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Abstract: Despite being a well understood phenomenon in the context of current terrestrial experi-
ments, neutrino flavor conversions in dense astrophysical environments probably represent one of the
most challenging open problems in neutrino physics. Apart from being theoretically interesting, such
a problem has several phenomenological implications in cosmology and in astrophysics, including
the primordial nucleosynthesis of light elements abundance and other cosmological observables,
nucleosynthesis of heavy nuclei, and the explosion of massive stars. In this review, we briefly sum-
marize the state of the art on this topic, focusing on three environments: early Universe, core-collapse
supernovae, and compact binary mergers.

Keywords: astrophysical neutrinos; neutrino oscillations; supernovae; neutron star mergers; early
Universe; sterile neutrinos

1. Introduction

Neutrino flavor conversions, or oscillations, are a genuine quantum mechanical phe-
nomenon, for which a flavor eigenstate να (α = e, µ, τ) is converted to νβ (β 6= α) during
propagation, due to it being an admixture of different mass (or propagation) eigenstates
νi (i = 1, 2, 3). This has been firmly established experimentally with atmospheric [1] and
solar neutrinos [2], proving that neutrinos are massive particles and leading to the award
of the Nobel Prize in Physics 2015 to the experiments involved in this discovery. Among
the parameters describing such a phenomenon, the three mixing angles (θ12, θ13, θ23) and
the two mass differences (∆m2

21, ∆m2
31) have been measured with a precision between 1

and 10% [3–5]. The mass ordering (normal for ∆m2
31 > 0 or inverted for ∆m2

31 < 0) is
still unknown, but there is a 3σ hint in favor of the normal one. The CP phase δ, which
leads to the violation of the CP symmetry if δ 6= 0, π, is also largely unknown, but the CP
conserving values seem to be disfavored at 90% confidence level and the best fit seems to
lie in the range [π, 2π]. Despite the presence of some partially unknown parameters and of
few anomalies [6–10], which still need to be confirmed and require further investigations,
flavor conversions relevant in current experiments are theoretically under control.

Our understanding becomes less solid the higher the density of neutrinos being con-
sidered. In particular, when the interactions among neutrinos are no longer negligible, their
flavor evolution becomes deeply non-linear and cannot be treated in the standard way
used in the context of terrestrial experiments. The environments where such conditions
occur are the early Universe, core-collapse supernovae, and merger events between two
compact astrophysical objects. Apart from representing an extremely interesting theoretical
problem to solve, flavor conversions in dense environments have a much deeper relevance.
In particular, neutrino flavor conversions in the early Universe are a fascinating prob-
lem involving collisional damping, refractive effects from charged leptons, and neutrino
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self-interactions [11]. In this context, there is a strong interest for active–sterile neutrino os-
cillation in the early Universe in a broad range of mass for the sterile neutrino. Concerning
supernovae, how neutrinos are distributed among all flavors affects the amount of energy
deposited by these particles just below the shock wave in a supernova, potentially changing
a successful explosion into a failed one, or vice-versa. Furthermore, the large amount of
information carried by supernova neutrinos can be fully exploited by their detection only if
we can precisely predict both the original fluxes for each flavor and how they are modified
during propagation.

In this review our goal is to provide a short summary of the state of the art of the
available literature on flavor conversions in dense environments, focusing on both the
theoretical understanding of the equations of motion and applications to phenomenological
aspects of the environments under consideration. In Section 2 we present a common
theoretical framework based on a Boltzmann equation of the neutrino density matrix.
In Sections 3–5 we discuss old and recent results concerning flavor conversions in the early
Universe, core-collapse supernovae, and compact binary mergers, respectively. Finally, we
give our conclusions and future perspectives.

2. Equations of Motions

The simple formalism of the Schrödinger equation for the treatment of neutrino mixing
is not very practical whenever we are concerned with the evolution of a statistical ensemble
of neutrinos simultaneously mixing and scattering in a medium. In such cases the evolution
cannot be easily understood in terms of the propagation of a beam. Indeed, while this
treatment allows obtaining the transition probabilities between single-particle states and
to study the oscillations between field amplitudes, it cannot be directly applied to many-
particle states. Specifically, we need to handle the interactions between the medium and the
coherent superposition of states that are involved. In presence of a propagation medium
it is important to follow the evolution of the whole ensemble, including those particles
scattered out of the beam. Two types of effects have to be considered. One concerns the
refractive effect, namely the potential due to coherent forward scattering on charged leptons
present in ordinary matter [12,13]. The second effect is due to collisions which destroy the
coherence of the evolution and can influence the behavior of the mixing process [14].

In addition to the interactions with the external medium, one has also to consider
the interactions of neutrinos among themselves (self-interaction). Indeed, as pointed out
by Pantaleone in 1992 [15], in the deepest region of the supernova (SN) and in the early
Universe, the neutrinos gas is so dense that the neutrinos themselves form a background
medium leading to intriguing non-linear effects in the neutrino flavor conversions.

A proper treatment of all these effects requires to exploit the density matrix formalism,
in which mixed quantum states for neutrinos and possible loss of coherence due to real
collisions are described together. Strictly following the derivation of [16] and also [17–20],
an ensemble of neutrinos and antineutrinos can be characterized by the n × n density
matrices $p,x(t) (and an analogue for antineutrinos $p,x(t)) defined as

$p,x =

 $ee $eµ $eτ

$µe $µµ $µτ

$τe $τµ $ττ

 , (1)

where the diagonal elements of $p,x are the usual particle distribution functions (occupation
numbers) for the corresponding neutrino species, while the off-diagonal ones encode phase
information and vanish for zero mixing. In general $p,x depends on the momentum p and
on the coordinate x).

The entries of $p,x in Equation (1) are intended as the expectation values of the neutrino
field bilinears. Under this approximation, labeled as the mean field approach, one neglects
possible entanglement effects. Despite the wide use of this approach, it has been debated in
a series of papers [21–30].
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In this review we will focus on the results obtained in the mean field approximation.
In this case the flavor evolution for the density matrices $p,x and $̄p,x in dense environments
is governed by the Boltzmann collision equations

L̂[$p,x] = −i[Ωp,x, $p,x] + Ĉ[$p,x] (2)

where at the r.h.s. Ωp,x = Ωvac
p + Ωref

p,x and Ωref
p,x = Ωmat

p,x + Ωνν
p,x. Ωmat

p,x describes the
interactions with all other particles of the medium except for neutrinos and Ωνν

p,x represents
the “self-interactions” with the other neutrinos in the medium and, depending on the
neutrino ensemble $p,x itself, it makes the problem non-linear. Finally, the last term at the
right-hand side (r.h.s) of Equation (2) is the second order in the perturbative expansion
(∝ G2

F), known as collisional term, responsible for the breaking of the coherence of the
neutrino ensemble. The l.h.s. of Equation (2) contains the Liouville operator

L̂[$p,x] = ∂t$p,x + vp · ∇x $p,x + ṗ · ∇p $p,x, (3)

which includes temporal evolution and spatial transport phenomena. In particular, the first
term represents an explicit time dependence, the second a drift caused by the particles free-
streaming, and the third the effects of external macroscopic forces, for example gravitational
deflection. The equation for $̄p,x is similar to Equation (2), where inside the commutator
the relative sign of Ωvac and Ωref changes.

3. Flavor Conversions in the Early Universe

The evolution in time in the form of Boltzmann-like equations applied to the early
Universe, safely considered isotropic and homogeneous at large scale, reduces to

∂t$p = −i[Ωp, $p] + Ĉ[$p] , (4)

where
∂t → ∂t − Hp ∂p (5)

with H the Hubble parameter which encodes the information about the Universe’s expan-
sion. The quantity Ωp includes the vacuum term, the Refractive matter term, and the neutrinos
self-interactions.

For the refractive matter term, since the electron–positron density is expected to be
of the same order of the baryons–antibaryons ones which is subdominant. Therefore,
it is necessary to consider the higher order which depends on the sum of the electron
and positron energy densities. Concerning the self-interaction term, the contributions
to neutrino–neutrino forward scatterings come at leading order from a term Ωνν(0)

p,x ∝

GF($− $), and at higher order from a term Ωνν(1)
p,x ∝ GF

m2
Z
($ + $) 1. In absence of a neutrino–

antineutrino asymmetry, as expected in the standard case, the only contribution is given by
Ωνν(1)

p,x which is subleading for the neutrino evolution, since its numerical value is small.

Conversely, in the case of large neutrino asymmetries, Ωνν(0)
p,x becomes important and the

evolution is dominated by the effect of synchronized oscillations, i.e., the self-potential forces
all neutrino modes to follow the same oscillation pattern [11]. Finally, the collisional term
Ĉ[$p] at high temperature of the primordial plasma is very important since it breaks the
coherence of the neutrino ensemble. It damps the off diagonal terms of the density matrix
$p and it pushes the diagonal terms towards their equilibrium distributions.

In the case of instantaneous neutrino decoupling (at temperatures around 1 MeV) from
the primordial plasma of particles, the relic neutrinos of each flavor have the same momen-
tum distributions, making the effect of the oscillations irrelevant except for an exchange
of equal neutrino spectra. However, the neutrino oscillations become important in some
situations in which unequal neutrino distributions arise, such as small flavor-dependent
distortions due to not-instantaneous decoupling, non-zero neutrino–antineutrino asym-
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metry, or sterile species mixing with the active ones [31,32]. In such situations, neutrino
oscillation could modify the non-electromagnetic contribution of the neutrino heating to
the total relativistic energy density, defined in term of the effective number of neutrinos
species

εR = εγ

(
1 +

7
8

(
4

11

)4/3
Neff

)
(6)

where εR and εγ are the total energy density of radiation and the energy density of photon,
respectively. The factor 4/11 comes form the heating of the photons due to the e+ − e−

annihilation. In the case of small non-thermal distortions plus oscillations, the value of
this parameter is estimated to be Neff = 3.046 [33]. The slight excess with respect to the
value 3 is to due to the non-instantaneous neutrino decoupling thanks to which neutrinos
share a small part of the entropy release after the e+ − e− annihilation. More recently, new
calculations, where finite-temperature effects in the quantum electrodynamics plasma and
a full evaluation of the neutrino–neutrino collision integral are taken into account, provide
a number very close to the original one [34,35].

An important implication of active neutrino oscillations at temperature of MeV of the
Universe is the evolution of a possible neutrino-antineutrino asymmetry, denoted by

Lνα =
nνα − nν̄α

nγ
. (7)

Considering the very small value of the baryonic asymmetry, ηβ = (nB − nB̄)/nγ '
6× 10−10, it is reasonable to expect for the charge neutrality the same order of magnitude
for the charged lepton asymmetry. In the neutrino case, being neutral particles, the con-
strains on Lνα are quite loose, allowing values for Lνα order of magnitude larger then ηβ.
The presence of Lνα implies a degeneracy parameter in the neutrinos spectra, ξα = µνα /Tν.
A significant value of a cosmological neutrino–antineutrino asymmetry implies an extra
contribution for Neff without to introduce additional relativistic degrees of freedom. An im-
portant issue is to compute the evolution of Lνα in the epoch of the Universe before Big
Bang Nucleosynthesis (BBN). A combined analysis of active neutrino flavor oscillations
and BBN has led to an almost standard value for the effective number also in the presence
of neutrino asymmetries, with Neff < 3.2 at 95% C.L. [36].

Active–Sterile Neutrino Oscillations

The existence of sterile neutrinos is investigated in a very broad range of mass, from the
GUT (Grand Unification Theory) scale to the eV scale. Some of them are theoretically very
well motivated, other are more suggested by possible experimental hints. In this context,
a special and interesting case is represented by neutrino oscillations among active and
sterile neutrinos at different mass scales.

eV sterile neutrinos. Light sterile neutrinos with a mass around ∼1 eV, which are
mixing with the active ones, have been suggested to solve different anomalous results ob-
served in νµ → νe (LSND [6] and MiniBooNE [7]) and νe → νe (SAGE [8] and GALLEX [8])
short-baseline oscillations, as well as in ν̄e → ν̄e reactor neutrino experiments [10]. Many
analyses have been performed to explain the anomalies and scenarios with one (dubbed
“3 + 1”) or two (“3 + 2”) sub-eV sterile neutrinos [37–42] have been proposed to fit the
different data. The search for sterile neutrinos in laboratory experiments is still undergoing.
The νµ → νe has been recently tested in MicroBooNE [43–46], whose current data cannot
exclude the full parameter space hinted at by MiniBooNE [47] and if combined with Mini-
BooNE leads to a preference for a 3 + 1 scenario with a best fit at ∆m2 ∼ 0.2 eV2 and very
large mixing [48]. The νe → νe has now been updated by the data collected by BEST [49],
which strongly favors rather large mixing angle and masses larger than 1 eV2. Concerning
the reactor anomalies, a recent reevaluation of the neutrino fluxes [50] has led to new global
analyses [51,52] showing that combined reactor data are consistent with no sterile-neutrino
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oscillations. Despite the recent progress in all oscillation channels, new experimental data
is still needed to fully assess the sterile neutrino option.

In this context, cosmological observations represent a valid complementary tool to
probe these scenarios, being sensitive to the number of neutrinos and to their mass at eV
scale [53]. In fact, the sterile states can be produced in the early Universe via oscillations
with active neutrinos and can modify cosmological observables. In particular, adding extra
contribution to the radiation content in the Universe, expressed in terms of the effective
number of neutrino species, Neff, has indeed a strong impact on both BBN primordial
yields and the Cosmic Microwave Background (CMB) anisotropy. Moreover, the mass of
sterile species can impact the structure formation (LSS) spectrum [53–57]. From recent
astrophysical data of deuterium and helium, as well as last constraints on radiation and
mass, even a single extra thermalized sterile neutrino with mass m ∼ 1 eV appears to be
inconsistent with BBN, CMB, and LSS data [58–64]. A possible escape-route to reconcile the
eV sterile neutrino interpretation with cosmology would be to suppress the sterile neutrino
thermalization and, therefore, non-standard scenarios have to be invoked to alleviate
the tension. One of the proposed mechanism is to consider a primordial asymmetry Lν

between active neutrinos and antineutrinos which implies an additional “matter term
potential” in the equations of motion. If sufficiently large, it can block the active–sterile
flavor conversions via the in-medium suppression of the mixing angle. However, this term
can also generate MSW-like resonant flavor conversions among active and sterile neutrinos,
enhancing the sterile neutrino production. A detailed study of the kinetic equations for
active–sterile neutrino oscillations is therefore mandatory to assess which of the two effects
dominates. Recent studies have shown that asymmetry Lν ∼ 10−2 is required in order to
achieve a sufficient suppression of the sterile neutrino abundance [65]. However, such a
large value delays the oscillations at temperature close to neutrino decoupling one inducing
distortions on the active neutrino spectra with non-trivial effects on BBN. Consequently,
the tensions with cosmology re-emerge [66]. Recently, different groups have proposed
and investigated an alternative method to suppress the sterile neutrino production based
on the introduction of new “secret” self-interactions among sterile neutrinos, mediated
by the new gauge boson [67,68]. Additionally, in this case, the self-interactions would
generate a matter potential in the flavor evolution equations potentially suppressing the
sterile neutrino abundance. Depending on the selected theoretical model, we have more
or less severe constraints on light sterile neutrinos induced by the cosmological data.
BBN, CMB, and neutrino mass bounds strongly constrain the model with the vector
boson, disfavoring all the values of the mass of the new gauge boson. Indeed, while the
effective temperature-dependent potential produced by secret interactions can efficiently
suppress active–sterile neutrino mixing in the early Universe down to lower temperatures,
the momentum spectra of active neutrinos will be distorted due to delayed oscillations with
impact on the production of BBN yields [69]. Moreover, efficient collisional production of
νs can still occur (depending on the neutrino temperature and on the mass of the mediator)
violating the cosmological constraints on CMB and neutrino mass bound of cosmological
structures [70,71]. In particular, scattering processes mediated by the new particles can
be strongly enhanced by the s-channel resonance and by collinear enhancement in the
forward direction. For the mass and mixing parameter preferred by laboratory anomalies,
all values of the vector bosons and the corresponding coupling constants are disfavored [72],
as shown in Figure 1.

The situation can be in part different in the case of a very light (or even massless)
pseudoscalar particle mediating the secret interactions, due to its late time phenomenology,
in particular since the collisional term becomes relevant at late times [73–75]. Performing a
series of extensive analyses fitting various combinations of CMB data and combining with
other cosmological data, it is still debated if eV sterile neutrinos could be accommodated
within the pseudoscalar interaction model [76]. Another chance to possibly alleviate the
eV sterile neutrino controversy could be to consider minimal dark energy models which
modify only late time physics [77].
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Figure 1. The parameter space of the secret interactions model mediated by a vector boson of mass M
and the corresponding fine structure constant αs (αs = g2

s /(4π)). A sterile neutrino mass ms = 1 eV
and a vacuum mixing angle θs = 0.1 are assumed. The colored regions are ruled out by different
cosmological observations.

keV sterile neutrinos. KeV sterile neutrinos could represent a valid candidate of
dark matter since they are neutral, cosmologically stable, sufficiently non-interacting,
and massive [78–80]. A renewed interest has been recently sparked by new appealing and
controversial indications for an unidentified X-ray line at 3.5 keV in the spectra of a large
number of galaxy clusters and in Andromeda, possibly consistent with a radiative decay of
7 keV sterile neutrinos. [81,82]. Sterile neutrinos in this mass range are usually classified
as warm candidates of dark matter because, when they become non-relativistic, their
free-streaming suppresses the matter density perturbations at the dwarf galaxies scales,
more in agreement with the observations and cosmological simulations. However, the free-
streaming length not only depends on the particle mass, but also on the momentum,
and then on the particle phase-space distribution [83]. Depending on the production
mechanism for sterile neutrinos, the distribution function can be more or less warm, with a
different impact on the structure formation. The most natural production mechanism
to produce keV sterile neutrinos is by mixing with active species. The mixing angle
which allows the decay of sterile neutrinos also enables an efficiently production of sterile
species in the early Universe. The non-resonant production, linked to DM by Dodelson
and Widrow [84], is a collision-dominated production via neutrino oscillations, which
could gradually produce enough sterile neutrinos to explain the observed amount of DM,
in according to the production rate

Γprod =
1
2

sin2 2θmΓ (8)

driven by the active neutrino interaction rate

Γ ∼ G2
FT5. (9)

However, in the absence of new physics, this mechanism’s results are similar to the hot
DM case and in tension with various current astrophysical observations [85–89]. However,
this situation could change in the case of a resonant enhancement in the active–sterile transi-
tions due to a lepton number asymmetry Lν possibly present in the early Universe. Indeed,
as pointed out by Shi–Fuller [90], a suitable value of such an asymmetry produces sterile
neutrinos at a specific combination of momentum and temperature resulting in colder DM
distribution and so improving the compatibility with astrophysical and cosmological data.
Anyway, this scenario is also strongly constrained [78,91–94] and the 7 keV sterile neutrino
interpretation of the observed 3.5 keV line is not favored [95,96]. As recently speculated
by different groups, the allowed mass and mixing parameter space could be extended in
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presence of new interactions among only active neutrinos [97,98] or among only sterile
species [99] which imply extra terms in the interaction rate Γ (Equation (9)).

MeV sterile neutrinos. They emerge rather naturally in theories beyond the Standard
Model, like low scale seesaw models in the Neutrino Minimal Standard Model being
related to fundamental open problems of particle physics such as the origin of neutrino
mass, the baryon asymmetry in the early Universe, and the nature of dark matter [100,101].
Depending on the mixing with active neutrinos, the parameter space of sterile neutrino in
MeV mass range is strongly constrained by collider and beam-dump experiments [102],
searches of decays of D mesons and τ leptons [103,104], and core-collapse supernova limits
due to energy loss which would short the observed neutrino burst [105–107]. Further
and complementary constraints can also come from cosmological observations. Indeed,
sterile neutrinos produced in the early Universe via collisional processes involving active
neutrinos, can decay into lighter species injected into the primordial plasma altering both
the effective number of neutrino species Neff and the abundance of the primordial yield.
Solving the exact Boltzmann equation for sterile and active neutrino evolution is possible
to set constraints on the mixing angles or lifetimes [108].

4. Flavor Conversions in Core-Collapse Supernovae

Core-collapse supernovae are the final explosion of a star with a mass greater than
8 M�. After extinguishing all the nuclear fuel, the core of the star begins to collapse
under the effect of gravity until it reaches the Chandrasekhar limit. Then the density
rapidly increases until the core reaches the nuclear density (3× 1014 g/cm3), when matter
becomes incompressible and the collapse stops, producing a rebound [109]. The bounce
generates a shock wave traveling outwards and ejecting outer layers. This shock may stall
without driving off the stellar mantle and envelope. According to the “delayed explosion
scenario” [110,111], since 99% of the liberated gravitational energy (1053 ergs) is in the form
of neutrinos [112,113] such particles might deposit enough energy below the shock wave
in order to revitalize the explosion.

Neutrino emission can be divided in three main phases (see e.g., [114–116] for detailed
overviews). The neutronization burst lasts ∼10 ms and consists in the rapid electron
capture on dissociated nuclei. This leads to a sudden rise in the luminosity of νe up to
1053 erg/s, while for the other flavors it is negligible. The accretion phase lasts a few
hundreds of ms and during this time material continues to fall onto the core and accretes
on it, leading to a flux of neutrinos and antineutrinos of all species. The high density
traps neutrinos [117–120], which escape from the last scattering surface, which is usually
called the neutrinosphere. In the cooling phase the remaining proto-neutron star cools by
neutrino emission of all flavors. During this phase the luminosity is approximately equal
for all flavors.

Apart from inside the neutrinosphere, in general the propagation of supernova neutri-
nos is not isotropic. Consequently, the self-interaction potential has the following form

Ωνν
p,x =

√
2GF

∫ d3q
(2π)3 ($q,x − $̄q,x)(1− q · p) , (10)

whereas for the isotropic case of the early Universe the (1− p · q) term is absent. The phe-
nomenology of flavor conversions is strongly dependent on the relative size of Ωνν

p,x and
Ωmat

p,x , which changes as a function of both time after bounce and radial distance from
the center. In general, a few thousands kilometers from the center of the supernova the
neutrino density is low enough to make Ωνν

p,x negligible. In this case Ωmat
p,x can give rise to

the MSW resonance [12,13]. Deeper inside the supernova, Ωνν
p,x can be of the same order

or even larger than the matter potential, making flavor conversions a deeply non-linear
phenomenon and giving rise to the so called collective effects. Such a name stems from
the fact that neutrinos can change their flavor in a coherent fashion, regardless of their
original energy.
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A remark is in order. The role of flavor conversions in a SN is not important just
for a correct determination of the expected neutrino signal, but also in the context of
astrophysical processes, such as the nucleosynthesis of heavy elements [121–125] and the
explosion itself [126], since neutrino energy deposition is flavor dependent. Below we
briefly review all types of flavor conversions happening in a supernova, focusing on both
theoretical and phenomenological aspects.

4.1. MSW Resonances

An MSW resonance occurs when the vacuum oscillation frequency is equal to the spa-
tially dependent matter potential [12,13]. Such a condition is equivalent to ωE = ±Vmat(x),
where ωE = ∆m2/(2Eν) is the vacuum oscillation frequency of neutrinos, and Vmat(x) =√

2GF Ne(x) is the potential from coherent forward scattering on electrons in a medium,
with Ne(x) being the spatially dependent electron number density. The + (−) sign refers
to neutrinos (antineutrinos). If ∆m2 = ∆m2

31, then the resonance occurs for neutrinos in
normal mass ordering and for antineutrinos in inverted mass ordering. If ∆m2 = ∆m2

21 > 0
then the resonance can only happen for neutrinos. The final survival probability of electron
neutrinos is given by [127]

Pee(Eν) =


sin2 θ12PH (ν, NO)
sin2 θ12 (ν, IO)
cos2 θ12 (ν̄, NO)
cos2 θ12PH (ν̄, IO)

(11)

where PH represents the probability that a given mass eigenstate is transformed to a
different one when crossing the resonance point. This is also known as the crossing
probability and it is equal to 0 when the propagation is adiabatic, whereas it must be
determined (numerically or analytically) in the opposite case. In particular, when the
resonance crosses the shock wave, which introduces a sharp variation in the electron
density, the propagation becomes non-adiabatic. This is a time dependent feature, whose
potential observation has been studied in [128–135].

The presence of turbulence in the matter density can introduce stochastic fluctua-
tions and thus induce random temporal variations in the occurrence of the MSW reso-
nance [136–143]. If the fluctuations are of sufficiently large amplitude they might lead to
PH → 1/2 [136].

4.2. Collective Effects

In order to study the phenomenology of supernova neutrino flavor conversions in
the presence of a large self-interaction potential one needs to solve Equation (2), with Ωνν

p,x
given by Equation (10). Being a seven-dimensional system of coupled differential equations,
it has been solved only imposing some simplifying symmetries.

Even without solving the system of partial differential equations, some information
can be obtained through a linear stability analysis [144,145]. In this case one expands the
density matrix as

$p,x(t) =
fνe + fνx

2
+

fνe − fνx

2

(
sp(t, x) Sp(t, x)
S∗p(t, x) −sp(t, x)

)
, (12)

where fνα represents the number of neutrinos with flavor α. Since neutrinos are produced
in flavor eigenstates, one expects that initially sp � Sp, which justifies an expansion of
Equation (2) at linear order in Sp. Then, one looks for plane wave solutions of the form
Sp(t, x) = Qp,k e−i(k0t−k·x), where k0 is the temporal frequency of the flavor wave and k is
its spatial wave vector. Plugging the plane wave expansions in Equation (2) one arrives at
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a dispersion relation det[Πµν] = 0, i.e., the determinant of a 4× 4 matrix Πµν is equal to 0,
where

Πµν = ηµν +
∫ +∞

0

E2dE
2π2

∫ dv
4π

gE,v
vµvν

vα kα −ωE
. (13)

Here, vµ = (1, v), kµ = (k0, k), v = p/|p| and gE,v is defined as

gE,v =
√

2GF[ fνe ,E,v − fνx ,E,v − ( fν̄e ,E,v − fν̄x ,E,v, )] , (14)

where fνα ,E,v is the energy and angular distribution of να. If for some real k0 the dispersion
relation is solved with an imaginary k, the system has a spatial instability. Conversely,
if for some real k the dispersion relation is solved with an imaginary k0, the system has
a temporal instability. This method allows one to know whether a system is unstable or
not, possibly leading to significant flavor conversions. However, the final amount of flavor
conversions to be expected is not accessible through this method.

A widely used classification of instabilities is done according to the growth rate of
unstable modes, i.e., the imaginary part of k, Im(k). We define slow instabilities those
having Im(k) ∝

√
ωEµ, while we define fast instabilities those having Im(k) ∝ µ. The latter

can reach Im(k) ∼ O(1) cm−1, if they occur deep inside the supernova core, where µ can
be O(105) cm−1. This is why fast instabilities are usually considered to be the most likely
to affect astrophysical processes occurring in a supernova, provided that they are triggered
in the first place.

It has been proven in [146] that a necessary and sufficient condition for having fast
instabilities is an angular crossing in gE,v defined in Equation (14). Assuming that there is
azimuthal symmetry around a specific direction, angular crossing means that there is a v0
for which gE,v>v0 × gE,v<v0 < 0. In [147] such a proof has been made more general: flavor
instabilities, either fast or slow, can arise only if there is a spectral crossing, either in angle
or energy.

In the following we review the state of the art for both slow and fast instabilities. Other
reviews focused on slow modes are [114,148], whereas the only one already available on
fast modes is [149].

4.2.1. Slow Flavor Conversions

The seminal papers investigating collective effects assumed the so called bulb model,
where neutrinos are emitted uniformly and half-isotropically from the surface of a spher-
ical neutrinosphere. Moreover, neutrino emission is taken to be azimuthally symmetric
and that the conditions in the star depend only on the radial distance. In this frame-
work, Equation (2) becomes a system of first order ordinary differential equations that
has been solved numerically by different groups [150–155]. Some understanding can al-
ready be obtained analytically through an analogy with a gyroscopic pendulum in flavor
space [153–155]. In normal mass ordering the pendulum starts in a downward (stable)
position where the small value of the mixing angle induces only negligible flavor changes.
Conversely, in inverted mass ordering the pendulum starts in upward (unstable) position
in and it induces maximal flavor conversions νeν̄e → νx ν̄x, conserving the lepton num-
ber. The main feature in this context is a spectral split: ν̄e are completely converted to ν̄x,
whereas for νe this happens for E > Ec. This happens because the the initial energy spectra
of νe are lager than the ones of ν̄e and ν̄x and the total lepton number must be conserved.

For a while the presence of spectral splits [156–160] in inverted ordering and the
absence of significant flavor conversions in normal ordering has been considered to be the
paradigm for slow conversions. It was later realized that the outcome strongly depends on
the many assumptions entering the calculations. Here we briefly provide a list of them.

• Flavor asymmetries [161–164]. The absence of conversions in normal ordering seems
to hold only for a large hierarchy between neutrino fluxes ( fνe � fν̄e � fνx , typical
of the accretion phase), whereas for more similar fluxes ( fνe & fν̄e & fνx ) one can find
multiple splits and also in normal ordering.
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• Large matter potential [165–170]. A matter potential larger than the neutrino–neutrino
interaction potential leads to a suppression of flavor conversions. This typically hap-
pens closer to the supernova core and during the accretion phase.

• Multi angle effects [171–174]. When the flavor asymmetries are mild the phase dis-
persion induced by different propagation lengths of neutrinos can smear or completely
remove the effects of the spectral splits, eventually leading to complete decoherence,
i.e., all flavors are equilibrated up to lepton number conservation.

• Three flavors effects [175–180]. As for the multi angle effects, small flavor asym-
metries can induce complete spectral swaps or even flavor equilibration among all
three flavors.

• Sponteneous breaking of azimuthal [181–185], spatial homogeneity [186–192], and
stationarity [193,194]. It has been realized that the symmetries used as initial condi-
tions of neutrino emission (azimuthal symmetry, spatial homogeineity, stationarity)
are spontaneously broken during neutrino propagation. This leads to new instabilities
that can develop in both mass orderings, but they are in general suppressed when
the matter potential is dominating. Nevertheless, it has been shown [193,194] that
self-interacting neutrinos can generate a pulsating solution with a frequency that effec-
tively compensates the phase dispersion associated with the large matter term, lifting
the suppression and making collective oscillations possible deep inside the supernova.
However, because the matter potential changes during neutrino propagation, it is not
clear whether a flavor wave with a specific pulsation can have enough time to grow
and lead to significant flavor conversions. The presence of turbulent variations of
the matter potential may introduce a coupling among flavor waves with different k,
so making it more likely to have an instability even when neutrinos are propagating
away in a supernova [195].

• Neutrino halo effect [196–201]. Neutrinos are not completely free-streaming after the
neutrinosphere and even a small fraction of scattering neutrinos can produce a small
“neutrino halo”. Such inward-going neutrinos can modify the outcome of conversions
and the shape of spectral splits, if present, but, according to the latest simulations,
the effects have been found to be relatively small.

4.2.2. Fast Flavor Conversions

For slow conversions it is usually assumed that neutrinos are emitted half isotropically,
making it intrinsically impossible to create an angular crossing in gp. The importance of a
non-trivial angular distributions of neutrinos was first recognized in [144,202,203]. It was
realized that angular crossings can lead to new instabilities, developing on extremely short
time scales, and that can occur even in the absence of neutrino mixing. In this case, flavor
conversions is entirely due to pairwise interactions of the type νe(p) + νx(q) → νe(q) +
νx(p) and νe(p) + ν̄e(q) → νx(q) + ν̄x(p). The potential impact that a change of flavors
happening on such short time scales can have on the explosion and on the nucleosynthesis
of heavy nuclei has lead to extensive research activity by the entire community, which is
still underway.

Some work has provided a detailed characterization of fast conversions using the linear
stability analysis [204–209]. Useful insights have also been obtained analytically, usually
working under the assumption of spatial homogeneity and azimuthal symmetry [210–212].
In particular, in [212] it has been pointed out that the analogy with a pendulum in flavor
space works also in the case of fast conversions. However, differently from what happens
for slow conversions, the real part of the pulsation of the flavor wave resulting from the
linear analysis acts as the pendulum spin, and plays role in determining the final amount
of conversions.

With a significant development of the stability analysis, it has become possible to apply
this tool directly to data provided by supernova hydrodynamical simulations, with the
purpose of assessing whether the conditions for fast flavor instabilities are actually satisfied.
This is the closest one can get to knowing whether fast instabilities are possible in real



Universe 2022, 8, 94 11 of 23

supernovae. However, simulations usually do not provide the angular distributions of the
neutrino fluxes, but only their angular moments defined as:

In =
∫ +∞

−∞

E2dE
2π2

∫ dv
4π

gE,vvn . (15)

A few methods [213–217], have been proposed to perform a stability analysis using
only the angular moments In and they have been recently applied to a plethora of supernova
simulations. The first investigations in [218,219] found no evidence of instabilities, but they
were either limited to 1D simulations or to very specific time and space locations of the
supernova. More recent studies reported that crossings are possible in the following areas
of a supernova:

• Proto-neutron star [220–222]. The physical origin of the crossings is a strong convec-
tive activity happening in the proto-neutron star, which can generate large amplitude
modulations in the spatial distributions of νe and ν̄e number densities. The physical
implications are not very clear due to the nearly equal distributions of neutrinos and
antineutrinos of all flavors.

• Neutrino decoupling region [221,223,224]. Their existence can be explained by the
neutron richness of matter, which induces a later decoupling of νe with respect to ν̄e
and, thus, a more forward peaked angular distributions of ν̄e. Another possibility
is the presence of LESA [225–228], i.e., an asymmetric emission of lepton number,
or other phenomena [228].

• Free streaming regime [229–231]. Crossings can be generated by neutrino backward
scatterings off heavy nuclei and their size seems to get larger for smaller radial dis-
tances [229–231]. Such crossings are ubiquitous in the pre-shock region, but they can
also occur in the post-shock region. In the former case, there is hardly an impact
on astrophysical processes and on the detection at Earth [232,233], both because of
the slower growth rates of the instabilities and the very small size of the amount of
conversions expected. On the other hand, the instabilities developing in the post-shock
region might produce an observable effect.

Even if only under some simplifying assumptions, fast flavor instabilities have also
been simulated numerically in order to assess what is the final amount of conversions
expected and how it depends on the initial conditions. It was originally thought that such
instabilities lead to equilibration among all flavors [144,202,203,234], up to conservation of
the total lepton number. This conclusion was considered to hold for all neutrino energies
and mass orderings, but it has been recently called into question. Here we report a brief
summary of the findings obtained through numerical simulations:

• Neutrino propagation [235]. Even if a system of neutrinos has an initial crossing and
thus develops a fast flavor instability, the propagation in space and time may cancel
the crossing [235].

• Propagation of the power of the instability to small angular scales [236–241]. Dur-
ing its evolution, the power of a fast instability is moved from large scales to small ones
in momentum space, accelerating the decoherence of the system (and the equilibration
of flavors) [236–241]. Moreover, when considering a coarse-graining over space, fast
conversions seem to eventually reach a steady state [239–241]. In particular in [240]
an approximate analytical formula has been derived for calculating the amount of
decoherence reached in fast conversions and, thus, the final amount of flavor conver-
sions. This formula depends on the propagation angle of neutrinos and on the initial
asymmetry between the total number of neutrinos and antineutrinos. If the asymmetry
is extremely small, as expected for the crossings generated by backward scattering
of neutrinos in the free streaming regime, then the amount of flavor conversions is
expected to be negligible, as confirmed in [232,233]. In [240] the analytical formula
is independent from the type of perturbation used to seed the flavor instabilities.
However, in [241] a distinction is made between localized and random seeds. In the
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first case a coherent behavior in the space and momentum evolution of the flavor wave
is retained for a longer time. The difference between [240] and [241] can be associated
to heterogeneous numerical methods employed for calculating spatial derivatives.

• Spontaneous symmetry breaking [242]. As also happens to slow conversions, in the
context of fast ones there is also a spontaneous breaking of the symmetries imposed
in the initial conditions. This has been shown to happen for the azimuthal symmetry
in [242] and in [243], though in the second reference it was not explicitly stated in
the conclusions.

• Dependence on neutrino energy [244]. It has been proposed that the outcome of fast
conversions depends on the size of the mass differences between mass eigenstates and
on their ordering [244]. This claim has been criticized in [245] where only a modest
dependence has been observed. However, the first simulation has been performed
considering an homogeneous system, whereas the second has also taken into account
the spatial evolution.

• Impact of inelastic collisions [245–249]. Since the conditions for fast conversions
have been found even in locations where neutrinos are still partially or completely
coupled to the plasma, there have been a few studies implementing collisions in
numerical simulations. In this context, the authors of [247,248] reported the possibility
of enhancement of flavor conversions, assuming only evolution in time. On the other
hand, in [245,249] both time and space evolution have been taken into account and
it was observed that collisions might cause flavor depolarization, thus suppressing
conversions, but that a much larger mean free path than expected is required in order
for this happen. This is in agreement to what found in [246], where the role of collisions
in the generation of crossing has been also pointed out.

• Dependence on the number of crossings [250]. Multiple crossings can inhibit flavor
conversions [250]. This is especially relevant when considering fast conversions in
the early Universe, where the neutrino angular distributions are expected to be more
similar compared to the supernova case.

• Dependence on the number of neutrino species [242,243]. Considering six neutrino
species the crossings and, thus, fast instabilities can occur in one (or more) of the three
sectors eµ, eτ, µτ and then propagate to other ones [243]. Moreover, even considering
the distributions of νµ, ντ , ν̄µ, ν̄τ to be the same, the outcome of flavor conversions is
different [242] with respect to what obtained by using only the equation of motions
for three species, as usually done in literature.

• Impact of new physics [251]. Fast conversions can be affected by the presence of new
physics, such as non-standard interactions [251].

5. Fast Flavor Conversions in Compact Binary Mergers

Neutrinos are also copiously produced in merger events between two neutron stars
or a neutron star and a black hole, reaching a total luminosity of ∼1053 erg [252,253].
Despite their low chance of detectability, these neutrinos play a fundamental role in cooling
the accretion torus that is created around the central remnant (a massive neutron star
or a black hole), and the nucleosynthesis of heavy nuclei through r-processes [252–256].
Therefore, as it happens for core-collapse supernovae, a full understanding of neutrino
flavor conversions is mandatory.

A peculiarity of such environments is the excess of ν̄e over νe. A first consequence
is the possible occurrence of the “matter-neutrino resonance” [257–259], i.e., the almost
complete cancellation of the neutrino self interaction potential Ωνν

p with the potential due
to interactions with electrons Ωmat

p . A second consequence is the ubiquity of crossings
and thus of fast flavor instabilities in the accretion disk, first recognized in [260]. Indeed,
as it happens in supernovae, νe are coupled to the plasma in a larger volume, thus, despite
the overall excess of ν̄e, for specific backward going propagation directions there may be
a local excess of νe. However, the large region of instability reduces its size after O(10)
ms from the formation of the accretion disk. This time interval can be larger in case of a
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massive neutron star remnant [261]. Following this finding, the impact of fast instabilities
on nucleosynthesis has been assessed in [261,262]. Both references assumed complete flavor
equilibration. The first found that the fraction of lanthanides produced in the neutrino-
driven wind may be increased by a factor of O(103). On the other hand, the second
reference found an enhancement of the iron peak abundances and a reduction of the first
peak abundances, whereas lanthanides are marginally affected. Flavor equilibration was
assumed also in [263], but, differently from the previous works, a magneto-hydrodynamic
simulation of a typical post-merger accretion disk was used. Their results show that fast
conversions can increase the production of the lanthanides and of elements in the third
peak to a level comparable to solar abundances. This is an interesting hint for massive
post-merger disks being a major production site for heavy elements.

All the results on the impact of fast conversions on nucleosynthesis in post-merger
accretion disks are based on the assumption of flavor equilibration. However, as discussed
in the context of supernova neutrinos, such assumption might not always be justified.
For instance, in [264] a simplified toy model was studied numerically, finding a conversion
of less than 1% despite the large growth rate of fast instabilities.

6. Conclusions and Future Perspectives

Neutrino flavor conversions are relevant in cosmological and astrophysical dense
environments, such as the early Universe, core-collapse supernovae, and the merger of
compact objects. Indeed, a full understanding of these phenomenona is mandatory for a
correct interpretation of both the corresponding neutrino signals and (or) the astrophysical
processes developing in these environments. The flavor content of a system of neutrinos is
usually represented by a density matrix $p,x, whose time and space evolution are described
by Equation (2), where Ωνν

p,x represents the potential stemming from neutrino interactions
among themselves. Such a term makes the evolution equation a non-linear system of
coupled partial differential equations, which has never been solved in its entire form.

The early Universe represents a peculiar environment for testing nonlinear neutrino
oscillations in high-density conditions. Indeed, primordial nucleosynthesis (BBN), leptoge-
nesis, cosmic background radiation (CMB), and the formation of cosmological structures
(LLS) can be profoundly influenced by the presence of neutrinos and by their properties
such oscillations, interactions, and non-zero mass. A special and interesting case is repre-
sented by the oscillations of an between active neutrinos and a sterile one, where the latter
has a mass at the eV scale. The presence of such a light new degree of freedom is suggested
by intriguing, but controversial, indications from short-baseline neutrino oscillation experi-
ments. These sterile neutrinos are produced through mixing and contribute to the radiation
content beyond photons and ordinary neutrinos. They also leave an imprint on different
cosmological observables. In order to determine their relic abundance an accurate solution
of Equation (2) is mandatory. For the mass and mixing parameters suggested by experi-
mental analysis, the eV sterile neutrinos should be produced with the same number density
of the active states. This result is, however, in disagreement with recent cosmological data
on the radiation and on neutrino mass constraints. An extra ingredient should be added in
the model of the flavor evolution in order to try to alleviate this tension. A full multi-flavor
and multi momentum treatment of the active–sterile flavor evolution is mandatory in order
to confirm or reject the eV sterile neutrino hypothesis. At the moment, the eV scenario is
strongly disfavored by cosmological observations.

Sterile neutrinos with mass of the order of keV can represent natural dark matter
candidates. A complete characterization of the production mechanisms for keV sterile
neutrinos is extremely complex, requiring the inclusion of hadronic contributions still not
perfectly known, detailed solutions of the kinetic equations as well as some model build-
ing. The results obtained should be then compared with astrophysical and cosmological
observables. This comparison requires the use of signatures from different physical probes
(X-ray, counting galaxy, Lyman-alpha) and different distance scales. New cosmological and
astrophysical data will help shed light on the keV sterile neutrino paradigm.
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Differently from the early Universe, in the context of core-collapse supernovae and
mergers of compact objects, flavor conversions are not fully understood even in the context
of the Standard Model. In these cases different types of flavor instabilities can develop
according to the shape of gE,v (Equation (14)), i.e., the difference of the energy and angular
distributions of neutrinos and antineutrinos, which are usually not equal to each other.
Two approaches are usually employed to study these instabilities: linearized analyses and
numerical solutions of a simplified version of Equation (2). The first tool is computationally
more manageable, but it only allows us to know whether a flavor instability can develop
given a set of initial conditions for $p,x. Its application has shown that instabilities require
that gE,v has a crossing either in energy E or in the propagation direction v. Instabilities can
be classified according to their growth rate: slow conversions grow with a rate ∝

√
nνωE,

whereas fast conversions with ∝ nν. The latter can develop on time scales as small as
few nanoseconds, if they occur close to the neutrinosphere, with a potential major impact
on the supernova explosion. The application of the linear stability analysis on real data
provided by hydrodynamical simulations has shown that crossings are indeed a relatively
common feature in supernovae. These searches have been performed by several groups on
different data and a general consensus has been achieved. Nevertheless, a systematic study
of how crossing generation depends on the characteristics of supernova progenitors is still
lacking, especially for three-dimensional models which are in principle the most realistic
representation of the real explosion event, but at the same time are more time consuming
in terms of simulations.

A lot of work has been dedicated to numerically solving Equation (2) and it is now
clear that the results obtained can deviate from the real non-linear dynamics of the system
when the equation is simplified by imposing some symmetries. This has been observed for
slow conversions, for which the spectral splits originally found within the bulb model seem
to be washed out when allowing space or time instabilities to develop. Similarly, it was
thought that fast conversions lead to flavor equilibration, but more recently the dependence
of this result on the presence of collisions, the symmetries of the system, and the neutrino
energy has been highlighted. Nevertheless, results obtained by different calculations
are not always in perfect agreement. Future studies should continue investigating the
phenomenology of flavor conversion when symmetry assumptions are relaxed, as well
as the possible interplay between fast and slow conversion (and non-standard physics),
which is still largely unknown. Ultimately, an implementation of flavor conversions into
hydrodynamical simulations is necessary in order to assess what is the impact on the
astrophysical processes happening in the exploding star. This is of course computationally
extremely challenging, if not even unfeasible at the moment. However, a first step in
this direction can be similar to the one adopted for mergers of compact objects, where
complete flavor conversions have been assumed at those locations in space and time where
conditions for flavor instabilities are satisfied. A more realistic approach can be either
moving away from flavor equilibration, or writing Equation (2) in terms of the angular
and energy moments of the density matrix $p,x. The latter possibility is numerically more
manageable and it has been recently adopted [265]. Finally, we underline the importance
of cross checks between different numerical codes.
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1 In order to include the correction due to the non-local nature of the Z boson propagator which mediate forward scattering on

neutrinos of the same species.
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