object, Ex, that is not a Dirac observable and a
quantum operator, Êx, that is a Dirac observable may indicate that the theory fails to have
the correct classical limit. Since this way of imposing the diffeomorphism constraint is
directly inherited from more general constructions in the full theory of loop quantum
gravity [26,27], the issues revealed by our analysis of [8] might hint at deeper problems
within the kinematics of loop quantum gravity.

4. Conclusions

Our discussion of phase-space dependent coefficients in hypersurface deformations
has clarified a previously puzzling issue of partial Abelianizations in spherically symmetric
models: Is it possible for partial Abelianizations to simplify the construction of quantum
modifications of hypersurface deformation generators and, at the same time, retain full
access to all transformations required for general covariance? We have shown that the
answer is negative. A simplified construction of modified generators is based on the absence
of structure functions in partially Abelianized brackets obtained for a specific choice of
phase-space dependent gauge generators (lapse and shift functions). However, the partial
Abelianization is maintained only if the new generators are then restricted to be phase-space
independent. This condition renders the transformation from hypersurface-deformation
brackets to partially Abelian brackets non-invertible. Access to unrestricted hypersurface
deformations and general covariance is therefore lost in a partially Abelianized setting.
Consistent modifications of the partially Abelian brackets then do not necessarily imply
consistent realizations of general covariance.

A recent paper [8] by Gambini, Olmedo and Pullin has implicitly recognized this
shortcoming and instead proposed to test general covariance in a tedious case-by-case
study of presumed invariants, beginning with a discretized version of the line element. We
have pointed out a specific place (the choice of modification functions f1 and f2) where
hypersurface deformations are treated inconsistently in these constructions, which may
perhaps lead to improved versions of the transformations considered by GOP. However,
correcting this inconsistency requires an analysis of unrestricted hypersurface deformations
even in the partially Abelianized setting, making sure that the transformation between
these two versions of the brackets can be inverted. It is therefore impossible to analyze
covariance in isolation from general hypersurface deformations, as proposed by GOP.
No-go results [28] for covariance in models of loop quantum gravity, partially based on
various analyses of modified hypersurface deformations, therefore cannot be evaded by
the constructions of GOP.
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