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Abstract: In a previous paper we introduced a cosmological model describing the early inflation, the
intermediate decelerated expansion, and the late accelerating expansion of the universe in terms of
a single barotropic fluid characterized by a quadratic equation of state. We obtained a scalar field
representation of this fluid and determined the potential V(φ) connecting the inflaton potential in
the early universe to the quintessence potential in the late universe. This scalar field has later been
called the ‘vacuumon’ by other authors, in the context of the Running Vacuum model. In this paper,
we study how the scalar field potential is modified by the presence of other cosmic components such
as stiff matter, black-body radiation, baryonic matter, and dark matter. We also determine the mass m
and the self-interaction constant λ of the scalar field given by the second and fourth derivatives of
the potential at its extrema. We find that its mass is imaginary in the early universe with a modulus
of the order of the Planck mass MP = (h̄c/G)1/2 = 1.22× 1019 GeV/c2 and real in the late universe
with a value of the order of the cosmon mass mΛ = (Λh̄2/c4)1/2 = 2.08× 10−33 eV/c2 predicted by
string theory. Although our model is able to describe the evolution of the homogeneous background
for all times, it cannot account for the spectrum of fluctuations in the early universe. Indeed, by
applying the Hamilton–Jacobi formalism to our model of early inflation, we find that the Hubble
hierarchy parameters and the spectral indices lead to severe discrepancies with the observations. This
suggests that the vacuumon potential is just an effective classical potential that cannot be directly
used to compute the fluctuations in the early universe. A fully quantum field theory may be required
to achieve that goal. Finally, we discuss the connection between our model based on a quadratic
equation of state and the Running Vacuum model which assumes a variation of the cosmological
constant with the Hubble parameter.

Keywords: cosmology; inflation; dark matter; dark energy; equation of state; scalar field; de Sitter
era; primordial fluctuations

PACS: 95.30.Sf; 95.35.+d; 98.62.Gq

1. Introduction

The universe displays three main periods of evolution: an early phase of inflation
during which the scale factor increases exponentially rapidly with time, an intermediate
phase of decelerated expansion during which the scale factor increases algebraically, and a
late phase of accelerating expansion during which the scale factor increases exponentially
rapidly again.1 The idea that a period of accelerated expansion (early inflation) may have
occured in the early universe was introduced by Guth [1] in 1981 to explain the observed
isotropy, homogeneity, and flatness of the universe in a natural way. The early inflation
also explains the near scale-invariant spectrum of cosmological perturbations. The present
acceleration of the universe was discovered at the end of the twentieth century [2–5] and
was a surprise.
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The intermediate phase of decelerated expansion is relatively well-understood. It
corresponds to a relativistic radiation era followed by a nonrelativistic matter era. These
two periods are described by a linear equation of state

P = αρc2, (1)

where P is the pressure and ρc2 is the energy density. The coefficient is equal to α = 1/3
for radiation (corresponding to a gas of photons or other ultrarelativistic particles such as
neutrinos) and to α = 0 for pressureless matter (baryonic matter and dark matter). One can
also consider a small value of α = kBT/mc2 ∼ 10−7 in the matter era in order to take into
account thermal effects (to make this estimate we have used vc ∼ (kBT/m)1/2 ∼ 100 km/s
obtained from the rotation curves of the galaxies).

The early inflation and the late accelerating expansion of the universe are less well
understood. The fundamental constant that describes quantum mechanics is the Planck
constant h̄ = 1.05 × 10−31 m2 g s−1 [6]. From the Planck constant, and from the other
fundamental constants of physics (the speed of light c and the gravitational constant G),
one can construct a density

ρP =
c5

h̄G2 = 5.16× 1099 g m−3, (2)

called the Planck density. This density is extremely high. It is expected to play a fundamen-
tal role in the early universe (which is very dense) and be responsible for the first phase
of inflation. It is usually believed that inflation corresponds to a de Sitter stage during
which the density of the universe is constant and equal to the Planck density.2 On the
other hand, Einstein [7] introduced a cosmological constant Λ in the equations of general
relativity in order to obtain a static universe. Although Einstein rejected this constant after
the discovery of the expansion of the universe, calling it his “biggest blunder” [8], we now
know that a nonzero value of the cosmological constant Λ = 1.00× 10−35 s−2 is favored by
current observations. The effect of the cosmological constant is equivalent to the effect of a
constant density

ρΛ =
Λ

8πG
= 5.96× 10−24 g m−3, (3)

called the cosmological density. This density is extremely low. It is expected to play a
fundamental role in the late universe (which is very dilute) and be responsible for its
observed present-day acceleration. The origin of this acceleration is generally called dark
energy. It is usually believed that the late accelerating expansion of the universe corresponds
to a second de Sitter stage during which the density of the universe is constant and equal
to the cosmological density. The ratio between the Planck density (early universe) and the
cosmological density (late universe) is

ρP
ρΛ
∼ 10123. (4)

They differ by 123 orders of magnitude. The cosmological constant is usually interpreted in
terms of the vacuum energy. The vacuum is described by an equation of state P = −ρc2 [9–11]
which implies a constant energy density leading to a de Sitter exponential expansion. However,
particle physics predicts that the vacuum energy should be of the order of the Planck scale.
Therefore, this interpretation leads to a discrepancy of 123 orders of magnitude with the
measured value of Λ. This is the so-called “cosmological constant problem” [12,13].

Various models have been proposed to describe the primordial inflation. The model of
Starobinsky [14] takes into account quantum gravitational effects. It has a purely geometric
nature and consists in a generalization of the Einstein–Hilbert action to contain an R2

contribution, where R is the Ricci scalar curvature. It leads to a nonsingular de Sitter stage
instead of the initial big bang singularity predicted by the classical Einstein equations. The
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phase of inflation in the very early universe can also be described by a hypothetical scalar
field φ, called inflaton, running down a potential. This scalar field has its origin in the
quantum fluctuations of the vacuum and is usually associated with a nonequilibrium phase
transition [15]. Interestingly, the Starobinsky model can be mapped on a scalar field model
with a special form of potential (see, e.g., [16] and references therein).

Various models of dark energy have also been proposed to describe the late accelera-
tion of the universe. The simplest model is the cold dark matter model with a cosmological
constant (ΛCDM model), which describes dark matter as a pressureless fluid and dark
energy as a cosmological constant [17,18]. The ΛCDM model provides a very good descrip-
tion of the large scale structure of the universe and can account for the observations of the
Planck mission [19,20]. However, the ΛCDM model suffers from the cosmological constant
problem mentioned above and from the “cosmic coincidence problem” [21–23], namely
why the fractions of dark matter and dark energy turn out to be of the same order of mag-
nitude at the present epoch although they scale differently with the universe’s expansion.3

The CDM model also suffers from small-scale problems (at the galactic scale) such as the
core-cusp problem of dark matter halos [24], the missing satellite problem [25–27], and
the “too big to fail” problem [28]. This leads to the so-called small-scale crisis of CDM [29].
In order to solve or alleviate these difficulties, other models of dark energy have been
introduced. Inspired by the models of inflation, some authors have proposed to describe
the dark energy in terms of a self-interacting scalar field called quintessence [30–33] which
can be interpreted as a dynamical vacuum energy. Other authors [34] have invoked an
exotic fluid with a negative pressure called the Chaplygin gas [35]. This model provides
a unification of dark matter and dark energy in terms of a single dark fluid. Additional
models of unified dark matter and dark energy (called UDM or quartessence models [36]),
such as the generalized Chaplygin gas [34,37], the modified Chaplygin gas [38], the poly-
tropic gas [39–47], or the logotropic dark fluid [48–52], have been introduced subsequently.
These models are consistent with observation data only if they are extremely close to the
ΛCDM model [53] which is equivalent (in its UDM interpretation) to a single dark fluid
with a constant negative pressure P = −ρΛc2 [42,53,54].

In a series of papers [39–47], we have proposed to describe the whole evolution of the
universe, from its early inflation to its late accelerating expansion, by a quadratic equation
of state of the form

P = −(α + 1)
ρ2

ρP
c2 + αρc2 − (α + 1)ρΛc2, (5)

in which the coefficients are the Planck density ρP (see footnote 2) and the cosmological den-
sity ρΛ. The left term describes the early inflation, the middle term describes the decelerated
expansion (corresponding to a fluid with a linear equation of state P = αρc2), and the right
term describes the late accelerating expansion. This equation of state can be simplified in
some limits. In the early universe (ρ� ρΛ), the last term in Equation (5) is negligible and the
quadratic equation of state

P = −(α + 1)
ρ2

ρP
c2 + αρc2 (6)

describes the transition between the early inflation and the phase of decelerated expansion.
On the other hand, in the late universe (ρ� ρP), the first term in Equation (5) is negligible
and the affine equation of state

P = αρc2 − (α + 1)ρΛc2 (7)

describes the transition between the phase of decelerated expansion and the late accelerating
expansion (the ΛCDM model, corresponding to a constant equation of state P = −ρΛc2,
is recovered for α = 0). Interestingly, the equations of state (6) and (7) can be viewed as
generalized polytropic equations of state of the form P/c2 = αρ + kρ1+1/n involving a
linear term P/c2 = αρ and a polytropic term P/c2 = kρ1+1/n with a negative pressure
(k < 0) and an index n = +1 (resp. n = −1) in the early (resp. late) universe. These
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generalized polytropic equations of state have been studied at a general level in [41–43].
They can be viewed as generalized (or modified) Chaplygin gas models.

Our main results can be summarized as follows:

(i) In Ref. [41], we studied in detail the equation of state (6) with α = 1/3 describing the
smooth transition between the early inflation and the radiation era. This equation of
state provides a “graceful exit” to the de Sitter era. We considered more general models
with an arbitrary value of α (instead of α = 1/3) and an arbitrary positive polytropic
index ne (instead of ne = +1). We showed that the results remain qualitatively the
same in these more general situations.

(ii) In Ref. [42], we studied in detail the equation of state (7) with α = 0 describing the
smooth transition between the matter era and the late inflation. We showed that this
equation of state returns the ΛCDM model. We considered more general models with
an arbitrary value of α (instead of α = 0) and an arbitrary negative polytropic index
nl (instead of nl = −1). We showed that the results remain qualitatively the same in
these more general situations.

(iii) In Refs. [39,40,42,47], we described the complete history of the universe. It involves
two de Sitter eras (early and late inflation) bridged by an intermediate decelerated
era. These results are reported in Figure 14 of [42]. They have been obtained by
connecting the results valid in the early universe (see Equation (6)) to the results
valid in the late universe (see Equation (7)). This approach describes the successive
phases of early inflation, radiation, matter, and late inflation. In this manner, our
model smoothly connects the primordial inflation to the ΛCDM model. In our model,
the early and late evolution of the universe is remarkably symmetric. It is described
by two polytropic equations of state of index ne = +1 and nl = −1 respectively.
In addition, the cosmological density ρΛ in the late universe is the counterpart of
the Planck density ρP in the early universe. As the universe expands, the density
decreases from the Planck density ρP = 5.16× 1099 g m−3 to the cosmological density
ρΛ = 5.96× 10−24 g m−3, spanning 123 orders of magnitude (see Figure 15 of [42]).
The resulting model of universe is non-singular and non-phantom. There is no big
bang singularity in the past, nor big rip singularity in the future. The early and late
behaviors of the universe are described by two de Sitter eras with density ρP and
ρΛ, respectively. The universe exists eternally in the past and in the future. There
is no question such as “What happens for t < 0 before the big bang?”. We called
this nonsingular and fully symmetric model of universe, exhibiting two extreme de
Sitter eras bridged by a period of decelerated expansion, the “aioniotic” universe (see
Section 7.4 of [42]).

(iv) In Refs. [39–42,47], we studied the thermal history of the universe. As the Friedmann
equations are dissipationless, the total entropy of the universe (including all kinds of
matter and energy) is constant. It has the very large value S/kB = 5.04× 1087 [41].
We obtained a generalized Stefan–Boltzmann law valid in the early universe (see
Equation (84a) of [41]). In our model, the temperature T increases exponentially
rapidly during the inflation up to the Planck temperature TP = 1.42× 1032 K, then
decreases algebraically during the radiation and matter eras (see Figure 16 of [42]).
This is very different from other models of inflation where the temperature drops
drastically during the exponential inflation and one has to invoke a phase of re-heating
by various high energy processes (that are not very well-understood) in order to restore
the initial temperature.

(v) In Refs. [39,40,42,47], we developed a scalar field representation of our model. We
determined the “inflaton” potential (see Equation (123) of [42]) associated with the equa-
tion of state (6) which describes the smooth transition between the early inflation and
the radiation era, and we determined the “quintessence” potential (see Equation (125)
of [42]) associated with the equation of state (7) which describes the smooth transition
between the matter era and the late inflation.
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(vi) In Refs. [45–47], we considered the possibility that the cosmic history of the universe
involves an additional stiff matter era after the inflation and prior to the radiation era.
This stiff matter era is described by an equation of state of the form P = ρc2 where the
speed of sound, given by c2

s = P′(ρ), is equal to the speed of light (cs = c) [45,55,56].
We proposed to describe the transition between the inflation and the stiff matter era in
the primordial universe by an equation of state of the form of Equation (6) with α = 1,
and we derived the corresponding scalar field potential (see Equation (140) in [45] and
Equation (F.42) in [46]).4

(vii) In Refs. [39,40,42,44], we solved the general model described by the quadratic equation
of state (5). We first derived the explicit relation between the energy density and the
scale factor (see Equation (86) of [44]). We then obtained an exact analytical solution of
the Friedmann equations giving the complete temporal evolution of the scale factor
a(t) and energy density ρ(t) from t = −∞ to t = +∞ (see Equation (106) of [44]).
This solution describes the early inflation, the intermediate decelerated expansion,
and the late accelerating expansion of the universe. The quadratic equation of state
(5) therefore provides a unification of the early and late inflation of the universe. We
determined the general scalar field potential associated with this equation of state.
We obtained its exact analytical expression in terms of Jacobian Elliptic functions
(see Equation (121) of [44]) and proposed a simple approximate expression obtained
by using matched asymptotic expansions (see Equation (131) of [44]). Interestingly,
our scalar field theory describes, with a unique potential, the whole evolution of the
universe, from its early inflation to its late accelerating expansion, passing through a
phase of algebraically decelerating expansion. In this sense, the scalar field potential
V(φ) unifies the inflaton potential in the early universe and the quintessence potential
in the late universe.

Very similar results have been obtained in parallel by J. Solà and his collaborators in
the context of the Running Vacuum Model (RVM). The basic idea behind this model (see
the review [57] for an exhaustive list of references) is that the cosmological constant actually
depends on time. Using results of particle physics and the renormalization group approach,
they argued that the cosmological constant Λ(H) is related to the Hubble constant H by a
quartic equation. When combined with radiation and matter, this model produces a phase
of early inflation, a phase of decelerated expansion, and a phase of late inflation which are
very similar to the ones obtained in our model (see Appendix C for a comparison between
the two approaches). Recently, Basilakos et al. [58] developed a scalar field representation
of the RVM. They proposed to call the scalar field that accounts for the temporal evolution
of the vacuum energy the “vacuumon”. As they obtained exactly the same potentials
in the early and late universe as the ones obtained previously in our papers (compare
Equations (4.18) and (4.42) of [58] with Equations (123) and (125) of [42]), we will also
call “vacuumon” the scalar field associated with the quadratic equation of state (5) of our
model [39–47].5 Following this terminology, what we referred to as “inflaton” in the early
universe (associated with the equation of state (6)) will be called “early vacuumon” and
what we referred to as “quintessence” in the late universe (associated with the equation
of state (7)) will be called “late vacuumon”. Even more recently, these authors developed
a new model that they called String-inspired Running Vacuum [59]. They managed to
make a connection between the phenomenological RVM and string theory. Interestingly,
their new model includes a stiff matter era in the primordial universe similar to the one
introduced heuristically in our papers [45,46]. They described the transition between the
inflation and the stiff matter era in a manner similar to the one described in Section XI
of [45] or in Appendix F of [46]. They also derived a scalar field potential coinciding with
the one previously obtained in our papers [45,46] (compare Equation (40) of [59] with
Equation (140) of [45] or Equation (F.42) of [46]).6 Therefore, the RVM [57–59] and our
model [39–47] are consistent, valuable, and complementary to each other (see Appendix C).

We have argued above that the quadratic equation of state (5) describes the whole
evolution of the universe from its early inflation to its late accelerating expansion. There is,



Universe 2022, 8, 92 6 of 54

however, a difficulty with this description which is connected to the value that one should
ascribe to the parameter α. If we take α = 1/3, the first two terms in Equation (5) describe
the transition between the inflation and the radiation and the last term describes the late
accelerating expansion of the universe. However, this equation of state does not account
for the matter era. Indeed, it describes a universe undergoing early inflation, radiation era,
and late inflation. Alternatively, if we take α = 0, the first term in Equation (5) describes
the early inflation and the last two terms describe the transition between the matter era
and the late accelerating expansion of the universe. However, this equation of state does
not account for the radiation era. Indeed, it describes a universe undergoing early inflation,
matter era, and late inflation. This implies that the quadratic equation of state (5) is not able
to describe the whole content of the universe. Indeed, it cannot describe simultaneously
the radiation era and the matter era. At that point, we have two possibilities:

(A) The first possibility is to assume that the coefficient α that appears in the equation
of state (5) depends on the density in such a way that α → 1/3 at high densities
and α → 0 at low densities. In the early universe (high densities), we can neglect
matter and dark energy and use Equation (6) with the coefficient α = 1/3 (radiation).
In the late universe (low densities), we can neglect inflation and radiation and use
Equation (7) with the coefficient α = 0 (matter). We then have to match these two
asymptotic limits. This is the point of view adopted in [39,40,42,47]. This point of
view is also consistent with the RVM (see Appendix C) provided that the density ρ is
interpreted as the total density of the universe, i.e., the sum of the running vacuum
energy density plus the energy density of radiation in the early universe or the matter
energy density in the late universe (the same comment applies to the pressure P).

(B) Another possibility is to assume that the quadratic equation of state (5) with a fixed
coefficient α describes only one cosmic fluid. This exotic fluid could correspond to a
scalar field in its hydrodynamic representation. Then, we must consider, in addition,
the contributions of other species treated as independent noninteracting fluids. These
additional species correspond to standard fluids (stiff matter, radiation, and baryonic
or dark matter) described by a linear equation of state. Different choices are possible.
A first choice is to take α = 1/3. In that case, the quadratic equation of state (5)
characterizes a scalar field which is responsible for a phase of early inflation, a phase
of radiation (it could be the standard radiation corresponding to photons or relativistic
particles or a “dark radiation” different from the standard radiation), and a phase of
late inflation. This scalar field provides a unification of inflation, radiation, and dark
energy. Then, we have to add standard radiation (αr = 1/3), baryonic matter (αb = 0),
and dark matter (αdm = 0) as additional species. Another choice is to take α = 0.
In that case, the quadratic equation of state (5) characterizes a scalar field which is
responsible for a phase of early inflation, a phase of pressureless dark matter, and a
phase of late inflation. This scalar field provides a unification of inflation, dark matter,
and dark energy. Then, we have to add standard radiation (αr = 1/3) and baryonic
matter (αb = 0) as additional species. We can also choose another value of α, different
from 1/3 or 0, such as α = 1 corresponding to stiff matter [45,46]. In that case, the
quadratic equation of state (5) characterizes a scalar field which is responsible for a
phase of early inflation, a stiff matter era, and a phase of late inflation. This scalar field
provides a unification of inflation, stiff matter and dark energy. Then, we have to add
standard radiation (αr = 1/3), baryonic matter (αb = 0) and dark matter (αdm = 0) as
additional species.

In conclusion, we are led to a considering a model of universe involving a scalar
field described by a quadratic equation of state given by Equation (5) plus zero, one, or
several X-fluids described by a linear equation of state P = αXρc2. We assume that these
different species are independent from each other and noninteracting. The case of a scalar
field alone described by the quadratic equation of state (5) has been treated in our previous
papers [39,40,42,44]. We found that this scalar field has a potential given by Equation (108) in
the general case, and by Equations (115) and (132) in the early and late universe, respectively.
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This is the potential of the “bare” vacuumon. If we now consider a scalar field described by
the quadratic equation of state (5) in the presence of other species, such as X-fluids described
by a linear equation of state P = αXρc2, the potential of the scalar field will change.7 In this
paper, we explain how this potential can be calculated and we give its general expression
under the form of an integral. This is the potential of the “dressed” vacuumon due to
the presence of other species. Unfortunately, its general expression cannot be obtained
analytically, except in particular limits.

Once the potential V(φ) has been obtained, we can determine the main characteristics of
the scalar field such as its mass m and self-interaction constant λ which are given by the sec-
ond and fourth derivatives of the potential at its extrema [47]. The potential of the vacuumon
presents a maximum V = ρPc2 in the early universe at φ = 0 and a minimum V = ρΛc2

in the late universe at φ = φmax. Correspondingly, the early vacuumon (inflaton) has an
imaginary mass of the order of the Planck mass MP = (h̄c/G)1/2 = 1.22× 1019 GeV/c2

and the late vacuumon (quintessence) has a real mass of the order of the cosmon mass
mΛ = h̄

√
Λ/c2 = 2.08× 10−33 eV/c2 predicted by string theory. We find that the mass

of the vacuumon in the early universe satisfies a fundamental quantization rule while its
mass in the late universe does not. Finally, we apply the Hamilton–Jacobi formalism [60]
to our model of early inflation in order to obtain the Hubble hierarchy parameters and the
spectral indices. We show that it leads to severe discrepancies with the observations. This
suggests that the scalar field potential of the vacuumon is just an effective classical potential
that cannot be directly used to compute the spectrum of fluctuations in the early universe. A
fully quantum field theory may be required to achieve that goal.

The paper is organized as follows. In Section 2, we recall the basic equations that
describe the cosmic evolution of a fluid with a linear equation of state and the basic
equations that describe the cosmic evolution of a canonical self-interacting real scalar
field. In Section 3, we briefly review our model of universe [39–47] based on the quadratic
equation of state (5). In Section 4, we determine the potential of a scalar field associated
with an arbitrary barotropic equation of state P(ρ) in the presence of X-fluids and apply
these general results to the quadratic equation of state (5). In Section 5, we show how these
results can be simplified in the case of a scalar field alone in the universe and we recover
the results of our previous papers [39–47]. In Section 6, we determine the parameters of the
scalar field (vacuumon) such as its mass and its self-interaction constant in the early and
late universe. In Section 7, we determine the potential of the scalar field in the presence of
an additional fluid in the intermediate regime between the early and late inflation. In that
case, the scalar field potential can be obtained analytically. In Section 8, we consider the
evolution of the scalar field in the presence of one fluid in the late universe. In Section 9, we
determine the Hubble hierarchy parameters corresponding to our model of early inflation
(early vacuumon) and conclude that a fully quantum field theory is required to achieve a
form of agreement with observations.

2. Basic Equations

In this section, we recall the basic equations determining the cosmological evolution of
a fluid described by a linear equation of state (called here X-fluid) and the basic equations
determining the cosmological evolution of real canonical self-interacting scalar field φ
described by a potential V(φ).

2.1. Friedmann Equations

If we consider an expanding homogeneous background and adopt the Friedmann–
Lemaître–Robertson–Walker (FLRW) metric, the Einstein field equations reduce to the
Friedmann equations

H2 =
8πG

3
ρ− kc2

a2 +
Λ
3

, (8)

2Ḣ + 3H2 = −8πG
c2 P− kc2

a2 + Λ, (9)
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where H = ȧ/a is the Hubble parameter, a(t) is the scale factor, Λ is the cosmological
constant, and k determines the curvature of space. The universe is closed if k > 0, flat if
k = 0, or open if k < 0. Equation (9) can also be written as

ä
a
= −4πG

3

(
ρ +

3P
c2

)
+

Λ
3

. (10)

Combining Equations (8) and (9), we obtain the energy conservation equation

dρ

dt
+ 3H

(
ρ +

P
c2

)
= 0. (11)

This equation can be directly obtained from the conservation of the energy–momentum
tensor DµTµν = 0 which is included in the Einstein equations through the contracted
Bianchi identities. It can be rewritten as

d
dt
(ρc2a3) = −P

d(a3)

dt
. (12)

Introducing the volume V ∝ a3 and the energy E = ρc2V, Equation (12) takes the form
dE = −PdV. It can be interpreted as the first principle of thermodynamics for an adiabatic
evolution of the universe dS = 0 [41].

The equation of state parameter is defined by

w =
P

ρc2 . (13)

According to Equation (11), the energy density decreases with the scale factor if w > −1
and increases with the scale factor if w < −1 (it is constant if w = −1). The case where the
energy density increases with the scale factor corresponds to a phantom universe.

The deceleration parameter is defined by

q = − äa
ȧ2 . (14)

The universe is decelerating if q > 0 and accelerating if q < 0.
In this paper, we consider a flat universe (k = 0) in agreement with the inflation

paradigm [1] and the observations of the cosmic microwave background (CMB) [19,20]. On
the other hand, we set the cosmological constant to zero (Λ = 0) because, in our model, the
acceleration of the expansion of the universe will be taken into account in the equation of
state of the scalar field. The Friedmann equations then reduce to the form

dρ

dt
+ 3H

(
ρ +

P
c2

)
= 0, (15)

H2 =
8πG

3
ρ, (16)

ä
a
= −4πG

3

(
ρ +

3P
c2

)
. (17)

In that case, the deceleration parameter is related to the equation of state parameter by

q =
1 + 3w

2
. (18)

The universe is decelerating if w > −1/3 and accelerating if w < −1/3. When w = −1/3
the scale factor increases linearly with time.
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We assume that the universe contains different X-fluids of density ρX and a scalar
field of density ρφ. The total density and the total pressure are ρ = ∑X ρX + ρφ and
P = ∑X PX + Pφ. The Friedmann Equation (16) can then be written as

H2 =

(
ȧ
a

)2
=

8πG
3

ρ =
8πG

3

(
∑
X

ρX + ρφ

)
. (19)

2.2. X-Fluids

We assume that the X-fluids are described by a linear equation of state of the form

PX = αXρXc2, (20)

where αX is constant. We also assume that these fluids are independent from each other
(and from the scalar field) so that they individually satisfy the energy conservation equation

dρX
dt

+ 3H
(

ρX +
PX

c2

)
= 0. (21)

Solving this equation with the equation of state (20), we find

ρX
ρ0

=
ΩX,0

a3(1+αX)
, (22)

where ρ0c2 denotes the present value of the energy density of the universe and ΩX,0 denotes
the proportion of the X-fluid at the present time (a = 1). Assuming that the X-fluid is alone
in the universe (or dominates the other species) and solving the Friedmann Equation (16)
with the density from Equation (22), we find that the scale factor and the density of the
X-fluid evolve with time as

a =

[
3
2
(1 + αX)

(
8πGρ0ΩX,0

3

)1/2
t

] 2
3(1+αX )

, ρX =
1

6πG(1 + αX)2t2 , (23)

if αX > −1, and as

a ∝ e
(

8πGρX
3

)1/2
t, ρX = cst, (24)

if αX = −1.
For the radiation (αr = 1/3):

Pr =
1
3

ρrc2,
ρr

ρ0
=

Ωr,0

a4 ,

a =

[
2
(

8πGρ0Ωr,0

3

)1/2
t

] 1
2

, ρr =
3

32πGt2 . (25)

For baryonic matter (αb = 0):

Pb = 0,
ρb
ρ0

=
Ωb,0

a3 ,

a =

[
3
2

(
8πGρ0Ωb,0

3

)1/2
t

] 2
3

, ρb =
1

6πGt2 . (26)



Universe 2022, 8, 92 10 of 54

For dark matter (αdm = 0):

Pdm = 0,
ρdm
ρ0

=
Ωdm,0

a3 ,

a =

[
3
2

(
8πGρ0Ωdm,0

3

)1/2
t

] 2
3

, ρdm =
1

6πGt2 . (27)

For stiff matter (αs = 1):

Ps = ρsc2,
ρs

ρ0
=

Ωs,0

a6 ,

a =

[
3
(

8πGρ0Ωs,0

3

)1/2
t

] 1
3

, ρs =
1

24πGt2 . (28)

For the dark energy (αde = −1):

Pde = −ρdec2,
ρde
ρ0

= Ωde,0,

a ∝ e
(

8πGρde
3

)1/2
t, ρde = cst. (29)

The equation of state of the dark energy (vacuum energy) leads to a constant energy density
implying a phase of exponential expansion (de Sitter). However, we will not need the
equation of state of the dark energy in our model because the acceleration of the expansion
of the universe will be taken into account in the equation of state (or in the potential) of the
scalar field.

2.3. Canonical Scalar Field

A canonical scalar field minimally coupled to gravity evolves according to the Klein–
Gordon (KG) equation8

φ̈ + 3Hφ̇ +
dV
dφ

= 0, (30)

where V(φ) is the potential of the scalar field. The scalar field tends to run down the potential
towards lower energies. The density and the pressure of the scalar field are given by

ρφc2 =
1
2

φ̇2 + V(φ), Pφ =
1
2

φ̇2 −V(φ). (31)

We can check that these equations imply the energy conservation Equation (see Appendix A)

dρφ

dt
+ 3H

(
ρφ +

Pφ

c2

)
= 0. (32)

When the kinetic term dominates the potential term (φ̇2/2� V(φ)), we obtain the equation
of state Pφ ∼ ρφc2 of stiff matter. This is the kination regime [63]. When the potential term
dominates the kinetic term (φ̇2/2 � V(φ)), we obtain the equation of state Pφ ∼ −ρφc2

of vacuum or dark energy. This is the inflation (de Sitter) regime [15]. Inversely, if the
scalar field is described by the stiff equation of state Pφ = ρφc2, we find V(φ) = 0 and
φ = (c2/12πG)1/2 ln t + cst corresponding to the kination regime. If the scalar field is
described by the vacuum or dark energy equation of state Pφ = −ρφc2, we find φ̇ = 0, i.e.,
φ = cst and V(φ) = cst corresponding to the de Sitter regime (see Section 5.6).
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3. Scalar Field with a Quadratic Equation of State
3.1. General Equations

We assume that the scalar field is described by a quadratic equation of state of the
form [39–47]9

Pφ = −(α + 1)
ρ2

φ

ρP
c2 + αρφc2 − (α + 1)ρΛc2, (33)

where ρP = 5.16× 1099 g m−3 is the Planck density (see footnote 2) and ρΛ = 5.96× 10−24 g m−3

is the cosmological density. The linear term, characterized by a constant α, may represent
radiation (α = 1/3), dark matter (α = 0 or α ' 0), stiff matter (α = 1), or even be a new
species.10 The equation of state parameter wφ = Pφ/(ρφc2) and the squared speed of sound
c2

s = P′φ(ρφ) are given by

wφ = −(α + 1)
ρφ

ρP
+ α− (α + 1)

ρΛ

ρφ
, (34)

(c2
s )φ

c2 = −2(α + 1)
ρφ

ρP
+ α. (35)

Solving the energy conservation Equation (32) with the equation of state (33), we find that
the density of the scalar field is given in excellent approximation by (see Appendix B)

ρφ =
ρP

(a/a1)3(α+1) + 1
+ ρΛ, (36)

where a1 is a constant of integration. To obtain Equation (36), we have used the fact that
ρΛ/ρP � 1. This equation is essentially exact as ρΛ/ρP ∼ 10−123 is extremely small. It can
be rewritten as

ρφ

ρ0
=

ΩP,0

(a/a1)3(α+1) + 1
+ ΩΛ,0, (37)

where ρ0c2 is the present value of the energy density and we have introduced the notations
ΩP,0 ≡ ρP/ρ0 and ΩΛ,0 ≡ ρΛ/ρ0 (ΩΛ,0 represents the present proportion of dark energy
in the universe while ΩP,0 is just a convenient notation). After the period of inflation (see
below), we can make the approximation

ρφ

ρ0
' ΩP,0

(a/a1)3(α+1)
+ ΩΛ,0. (38)

In this manner, we see that ΩP,0a3(α+1)
1 represents the present proportion Ωα,0 of the α-fluid

in the universe. Therefore, the constant a1 is given by

a1 =

(
Ωα,0

ΩP,0

) 1
3(1+α)

. (39)

We can then rewrite Equation (37) under the equivalent form

ρφ

ρ0
=

Ωα,0

a3(α+1) +
Ωα,0
ΩP,0

+ ΩΛ,0. (40)

Combining Equations (33)–(36) and using again the fact that ρΛ/ρP � 1, we obtain in
excellent approximation

ρφ =
ρP + ρΛ(a/a1)

3(α+1)

(a/a1)3(α+1) + 1
, (41)

Pφ =
−ρΛc2(a/a1)

6(α+1) + αρPc2(a/a1)
3(α+1) − ρPc2[

(a/a1)3(α+1) + 1
]2 , (42)
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wφ =
−ρΛ(a/a1)

6(α+1) + αρP(a/a1)
3(α+1) − ρP[

(a/a1)3(α+1) + 1
][

ρP + ρΛ(a/a1)3(α+1)
] , (43)

(c2
s )φ

c2 =
α(a/a1)

3(α+1) − α− 2
(a/a1)3(α+1) + 1

. (44)

We note that the denominator in Equation (43) can be replaced by ρΛ(a/a1)
6(α+1) +

ρP(a/a1)
3(α+1) + ρP with the same degree of approximation.

If the universe contains only the scalar field, the deceleration parameter q is given by
Equation (18). Using Equations (34) and (43), we obtain

q =
1 + 3α

2
− 3

2
(α + 1)

ρ

ρP
− 3

2
(α + 1)

ρΛ

ρ
(45)

and

q =
−ρΛ(a/a1)

6(α+1) + 3α+1
2 ρP(a/a1)

3(α+1) − ρP[
(a/a1)3(α+1) + 1

][
ρP + ρΛ(a/a1)3(α+1)

] . (46)

The complete analytical solution a(t) of the Friedmann Equation (16) with Equation (36) is
given by [42,44]

1√
κ

ln
[

1 + 2κ(a/a1)
3(α+1) + 2

√
κ(1 + (a/a1)3(α+1) + κ(a/a1)6(α+1))

]

− ln

2 + (a/a1)
3(α+1) + 2

√
1 + (a/a1)3(α+1) + κ(a/a1)6(α+1)

(a/a1)3(α+1)


= 3(α + 1)

(
8π

3

)1/2 t
tP

+ C, (47)

with tP = 1/
√

GρP = (h̄G/c5)1/2 = 5.39× 10−44 s (Planck time). This solution describes
the evolution of the universe from an early de Sitter era to a late de Sitter era bridged by a
decelerating algebraic expansion (α-era). For the particular values α = 0, 1/3, 1, the density
evolves with the scale factor as

ρφ =
ρP

1 + (a/a1)3 + ρΛ (α = 0), ρφ =
ρP

1 + (a/a1)4 + ρΛ (α = 1/3),

ρφ =
ρP

1 + (a/a1)6 + ρΛ (α = 1). (48)

To better understand the physical meaning of the different terms involved in the foregoing
equations, we successively study how these equations can be simplified in the early and in
the late universe. We only give the equations that will be needed in the subsequent analysis,
and we refer to our previous papers [39–47] for a more thorough discussion.

3.2. Early Universe

In the early universe, where the density is high, the equation of state (33) reduces to

Pφ = −(α + 1)
ρ2

φ

ρP
c2 + αρφc2. (49)

This amounts to neglecting the contribution of dark energy (ρΛ = 0). The equation of state
parameter and the squared speed of sound are given by

wφ = −(α + 1)
ρφ

ρP
+ α, (50)
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(c2
s )φ

c2 = −2(α + 1)
ρφ

ρP
+ α. (51)

Solving the energy conservation Equation (32) with the equation of state (49), we find that
the density of the scalar field is

ρφ

ρP
=

1
(a/a1)3(1+α) + 1

with a1 =

(
Ωα,0

ΩP,0

) 1
3(1+α)

. (52)

It can be rewritten as
ρφ

ρ0
=

Ωα,0

a3(α+1) +
Ωα,0
ΩP,0

. (53)

Then, we find
Pφ

ρPc2 =
α(a/a1)

3(α+1) − 1[
(a/a1)3(α+1) + 1

]2 , (54)

wφ =
α(a/a1)

3(α+1) − 1
(a/a1)3(α+1) + 1

, (55)

(c2
s )φ

c2 =
α(a/a1)

3(α+1) − α− 2
(a/a1)3(α+1) + 1

. (56)

If the universe contains only the scalar field, the deceleration parameter is given by

q =
1 + 3α

2
− 3

2
(α + 1)

ρ

ρP
, (57)

q =
(1 + 3α)(a/a1)

3(α+1) − 2
2
[
(a/a1)3(α+1) + 1

] . (58)

When a� a1, the density of the scalar field given by Equation (52) tends to a constant
ρφ ' ρP equal to the Planck density. This leads to a phase of early inflation where the scale
factor increases exponentially rapidly with time (early de Sitter era). When a � a1, the
density of the scalar field decreases algebraically as ρφ/ρ0 = Ωα,0/a3(α+1). In that case, it
behaves as an α-fluid with a linear equation of state Pφ = αρφc2. The scale factor increases
algebraically as t2/[3(1+α)] (the expansion is decelerating if α > −1/3). The equation of
state (49) thus describes the smooth transition between a phase of inflation and an α-era in
the early universe. The transition takes place at a ' a1. This equation of state is studied in
detail in [41,44]. The temporal evolution of the scale factor a(t) is given analytically by

√
(a/a1)3(α+1) + 1− ln

1 +
√
(a/a1)3(α+1) + 1

(a/a1)3(α+1)/2

 =
3
2
(α + 1)

(
8π

3

)1/2 t
tP

+ C. (59)

For the particular values α = 0, 1/3, 1, the density evolves with the scale factor as

ρφ

ρP
=

1
1 + (a/a1)3 (α = 0),

ρφ

ρP
=

1
1 + (a/a1)4 (α = 1/3),

ρφ

ρP
=

1
1 + (a/a1)6 (α = 1). (60)

If we follow approach (A) of the Introduction, it is relevant to take α = 1/3 (radiation) or
possibly α = 1 (stiff fluid) in the early universe.
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3.3. Late Universe

In the late universe, where the density is low, the equation of state (33) reduces to

Pφ = αρφc2 − (α + 1)ρΛc2. (61)

This amount to neglecting quantum effects (ρP → +∞). The equation of state parameter
and the squared speed of sound are given by

wφ = α− (α + 1)
ρΛ

ρφ
, (62)

(c2
s )φ

c2 = α. (63)

Solving the energy conservation Equation (32) with the equation of state (61), we find that
the density of the scalar field is

ρφ

ρΛ
=

1
(a/a2)3(1+α)

+ 1 with a2 =

(
Ωα,0

ΩΛ,0

) 1
3(1+α)

. (64)

We note that (
a1

a2

)3(α+1)
=

ρΛ

ρP
∼ 10−123. (65)

Equation (64) can be rewritten as

ρφ

ρ0
=

Ωα,0

a3(α+1)
+ ΩΛ,0. (66)

Then, we find
Pφ

ρΛc2 =
α

(a/a2)3(α+1)
− 1, (67)

wφ =
α(a2/a)3(α+1) − 1
(a2/a)3(α+1) + 1

. (68)

If the universe contains only the scalar field, the deceleration parameter is given by

q =
1 + 3α

2
− 3

2
(α + 1)

ρΛ

ρ
, (69)

q =
(1 + 3α)(a2/a)3(α+1) − 2

2
[
(a2/a)3(α+1) + 1

] . (70)

When a� a2, the density of the scalar field given by Equation (64) tends to a constant
ρφ ' ρΛ equal to the cosmological density. This leads to a phase of late accelerating
expansion (or late inflation) where the scale factor increases exponentially rapidly with
time (late de Sitter era). When a� a2, the density of the scalar field decreases algebraically
as ρφ/ρ0 = Ωα,0/a3(α+1). In that case, it behaves as an α-fluid with a linear equation of
state Pφ = αρφc2. The scale factor increases algebraically as t2/[3(1+α)] (the expansion is
decelerating if α > −1/3). The equation of state (61) thus describes the transition between
an α-era and a phase of accelerating expansion (dark energy) in the late universe. The
transition takes place at a ' a2. This equation of state is studied in detail in [42,44]. The
temporal evolution of the scale factor a(t) and density ρφ(t) is given analytically by

a
a2

= sinh
2

3(1+α)

[
3
2
(1 + α)

(
8π

3

)1/2 t
tΛ

]
,

ρφ

ρΛ
=

1

tanh2
[

3
2 (1 + α)

( 8π
3
)1/2 t

tΛ

] , (71)
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with tΛ = 1/
√

GρΛ = (8π/Λ)1/2 = 1.46× 1018 s (cosmological time). For the particular
values α = 0, 1/3, 1, the density evolves with the scale factor as

ρφ

ρΛ
=

1
(a/a2)3 + 1 (α = 0),

ρφ

ρΛ
=

1
(a/a2)4 + 1 (α = 1/3),

ρφ

ρΛ
=

1
(a/a2)6 + 1 (α = 1). (72)

If we follow approach (A) of the Introduction, it is relevant to take α = 0 (pressureless
matter) in the late universe. In that case, the equation of state is constant Pφ = −ρΛc2. This
UDM model is equivalent to the ΛCDM model not only to 0-th order in perturbation theory
(background) but to all orders, even in the nonlinear clustering regime [42,53,54].

3.4. Intermediate Regime

In the intermediate regime, valid after the early inflation and before the late accelerat-
ing expansion of the universe, the equation of state of the scalar field reduces to

Pφ = αρφc2. (73)

This amounts to neglecting quantum effects (ρP → +∞) and dark energy (ρΛ = 0). The
equation of state parameter and the squared speed of sound are given by

wφ = α, (74)

(c2
s )φ

c2 = α. (75)

Solving the energy conservation Equation (32) with the equation of state (73), we find that
the density of the scalar field is

ρφ

ρ0
=

Ωα,0

a3(α+1)
. (76)

If the universe contains only the scalar field, the deceleration parameter is given by

q =
1 + 3α

2
. (77)

The temporal evolution of the scale factor a(t) and density ρφ(t) is given analytically by

a =

[
3
2
(1 + α)

(
8πGρ0Ωα,0

3

)1/2
t

] 2
3(1+α)

, ρφ =
1

6πG(1 + α)2t2 . (78)

The expansion is decelerating for α > −1/3. For the particular values α = 0, 1/3, 1, the
density evolves with the scale factor as

ρφ

ρ0
=

Ωdm,0

a3 (α = 0),
ρφ

ρ0
=

Ωr,0

a4 (α = 1/3),

ρφ

ρ0
=

Ωs,0

a6 (α = 1). (79)

3.5. Complete Evolution of the Universe

Regrouping the foregoing results, we see that the quadratic equation of state (33) de-
scribes in a unified manner an early inflation followed by a phase of decelerated expansion
(α-era) and, finally, a late accelerating expansion. This equation of state is studied in detail
in [44]. As discussed in the introduction, the equation of state has a drawback in the sense
that it cannot describe both the radiation and matter eras. To solve this problem, we have
proposed two approaches.
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If we follow approach (A), we have to consider that α changes in the course of time
(i.e., with the density of the universe). In that case, we are led to considering the equation of
state (49) in the early universe with α = 1/3 (or α = 1) and the equation of state (61) in the
late universe with α = 0. We can then solve the Friedmann Equation (16) with Equation (53)
or (66) in these two epochs and then match the results to obtain the whole evolution of the
universe. This is equivalent to solving the Friedmann equation

H2 =

(
ȧ
a

)2
=

8πG
3

ρ (80)

with the density11

ρ

ρ0
=

Ωr,0
Ωr,0
ΩP,0

+ a4
+

Ωm,0

a3 + ΩΛ,0. (81)

This is the procedure adopted in [39,40,42,47]. Equations (80) and (81) determine the evolu-
tion of the scale factor a(t). They describe successively the phases of inflation, radiation,
pressureless matter, and dark energy. The ΛCDM model is recovered by ignoring the early
inflation, i.e., by taking ΩP,0 → +∞ (i.e., ρP → +∞ or h̄→ 0) in Equation (81).

If we follow approach (B), we can consider that α is fixed in the quadratic equation
of state (33) of the scalar field (the value α = 1/3 or α = 1 may be the most relevant).
Then, we have to account for the presence of other species such as stiff matter, radiation,
baryonic matter, and dark matter. Finally, we have to solve the Friedmann Equation (19)
with Equation (40) for the scalar field and Equations (25)–(28) for the other species (except
the one that has been incorporated in the equation of state of the scalar field). In the
simplest model, ignoring stiff matter, taking α = 1/3 in the equation of state of the scalar
field and treating dark matter as an independent species with αX = 0, this leads again to
Equations (80) and (81). Alternatively, taking α = 1 in the equation of state of the scalar
field and treating radiation and dark matter as independent species with αX = 1/3 and
αX = 0 respectively, we find

ρ

ρ0
=

Ωs,0
Ωs,0
ΩP,0

+ a6
+

Ωr,0

a4 +
Ωm,0

a3 + ΩΛ,0. (82)

Equations (80) and (82) determine the evolution of the scale factor a(t). They describe
successively the phases of inflation, stiff matter, radiation, pressureless matter, and dark
energy. As in footnote 11, in order to avoid a spurious divergence of the energy density
at a = 0, the radiation and matter component terms Ωr,0/a4 and Ωm,0/a3 have to be
introduced at a sufficiently late time, i.e., after the inflation era when ρ� ρP. The possibility
that a radiation (or a stiff matter) era occurs before the inflation era, leading to a big
bang singularity, is considered in Appendix E. See also Ref. [47] for more general models
generalizing Equations (81) and (82).

The complete history of the universe determined by Equations (80) and (81) has been
described in [39,40,42,44,47] (see in particular Figure 14 of [42]). Although the evolution of the
background density is the same in approaches (A) and (B), the scalar field potential is different
in these two approaches, especially in the late universe, as discussed in Sections 4 and 5 below.

4. Scalar Field in the Presence of X-Fluids

In this section, we derive the potential V(φ) of a real scalar field characterized by an
equation of state Pφ(ρφ) in the presence of other species. We provide general results using
standard techniques [64,65] and apply them to the quadratic equation of state (33) of our
model in the presence of X-fluids (radiation, matter, stiff matter. . .).
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4.1. General Results

Let us consider a canonical scalar field defined by Equations (30)–(32). From Equation (31),
we find

φ̇2 = (wφ + 1)ρφc2, (83)

where we have introduced the equation of state parameter wφ = Pφ/ρφc2. Using φ̇ = (dφ/da)Ha
and the Friedmann Equation (19), we find that the relation between the scalar field and the
scale factor is given by12

dφ

da
=

(
3c2

8πG

)1/2√1 + wφ

a

√
ρφ

∑X ρX + ρφ
. (84)

On the other hand, according to Equation (31), the potential of the scalar field is given by

V =
1
2
(1− wφ)ρφc2. (85)

Therefore, we find that the potential of the canonical scalar field in the presence of other
species is determined in parametric form by the equations

φ(a) =
(

3c2

8πG

)1/2 ∫ a

0

√
1 + wφ(x)

√
ρφ(x)

∑X ρX(x) + ρφ(x)
dx
x

, (86)

V(a)
ρ0c2 =

1
2
[
1− wφ(a)

]ρφ(a)
ρ0

, (87)

where we have taken the origin of the scalar field (φ = 0) at a = 0.

4.2. Quadratic Equation of State

For the quadratic equation of state (33), using the results of Section 3, we have in
excellent approximation (using the fact that ρΛ/ρP � 1):

ρφ

ρ0
=

Ωα,0

a3(α+1) +
Ωα,0
ΩP,0

+ ΩΛ,0,
ρφ

ρ0
=

ΩP,0

1 + ΩP,0
Ωα,0

a3(α+1)
+ ΩΛ,0, (88)

wφ =
−ΩΛ,0ΩP,0

Ω2
α,0

a6(α+1) + α
ΩP,0
Ωα,0

a3(α+1) − 1[
1 + ΩP,0

Ωα,0
a3(α+1)

][
1 + ΩΛ,0

Ωα,0
a3(α+1)

] , (89)

1 + wφ =
(α + 1)ΩP,0

Ωα,0
a3(α+1)[

1 + ΩP,0
Ωα,0

a3(α+1)
][

1 + ΩΛ,0
Ωα,0

a3(α+1)
] , (90)

1− wφ =
(1− α)

ΩP,0
Ωα,0

a3(α+1) + 2 ΩΛ,0ΩP,0
Ω2

α,0
a6(α+1) + 2[

1 + ΩP,0
Ωα,0

a3(α+1)
][

1 + ΩΛ,0
Ωα,0

a3(α+1)
] , (91)

(1− wφ)
ρφ

ρ0
=

2ΩΛ,0a6(α+1)
(

ΩP,0
Ωα,0

)2
+ (1− α)a3(α+1) Ω2

P,0
Ωα,0

+ 2ΩP,0[
1 + ΩP,0

Ωα,0
a3(α+1)

]2 . (92)

On the other hand, for the X-fluids we have

ρX
ρ0

=
ΩX,0

a3(1+αX)
. (93)
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As a result, we find that the scalar field potential of the vacuumon unifying the early
inflation and the late accelerating expansion of the universe in the presence of X-fluids is
determined by the equations

φ(a) =
(

3c2

8πG

)1/2√
1 + α

∫ a

0

(
ΩP,0
Ωα,0

)1/2
x3(α+1)/2√

1 + ΩP,0
Ωα,0

x3(α+1)
√

1 + ΩΛ,0
Ωα,0

x3(α+1)

×

√√√√√√√
Ωα,0

x3(α+1)+
Ωα,0
ΩP,0

+ ΩΛ,0

∑X
ΩX,0

x3(1+αX ) +
Ωα,0

x3(α+1)+
Ωα,0
ΩP,0

+ ΩΛ,0

dx
x

, (94)

V(a)
ρ0c2 =

1
2

ΩP,0

2 + (1− α)
ΩP,0
Ωα,0

a3(α+1) + 2 ΩΛ,0ΩP,0
Ω2

α,0
a6(α+1)[

ΩP,0
Ωα,0

a3(α+1) + 1
]2 . (95)

In the early universe (ΩΛ = 0), we obtain

φ(a) =
(

3c2

8πG

)1/2√
1 + α

∫ a

0

(
ΩP,0
Ωα,0

)1/2
x3(α+1)/2√

1 + ΩP,0
Ωα,0

x3(α+1)

√√√√√√√
Ωα,0

x3(α+1)+
Ωα,0
ΩP,0

∑X
ΩX,0

x3(1+αX ) +
Ωα,0

x3(α+1)+
Ωα,0
ΩP,0

dx
x

, (96)

V(a)
ρ0c2 =

1
2

ΩP,0
2 + (1− α)

ΩP,0
Ωα,0

a3(α+1)[
ΩP,0
Ωα,0

a3(α+1) + 1
]2 . (97)

In the late universe (ΩP → +∞), we obtain13

φ(a) =
(

3c2

8πG

)1/2√
1 + α

∫ a 1√
1 + ΩΛ,0

Ωα,0
x3(α+1)

√√√√√ Ωα,0

x3(α+1) + ΩΛ,0

∑X
ΩX,0

x3(1+αX ) +
Ωα,0

x3(α+1) + ΩΛ,0

dx
x

, (98)

V(a)
ρ0c2 =

1
2
(1− α)

Ωα,0

a3(α+1)
+ ΩΛ,0. (99)

These equations determine the potential of the vacuumon in the presence of X-fluids.
Although it is not possible to obtain the scalar field potential V(φ) analytically in the
general case, it can always be obtained numerically.14 The scalar field potential V(φ) can
be obtained analytically in the absence of other species (see Section 5). In the presence of X-
fluids, it can be obtained analytically in particular situations of physical interest depending
on the approach considered.

In approach (A), the value of α changes with the epoch during the evolution of the
universe. It is equal to α = 1 (stiff matter) or α = 1/3 (radiation) in the early universe
and to α = 0 (matter) in the late universe. In this approach, we do not have to take into
account the presence of other species, as their effect has been incorporated in the equation
of state of the scalar field. Therefore, we can consider that the scalar field is alone in the
universe but that α has a different value in the early and in the late universe. The scalar field
potential is determined by Equations (96) and (97) with ΩX,0 = 0 and α = 1 or α = 1/3 in
the early universe (leading to Equations (119) and (120)) and by Equations (98) and (99)
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with ΩX,0 = 0 and α = 0 in the late universe (leading to Equation (137)). These cases are
treated in Sections 5.2 and 5.3.

In approach (B), the value of α is fixed. We then have to consider two situations:

(i) We first consider a universe without stiff matter. In that case, it is relevant take α = 1/3
in the quadratic equation of state (33) so that the scalar field accounts for the inflation
era, the radiation era and the late acceleration of the universe. Then, we have to add
baryonic matter and dark matter as independent species (they can be treated as a
single species with αX = 0). In the early universe, we can approximate the equation of
state of the scalar field by Equation (49). As matter is negligible in the early universe,
we can consider that the scalar field is alone in the universe at that epoch. The scalar
field potential is then determined by Equations (96) and (97) with ΩX,0 = 0. This
situation, which describes the transition between the inflation era and the radiation
era, is treated in Section 5.2. It leads to the same potential (120) as in approach (A).
In the late universe, we can approximate the equation of state of the scalar field by
Equation (61). On other hand, we have to take into account the presence of matter
as an independent species. In that case, the scalar field potential is determined by
Equations (98) and (99) with αX = 0. Unfortunately, the integral in Equation (98)
cannot be performed analytically (see Section 8). However, at very late time, the
contribution of matter becomes negligible and the scalar field is alone in the universe.
In that case, its potential is given by Equation (136). We note that the scalar field
potential in the late universe in approach (B) is very different from its expression
in approach (A) as it corresponds to Equation (132) with α = 1/3 instead of α = 0.
Finally, in the intermediate era between the early inflation and the late accelerating
expansion of the universe, we can approximate the equation of state of the scalar
field by Equation (73). We also have to take into account the presence of matter as an
independent species. The scalar field potential is then determined by Equations (96)
and (97) with ΩP,0 → +∞ and αX = 0 or by Equations (98) and (99) with ΩΛ,0 = 0
and αX = 0. This situation, which describes the period where the universe contains
radiation and matter, is treated in Section 7 leading to Equation (188) with α = 1/3
and αX = 0.

(ii) We now consider a universe with stiff matter. In that case, it is relevant to take
α = 1 so that the scalar field accounts for the inflation era, the stiff matter era and
the late acceleration of the universe. Then, we have to add radiation (αX = 1/3) and
matter (αX = 0) as independent species. In the early universe, we can approximate
the equation of state of the scalar field by Equation (49). As radiation and matter
are negligible in the (very) early universe, we can consider that the scalar field is
alone in the universe at that epoch. The scalar field potential is then determined by
Equations (96) and (97) with ΩX,0 = 0. This situation, which describes the transition
between the inflation era and the stiff matter era, is treated in Section 5.2. It leads to
the same potential (119) as in approach (A).15 In the late universe, we can approximate
the equation of state of the scalar field by Equation (61). On other hand, we have
to take into account the presence of matter (αX = 0) as an independent species. In
that case, the scalar field potential is determined by Equations (98) and (99) with
αX = 0. The integral in Equation (98) can be performed analytically (see Section 8).
However, the potential is independent of φ and given by Equation (135) as when
the scalar field is alone in the universe (which is the case at very late time when the
contribution of matter becomes negligible). We note that the scalar field potential
in the late universe in approach (B) is very different from its expression in approach
(A) as it corresponds to Equation (132) with α = 1 instead of α = 0. Finally, in
the period between the early inflation and the late accelerating expansion, we can
approximate the equation of state of the scalar field by Equation (73). We also have to
take into account the presence of radiation and matter as independent species. The
scalar field potential is then determined by Equations (96) and (97) with ΩP,0 → +∞
and αX = {1/3, 0} or by Equations (98) and (99) with ΩΛ,0 = 0 and αX = {1/3, 0}.
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This situation describes the period where the universe contains stiff matter, radiation,
and matter. In this general situation involving a scalar field (stiff matter) and two
external fluids (radiation and matter), the scalar field potential cannot be obtained
analytically. However, if we neglect the matter contribution (at sufficiently early times)
or the radiation contribution (at sufficiently late times), we have just one external fluid
(radiation or matter) and the scalar field potential can be obtained analytically. This
situation, which describes the period where the universe contains stiff matter and
radiation or stiff matter and matter, is treated in Section 7, leading to Equation (188)
with α = 1 and αX = 1/3 or αX = 0. Note that even if the stiff matter (played by
the scalar field) is subdominant in that period, it remains important because it will
ultimately lead to the late accelerating expansion of the universe.

5. Scalar Field Alone

In this section, we consider the case of a scalar field alone in the universe (without
X-fluids) and recover the results of our earlier papers [39–47].

5.1. Vacuumon

In the absence of X-fluids, the potential of a canonical scalar field is determined in
parametric form by the equations (see Equations (86) and (87) with ρX = 0)

φ(a) =
(

3c2

8πG

)1/2 ∫ a

0

√
1 + wφ(x)

dx
x

, (100)

V(a)
ρ0c2 =

1
2
[
1− wφ(a)

]ρφ(a)
ρ0

. (101)

In particular, the potential of the vacuumon described by the quadratic equation of state (33)
is determined by the equations (see Equations (94) and (95) with ρX = 0)

φ(a) =
(

3c2

8πG

)1/2√
1 + α

∫ a

0

(
ΩP,0
Ωα,0

)1/2
x3(α+1)/2√

1 + ΩP,0
Ωα,0

x3(α+1)
√

1 + ΩΛ,0
Ωα,0

x3(α+1)

dx
x

, (102)

V(a)
ρ0c2 =

1
2

ΩP,0

2 + (1− α)
ΩP,0
Ωα,0

a3(α+1) + 2 ΩΛ,0ΩP,0
Ω2

α,0
a6(α+1)[

ΩP,0
Ωα,0

a3(α+1) + 1
]2 . (103)

Introducing the notations

x = a3(α+1)/2
(

ΩP,0

Ωα,0

)1/2
, ψ =

(
8πG
3c2

)1/2 3
√

α + 1
2

φ, (104)

and
κ =

ρΛ

ρP
=

Λh̄G
8πc5 = 1.16× 10−123, (105)

we can rewrite Equations (102) and (103) under the form

ψ =
∫ x

0

ds
(κs2 + 1)1/2(s2 + 1)1/2 = sc−1(x, 1− κ), (106)

V =
1
2

ρPc2 2 + (1− α)x2 + 2κx4

(x2 + 1)2 , (107)

where sc is the Jacobian Elliptic function. This returns Equations (119) and (120) of [44].
We note that ψ is independent of α. Equations (106) and (107) define the potential V(ψ) in
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parametric form with the parameter x going from 0 to +∞. The scalar field goes from ψ = 0
when x = 0 to ψmax =

∫ +∞
0 ds/[(κs2 + 1)1/2(s2 + 1)1/2] = K(1− κ) when x → +∞, where

K is the complete Elliptic integral of the first kind (K(1− κ) ' (1/2) ln(16/κ) for κ � 1
giving ψmax ' 142.84 . . .). Eliminating x between Equations (106) and (107), we obtain [44]

V(ψ) =
1
2

ρPc2 2 + (1− α) sc(ψ, 1− κ)2 + 2κ sc(ψ, 1− κ)4

[sc(ψ, 1− κ)2 + 1]2
(0 ≤ ψ ≤ ψmax). (108)

This is the general expression of the potential of the vacuumon.
Noting that x = (a/a1)

3(α+1)/2, where a1 is defined by Equation (39), and using
Equation (106), the relation between the scalar field and the scale factor is

(a/a1)
3(α+1)/2 = sc(ψ, 1− κ). (109)

We can then express all the parameters of Section 3.1 as a function of ψ instead of a. In
particular, the energy density and the pressure of the scalar field are given by

ρφ =
ρP

sc2(ψ, 1− κ) + 1
+ ρΛ,

Pφ =
−ρΛc2sc4(ψ, 1− κ) + αρPc2sc2(ψ, 1− κ)− ρPc2

[sc2(ψ, 1− κ) + 1]2
. (110)

The temporal evolution of the scale factor and of the scalar field is discussed in detail in
our previous papers [39–47].

5.2. Early Vacuumon (Inflaton)

In the early universe (ΩΛ = 0), Equations (102) and (103) reduce to

φ(a) =
(

3c2

8πG

)1/2√
1 + α

∫ a

0

(
ΩP,0
Ωα,0

)1/2
x3(α+1)/2√

1 + ΩP,0
Ωα,0

x3(α+1)

dx
x

, (111)

V(a)
ρ0c2 =

1
2

ΩP,0
2 + (1− α)

ΩP,0
Ωα,0

a3(α+1)(
ΩP,0
Ωα,0

a3(α+1) + 1
)2 . (112)

Introducing the notations from Equation (104), we find

ψ =
∫ x

0

ds
(1 + s2)1/2 = sinh−1(x), (113)

V =
1
2

ρPc2 2 + (1− α)x2

(x2 + 1)2 , (114)

which corresponds to Equations (106) and (107) with κ = 0. This returns Equations (122)
and (123) of [44]. Eliminating x between these equations we obtain [44]

V(ψ) =
1
2

ρPc2 (1− α) cosh2 ψ + α + 1

cosh4 ψ
(ψ ≥ 0). (115)
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This is the potential of the vacuumon in the early universe (playing the role of the inflaton).
It is associated to the equation of state (49) valid in the early universe (see Section 8.1
of [42]). For ψ→ 0, it can be expanded in Taylor series as

V(ψ)

ρPc2 ' 1− 3 + α

2
ψ2 +

9 + 5α

6
ψ4 + . . . (116)

For ψ→ +∞, we obtain the exponential asymptotic behaviors

V(ψ)

ρPc2 ∼ 2(1− α)e−2ψ, (α 6= 1), (117)

V(ψ)

ρPc2 ∼ 16e−4ψ, (α = 1). (118)

We note that the coefficient α = 1 (stiff matter) plays a special role as it leads to a faster
decay of the potential. In that case [45,46]

V(ψ) =
ρPc2

cosh4 ψ
(α = 1). (119)

For the coefficient α = 1/3 (radiation), we have [42]

V(ψ) =
1
3

ρPc2 cosh2 ψ + 2

cosh4 ψ
(α = 1/3). (120)

For α = 0 (pressureless matter), we have [42]

V(ψ) =
1
2

ρPc2 cosh2 ψ + 1

cosh4 ψ
(α = 0). (121)

The potentials corresponding to α = 1/3 and α = 1 (relevant in the early universe) are
plotted in Figure 1.

0 0.5 1 1.5 2 2.5 3
ψ

0

0.2

0.4

0.6

0.8

1

V
/ρ

P
c2

(inflaton)

Early vacuumon

Figure 1. Potential of the scalar field in the early universe for α = 1/3 (solid line) and α = 1 (dashed
line). The early vacuumon plays the role of the inflaton. The field tends to run down the potential.

Recalling that x = (a/a1)
3(α+1)/2 and using Equation (113), the relation between the

scalar field and the scale factor is

(a/a1)
3(α+1)/2 = sinh ψ. (122)
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We can then express all the parameters of Section 3.2 as a function of ψ instead of a. In
particular, the energy density and the pressure of the scalar field are given by

ρφ =
ρP

cosh2 ψ
,

Pφ

ρPc2 =
α sinh2 ψ− 1

cosh4 ψ
. (123)

The temporal evolution of the scalar field is discussed in detail in our previous papers [39–47].
According to Equations (59) and (122) we have

cosh ψ− ln
(

1 + cosh ψ

sinh ψ

)
=

3
2
(α + 1)

(
8π

3

)1/2 t
tP

+ C. (124)

Remark 1. For a→ 0, we can simplify Equation (111) into

φ(a) =
(

3c2

8πG

)1/2√
1 + α

∫ a

0

(
ΩP,0

Ωα,0

)1/2
x3(α+1)/2 dx

x
, (125)

yielding

φ(a) =
2
3

(
3c2

8πG

)1/2 1√
1 + α

(
ΩP,0

Ωα,0

)1/2
a

3
2 (1+α). (126)

Substituting Equation (126) into Equation (112) we obtain the quadratic potential

V(φ)

ρ0c2 = ΩP,0 −
3πG

c2 (1 + α)(3 + α)ΩP,0φ2. (127)

This corresponds to the first term in the expansion of the potential from Equation (116).

5.3. Late Vacuumon (Quintessence)

In the late universe (ΩP → +∞), Equations (102) and (103) reduce to

φ(a) =
(

3c2

8πG

)1/2√
1 + α

∫ a 1√
1 + ΩΛ,0

Ωα,0
x3(α+1)

dx
x

, (128)

V(a)
ρ0c2 =

(1− α)Ωα,0

2a3(α+1)
+ ΩΛ,0. (129)

These expressions are valid for sufficiently large values of a. Introducing the notations from
Equations (104) and (105), we find

ψ =
∫ x ds

s(1 + κs2)1/2 = − sinh−1
(

1√
κx

)
+ ψmax, (130)

V =
1
2

ρPc2
(

1− α

x2 + 2κ

)
, (131)

which correspond to Equations (106) and (107) with x � 1. Here, ψmax appears as a
constant of integration that can be obtained by matched asymptotics (see below). We
recover Equations (125) and (126) of [44]. Eliminating x between these equations we
obtain [44]

V(ψ) =
1
2

ρΛc2
[
(1− α) cosh2(ψmax − ψ) + α + 1

]
(ψ ≤ ψmax). (132)
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This is the potential of the vacuumon in the late universe (playing the role of the quintessence).
It is associated to the equation of state (61) valid in the late universe (see Section 8.1 of [42]).
For ψ→ ψmax, it can be expanded in Taylor series as

V(ψ)

ρΛc2 ' 1 +
1− α

2
(ψmax − ψ)2 +

1− α

6
(ψmax − ψ)4 + . . . (133)

For ψ→ −∞, we obtain the exponential asymptotic behavior

V(ψ)

ρΛc2 '
1
8
(1− α)e2(ψmax−ψ), (α 6= 1). (134)

For α = 1 (stiff matter), the scalar field potential is constant

V(ψ) = ρΛc2 (α = 1). (135)

For α = 1/3 (radiation), we have

V(ψ) =
1
2

ρΛc2
[

2
3

cosh2(ψmax − ψ) +
4
3

]
(α = 1/3). (136)

For α = 0 (pressureless matter), we have

V(ψ) =
1
2

ρΛc2
[
cosh2(ψmax − ψ) + 1

]
(α = 0). (137)

The potential corresponding to α = 0 (relevant in the late universe) is plotted in Figure 2.
This is the scalar field potential associated with the ΛCDM model viewed as a UDM model
described by the constant equation of state Pφ = −ρΛc2.
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Figure 2. Potential of the scalar field in the late universe for α = 0. The late vacuumon plays the role
of quintessence. The field tends to run down the potential.

Noting that x
√

κ = (a/a2)
3(α+1)/2, where a2 is defined by Equation (64), and using

Equation (130), the relation between the scalar field and the scale factor is

(a2/a)3(α+1)/2 = sinh(ψmax − ψ). (138)
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We can then express all the parameters of Section 3.3 as a function of ψ instead of a. In
particular, the energy density and the pressure of the scalar field are given by

ρφ = ρΛ cosh2(ψmax − ψ),
Pφ

ρΛc2 = α sinh2(ψmax − ψ)− 1. (139)

The temporal evolution of the scalar field is discussed in detail in our previous papers [39–47].
According to Equations (71) and (138) we have

ψmax − ψ = sinh−1

{
1/ sinh

[
3
2
(1 + α)

(
8π

3

)1/2 t
tΛ

]}
. (140)

Remark 2. For a→ +∞, we can simplify Equation (128) into

φ(a) = φmax −
(

3c2

8πG

)1/2√
1 + α

∫ +∞

a

1√
ΩΛ,0
Ωα,0

x3(1+α)

dx
x

, (141)

yielding

φ(a) = φmax −
2
3

(
3c2

8πG

)1/2 1√
1 + α

(
Ωα,0

ΩΛ,0

)1/2 1

a
3
2 (1+α)

. (142)

Substituting Equation (142) into Equation (129) we obtain the quadratic potential

V(φ)

ρ0c2 = ΩΛ,0 +
3πG

c2 (1− α)(1 + α)ΩΛ,0(φmax − φ)2. (143)

This corresponds to the first term in the expansion of the potential from Equation (133).

5.4. Matched Asymptotics

Using matched asymptotics, we find that the potential [44]

Vapprox(ψ) =
1
2

ρPc2 (1− α) cosh2 ψ + α + 1
cosh4 ψ

+
1
2

ρΛc2
[
(1− α) cosh2(ψmax − ψ) + α + 1

]
− 2ρPc2(1− α)e−2ψ (0 ≤ ψ ≤ ψmax) (144)

provides a good approximation of the exact vacuumon potential given by Equation (108).
It unifies the inflaton potential in the early universe (early vacuumon) and the quintessence
potential in the late universe (late vacuumon) defined by Equations (115) and (132) respec-
tively. In addition, matched asymptotics provides the value of the constant of integration
ψmax that appears in Equation (130). Indeed, by comparing Equations (117) and (134) we
obtain ψmax ' (1/2) ln(16/κ) = 142.84 . . . [44] in perfect agreement with the asymptotic
expression of the exact value ψmax = K(1− κ) for κ � 1 (see Section 5.1).

Remark 3. For α = 1, the approximate potential from Equation (144) takes the particularly simple form

Vapprox(ψ) =
ρPc2

cosh4 ψ
+ ρΛc2 (α = 1). (145)



Universe 2022, 8, 92 26 of 54

5.5. Intermediate Regime

In the intermediate regime valid after the early inflation and before the late accelerating
expansion of the universe (ΩP → +∞ and ΩΛ = 0), the scalar field is described by the
linear equation of state (73). In that case, Equations (102) and (103) reduce to

φ(a) =
(

3c2

8πG

)1/2√
1 + α

∫ a dx
x

, (146)

V(a)
ρ0c2 =

1
2
(1− α)

Ωα,0

a3(α+1)
. (147)

These equations can also be obtained from Equations (111) and (112) with ΩP → +∞ or from
Equations (128) and (129) with ΩΛ = 0. Integrating Equation (146), we obtain

φ =

(
3c2

8πG

)1/2√
1 + α ln a + φ∗, (148)

where φ∗ is a constant of integration. Combining Equations (147) and (148), we obtain the
exponential potential

V(φ)

ρ0c2 =
1
2
(1− α)Ωα,0e−3

(
8πG
3c2

)1/2√
1+α(φ−φ∗). (149)

This result is equivalent to Equations (117) and (134) obtained long after the primordial
inflation or long before the late accelerating expansion of the universe. This determines the
constant of integration ψ∗ = (1/2) ln(4ΩP,0/Ωα,0). For α = 1 (stiff matter), we find

φ =

(
3c2

8πG

)1/2√
2 ln a + φ∗, V(φ) = 0 (α = 1), (150)

corresponding to the regime of kination where the potential vanishes. Comparing Equation (150)
with Equations (118) and (135) we see that the limits α→ 1 and φ→ ±∞ do not commute.
For α = −1 (vacuum energy), we find

φ = φ∗, V(φ) = ρ∗c2 (α = −1), (151)

corresponding to the de Sitter regime where φ̇ = 0.
Combining Equations (73), (76), and (148), we can express the density and the pressure

as a function of the scalar field as

Pφ = αρφc2 = αΩα,0ρ0c2e−3
√

α+1
(

8πG
3c2

)1/2
(φ−φ∗). (152)

According to Equations (78) and (148), the temporal evolution of the scalar field is

φ(t) =
(

3c2

8πG

)1/2 2
3
√

1 + α
ln

[
3
2
(1 + α)

(
8πGρ0Ωα,0

3

)1/2
t

]
+ φ∗. (153)

5.6. Constant Scalar Field Potential

We have found different solutions corresponding to a constant scalar field potential
(see Equations (135), (150) and (151)):
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(i) For the equation of state Pφ = ρφc2 of stiff matter (α = 1), we have (see Sections 3.4
and 5.5)

ρφ ∝
1
a6 , a ∝ t1/3, ρφ =

1
24πGt2 , (154)

V(φ) = 0, φ =

(
3c2

4πG

)1/2

ln a + φ∗, φ =

(
c2

12πG

)1/2

ln t + cst. (155)

This solution describes a pure stiff matter era.
(ii) For the equation of state Pφ = −ρφc2 of vacuum or dark energy (α = −1), we have

(see Sections 3.4 and 5.5)

ρφ = cst, a ∝ e

(
8πGρφ

3

)1/2
t
, V(φ) = cst, φ = cst. (156)

This solution describes a pure de Sitter era.
(iii) For the affine equation of state Pφ = ρφc2 − 2ρΛc2, we have (see Sections 3.3 and 5.3)

ρφ

ρΛ
=

1
(a/a2)6 + 1,

a
a2

= sinh1/3

[
3
(

8π

3

)1/2 t
tΛ

]
,

ρφ

ρΛ
=

1

tanh2
[
3
( 8π

3
)1/2 t

tΛ

] , (157)

V(ψ) = ρΛc2, ψmax − ψ = sinh−1
[( a2

a

)3
]

,

ψmax − ψ = sinh−1

{
1/sinh

[
3
(

8π

3

)1/2 t
tΛ

]}
. (158)

This solution describes a stiff matter era followed by a de Sitter era (late inflation).16

Therefore, several laws of evolution may correspond to the same potential.

6. Parameters of the Scalar Field

In this section, we determine the parameters (mass, self-interaction constant, and
scattering length) of the scalar field in the early and late universe by comparing the form
of the potential close to its maximum and minimum with the normal form of a quartic
potential given by Equation (A54).

6.1. Early Vacuumon (Inflaton)

In the early universe, the potential of the vacuumon is given by Equation (115).
For ψ → 0, it can be expanded up to fourth order yielding Equation (116). Comparing
Equation (116) with Equation (A54), we obtain the following results (see Appendix D):

(i) The maximum value of the potential (corresponding to ψ = 0) is equal to the Planck
energy density

Vmax = ρPc2, (159)

where ρP = c5/h̄G2 = 5.16× 1099 g m−3 is the Planck density.
(ii) The squared mass of the scalar field is given by

m2 = fe(α)
8π

3
M2

P (160)
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with

fe(α) = −
9
4
(α + 1)(α + 3). (161)

We find fe = −27/4 for α = 0, fe = −10 for α = 1/3, and fe = −18 for α = 1. The
mass of the early vacuumon (inflaton) is imaginary ( fe < 0) and its modulus |m| is of
the order of the Planck mass MP = (h̄c/G)1/2 = 2.18× 10−5 g = 1.22× 1019 GeV/c2.

(iii) The dimensionless self-interaction constant of the scalar field is given by

λ

8π
= ge(α)3π (162)

with

ge(α) = (α + 1)2(9 + 5α). (163)

We find ge = 9 for α = 0, ge = 512/27 for α = 1/3, and ge = 56 for α = 1. The
self-interaction constant of the early vacuumon (inflaton) is positive (ge > 0), corre-
sponding to a repulsive self-interaction of order 1.

(iv) The dimensional self-interaction constant of the scalar field is given by

λs =
27π

4
ge(α)

| fe(α)|
Gh̄2

c2 . (164)

We find ge/| fe| = 4/3 for α = 0, ge/| fe| = 256/135 for α = 1/3, and ge/| fe| = 28/9
for α = 1. The dimensional self-interaction constant of the early vacuumon (inflaton)
is of order Gh̄2/c2 = 5.15× 10−71 eV cm3.

(v) The scattering length of the bosons associated with the scalar field is given by

as =
27
32

ge(α)√
| fe(α)|

2

√
8π

3
lP. (165)

Wefind g2
e /| fe| = 12 for α = 0, g2

e /| fe| = 131072/3645 for α = 1/3, and g2
e /| fe| = 1568/9

for α = 1. The scattering length as of the bosons associated with the early vacu-
umon (inflaton) is of the order of the Planck length lP = GMP/c2 = (Gh̄/c3)1/2 =
1.62× 10−35 m which corresponds to the semi Schwarzschild radius associated with
the Planck mass MP.

In theories of extended supergravity, the mass of a scalar field is quantized according
to the rule [66]

m2 = n∗
H2h̄2

c4 , (166)

where n∗ is an integer and H is the Hubble factor in the de Sitter era. As H2 = 8πGρP/3
during the early inflation, we can rewrite Equation (166) as

m2 = n∗
8πGρP h̄2

3c4 = n∗
8π

3
M2

P. (167)

The quantum of mass (n∗ = 1) in the early universe is the rescaled Planck mass M∗P =√
8π/3MP. Comparing Equation (167) with Equation (160), the quantization rule implies

that fe(α) should be an integer n∗. We see that this quantization rule is realized for the
integer value n∗ = −10 when α = 1/3 (radiation) and for the integer value n∗ = −18 when
α = 1 (stiff) [47,67]. By contrast, fe(α) is not an integer when α = 0 (matter). This may be
connected to the fact that the index α = 0 is not justified in the early universe as there is no
matter there in the usual sense.
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6.2. Late Vacuumon (Quintessence)

In the late universe, the potential of the vacuumon is given by Equation (132). For
ψ → ψmax, it can be expanded up to fourth order yielding Equation (133).17 Comparing
Equation (133) with Equation (A54), with the substitution φ → φmax − φ, we obtain the
following results (see Appendix D):

(i) The minimum value of the potential (corresponding to ψ = ψmax) is equal to the
cosmological energy density

Vmin = ρΛc2, (168)

where ρΛ = Λ/8πG = 5.96× 10−24 g m−3 is the cosmological density.
(ii) The squared mass of the scalar field is given by

m2 = fl(α)
1
3

m2
Λ (169)

with

fl(α) =
9
4
(α + 1)(1− α). (170)

We find fl = 9/4 for α = 0, fl = 2 for α = 1/3, and fl = 0 for α = 1. The mass of
the late vacuumon (quintessence) is real ( fl > 0) and of the order of the cosmon mass
mΛ = h̄

√
Λ/c2 = 2.08× 10−33 eV/c2, except for α = 1 (stiff matter) where m = 0. Our

approach provides therefore a physical interpretation of the cosmon mass as being the
mass of the scalar field responsible for the dark energy in the late universe. To the best
of our knowledge, this interpretation has not been given before.

(iii) The dimensionless self-interaction constant of the scalar field is given by

λ

8π
= gl(α)3π

ρΛ

ρP
(171)

with

gl(α) = (α + 1)2(1− α). (172)

We find gl = 1 for α = 0, gl = 32/27 for α = 1/3, and gl = 0 for α = 1. The
self-interaction constant of the late vacuumon (quintessence) is positive (gl > 0),
corresponding to a repulsive self-interaction of order ρΛ/ρP ∼ 10−123, except for α = 1
(stiff matter) where λ = 0.

(iv) The dimensional self-interaction constant of the scalar field is given by

λs =
27π

4
gl(α)

fl(α)

Gh̄2

c2 . (173)

We find gl/ fl = 4/9 for α = 0, gl/ fl = 16/27 for α = 1/3, and gl/ fl → 8/9 for α→ 1.
The dimensional self-interaction constant of the late vacuumon (quintessence) is of
order Gh̄2/c2 = 5.15× 10−71 eV cm3, except for α = 1 (stiff matter) where λs = 0 (note
that the result obtained in the limit α → 1 is different from the result obtained for
α = 1).

(v) The scattering length of the bosons associated with the scalar field is given by

as =
27
32

gl(α)√
fl(α)

2√
3

rΛ. (174)

We find gl/
√

fl = 2/3 for α = 0, gl/
√

fl = 16
√

2/27 for α = 1/3, and gl/
√

fl → 0
for α→ 1. The scattering length as of the bosons associated with the late vacuumon
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(quintessence) is of the order of the cosmon radius rΛ = GmΛ/c2 = Gh̄
√

Λ/c4 =
2.75× 10−96 m, which corresponds to the semi Schwarzschild radius associated with
the cosmon mass mΛ, except for α = 1 (stiff matter) where as = 0.

As H2 = 8πGρΛ/3 during the late inflation, we can rewrite the quantization rule (166) as

m2 = n∗
8πGρΛ h̄2

3c4 = n∗
1
3

m2
Λ. (175)

The quantum of mass (n∗ = 1) in the late universe is the rescaled cosmon mass m∗Λ =
1√
3

mΛ.18 Comparing Equation (169) with Equation (175), the quantization rule implies that
fl(α) should be an integer n∗. We see that this quantization rule is realized for the integer
value n∗ = 2 when α = 1/3 (radiation) and for the integer value n∗ = 0 when α = 1 (stiff
matter) [47,67]. By contrast, fl(α) is not an integer when α = 0 (matter). We recall that
our model of late universe with α = 0 is equivalent to the ΛCDM model interpreted as a
UDM model. Therefore, the quintessence field associated with the standard ΛCDM model
(α = 0) does not satisfy the quantization rule (166) [47,67]. This suggests (provided that
this quantization rule must hold, which is not firmly established) that the relevant value of
α to take is α = 1/3 or α = 1, and that dark matter should be treated as an independent
species, as in scenario (B).

Remark 4. In this paper, we have described the late universe by a polytrope of index n = −1 [42].
For α = 0 and n = −1, our model is equivalent to the ΛCDM model. If we consider a more general
polytropic equation of state with α = 0 and an arbitrary index n < 0 (see Equation (A45) and
Ref. [42]), we find that the mass of the scalar field in the late universe is given by (see Appendix D
and [47,67])

m2 = −1 + 2n
n2

6πGρΛ h̄2

c4 . (176)

We note that this mass presents a maximum as a function of n for n = −1. Interestingly, this
maximum selects the ΛCDM model among all the polytropic models of the form of Equation (A45)
with α = 0 and n < 0 [47,67].

7. Scalar Field in the Presence of One Fluid in the Intermediate Regime
7.1. General Results

In this section, we consider the complete model of Section 4 in the intermediate regime
between the two de Sitter eras. In this regime, the scalar field has a linear equation of state
Pφ = αρφc2. We use approach (B) in which the value of α is fixed. As we have seen, relevant
values of α are α = 1 (stiff matter) or α = 1/3 (radiation). On the other hand, we have
to take into account the presence of X-fluids which also have a linear equation of state
PX = αXρXc2. If the scalar field evolves in the presence of radiation, one has αr = 1/3. If it
evolves in the presence of matter, one has αm = 0. For the sake of generality, we consider
arbitrary values of α and αX but we assume that α ≥ −1 and αX ≥ −1 so that the universe
has not a phantom behavior.

The energy density of the scalar field and of the X-fluids evolve with the scale factor as

ρφ

ρ0
=

Ωα,0

a3(1+α)
,

ρX
ρ0

=
ΩX,0

a3(1+αX)
. (177)

The total energy density is therefore

ρ

ρ0
= ∑

X

ΩX,0

a3(1+αX)
+

Ωα,0

a3(1+α)
. (178)
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The time evolution a(t) of the scale factor is determined by the Friedmann equation

H2 =
8πG

3
ρ =

8πG
3

(
∑
X

ρX + ρφ

)
, (179)

where the right hand side is given by Equation (178).19 On the other hand, the scalar field
potential is determined by the equations20

φ(a) =
(

3c2

8πG

)1/2√
1 + α

∫ a

0

√√√√√ Ωα,0

x3(α+1)

∑X
ΩX,0

x3(1+αX ) +
Ωα,0

x3(α+1)

dx
x

, (180)

V(a)
ρ0c2 =

1
2
(1− α)Ωα,0

1
a3(α+1)

. (181)

In the following, in order to have analytical results, we assume that there is just one
X-fluid in addition to the scalar field. It can represent for example radiation (αX = 1/3) or
matter (αX = 0). The case of two X-fluids (radiation and matter) in addition to the scalar field
could be treated numerically. We obtain the form of the potential in the limiting case where
one perfect fluid dominates over the other. In our model, the foregoing equations are valid
only in the intermediate regime between the two de Sitter eras, where the equation of state
of the scalar field can be approximated by a linear law, so they have a restricted domain of
validity. However, in our mathematical analysis below, we shall study Equations (177)–(181)
for all times because they can be relevant in other contexts, for example in the case where the
fluid describes dark matter and the scalar field describes dark energy (see Section 7.3).

7.2. Hyperbolic Potential

We first assume α < αX. In that case, the X-fluid dominates at early times and the
scalar field dominates at late times. Equation (180) can be rewritten as

φ(a) =
(

3c2

8πG

)1/2√
1 + α

∫ a

0

dx

x
√

1 + ΩX,0
Ωα,0

1
x3(αX−α)

. (182)

Making the change of variables

X =
ΩX,0

Ωα,0

1
x3(αX−α)

, (183)

we obtain

φ(a) =
(

3c2

8πG

)1/2√
1 + α

1
3(αX − α)

∫ +∞

ΩX,0
Ωα,0

1
a3(αX−α)

dX
X
√

1 + X
. (184)

Using the identity

∫ 1√
x + 1

dx
x

= ln

(√
1 + x− 1√
1 + x + 1

)
= −2 sinh−1

(
1√
x

)
, (185)

we find

φ(a) =
(

3c2

8πG

)1/2√
1 + α

2
3(αX − α)

sinh−1

[√
Ωα,0

ΩX,0
a

3
2 (αX−α)

]
. (186)
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Inversely,

a =

(
ΩX,0

Ωα,0

) 1
3(αX−α)

sinh
2

3(αX−α)

[(
8πG
3c2

)1/2 1√
1 + α

3(αX − α)

2
φ

]
. (187)

Combining Equation (187) with Equation (181), we obtain the hyperbolic potential

V(φ) =
1
2

ρ0c2Ωα,0(1− α)

(
Ωα,0

ΩX,0

) α+1
αX−α

× sinh−
2(α+1)
αX−α

[(
8πG
3c2

)1/2 1√
1 + α

3(αX − α)

2
φ

]
. (188)

We now assume α > αX . In that case, the scalar field dominates at early times and the
X-fluid dominates at late times. We note that the integral from Equation (182) diverges at
x = 0. We can easily circumvent this problem by redefining the additive constant in the
scalar field so that

φ(a) = −
(

3c2

8πG

)1/2√
1 + α

∫ +∞

a

dx

x
√

1 + ΩX,0
Ωα,0

1
x3(αX−α)

. (189)

With this convention, we can check that the previous Equations (186)–(188) remain valid.
Finally, when α = αX , Equation (180) reduces to

φ(a) =
(

3c2

8πG

)1/2√
1 + α

1√
1 + ΩX,0

Ωα,0

∫ a

1

dx
x

, (190)

where we have chosen the origin of the scalar field at a = 1 in order to avoid spurious
divergences. This yields

φ(a) =
(

3c2

8πG

)1/2√
1 + α

(
Ωα,0

ΩX,0 + Ωα,0

)1/2
ln a. (191)

Inversely,

a = e

(
8πG
3c2

)1/2 1√
1+α

(
ΩX,0+Ωα,0

Ωα,0

)1/2
φ

. (192)

Combining Equation (192) with Equation (181) we obtain the exponential potential

V(φ)

ρ0c2 =
1
2
(1− α)Ωα,0e

−3
(

8πG
3c2

)1/2√
1+α

(
ΩX,0+Ωα,0

Ωα,0

)1/2
φ

. (193)

For a scalar field alone (ΩX,0 = 0) we recover Equation (149).
Below, we consider particular limits of the hyperbolic potential (188).

7.2.1. Power-Law Potential

When the terms in brackets in Equations (186)–(188) go to zero, we find

φ(a) =
(

3c2

8πG

)1/2√
1 + α

2
3(αX − α)

√
Ωα,0

ΩX,0
a

3
2 (αX−α), (194)
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a =

(
ΩX,0

Ωα,0

) 1
3(αX−α)

[(
8πG
3c2

)1/2 1√
1 + α

3(αX − α)

2
φ

] 2
3(αX−α)

, (195)

V(φ) =
1
2

ρ0c2Ωα,0(1− α)

(
Ωα,0

ΩX,0

) α+1
αX−α

[(
8πG
3c2

)1/2 1√
1 + α

3(αX − α)

2
φ

]− 2(α+1)
αX−α

. (196)

This corresponds to the situation where the X-fluid dominates the scalar field. In that case,
we obtain a power-law potential. When α < αX , this approximation is valid at sufficiently
early times (R → 0, φ → 0+ and V → +∞). When α > αX, it is valid at sufficiently late
times (R→ +∞, φ→ 0− and V → 0). Pure (inverse) power-law potentials were introduced
by Peebles and Ratra [30,31]. They were used in relation to tracker solutions [22,23,33].

7.2.2. Exponential Potential

When the terms in brackets in Equations (186)–(188) go to +∞, we find

φ(a) =
(

3c2

8πG

)1/2√
1 + α

2
3(αX − α)

ln

[
2

√
Ωα,0

ΩX,0
a

3
2 (αX−α)

]
, (197)

a =

(
ΩX,0

Ωα,0

) 1
3(αX−α) 1

2
2

3(αX−α)

e
(

8πG
3c2

)1/2 1√
1+α

φ, (198)

V(φ) =
1
2

ρ0c2Ωα,0(1− α)

(
Ωα,0

ΩX,0

) α+1
αX−α

2
2(α+1)
αX−α e−3

(
8πG
3c2

)1/2√
1+α φ. (199)

This corresponds to the situation where the scalar field dominates the X-fluid. In that
case, we obtain an exponential potential as when the scalar field with a linear equation
of state is alone in the universe (see Section 5.5).21 When α < αX, this approximation
is valid at sufficiently late times (R → +∞, φ → +∞ and V → 0). When α > αX, it
is valid at sufficiently early times (R → 0, φ → −∞ and V → +∞). Pure exponential
potentials were introduced by Halliwell [69] (see also [31,70–75]). Exponential potentials
arise very naturally in all models of unification with gravity such as Kaluza–Klein theories,
supergravity theory or string theory. Most theories undergoing dimensional reduction to
an effective four-dimensional theory yield exponential potentials.

7.3. Comparison with Other Works

The hyperbolic potential (188) has been obtained by several authors [18,76–81] us-
ing different methods. In these models, the fluid characterized by an equation of state
PX = αXρXc2 with 0 ≤ αX ≤ 1 describes radiation (αX = 1/3) or dark matter (αX = 0)
and the scalar field characterized by an equation of state Pφ = αρφc2 with −1 < α ≤ −1/3
(e.g., α = −0.65 [79] or α = −2/3 [80]) describes DE. As α < αX these models describe a
radiation or dark matter era followed by a dark energy era. During the radiation or dark
matter era, the universe is decelerating and the scale factor increases algebraically as t1/2

or t2/3 (see Equation (23)). During the dark energy era, the universe is accelerating and
the scale factor increases algebraically as t2/[3(1+α)] (power-law inflation). In the radiation
and dark matter eras, the scalar field is subdominant and the potential V(φ) has an inverse
power-law behavior (tracking). In the dark energy era, the scalar field dominates the other
species (X-fluids) and the potential V(φ) has an exponential behavior as when a scalar field
with a linear equation of state is alone in the universe. We thus achieve a tracker solution
that can drive the universe into its current inflationary state. The behavior of the potential
as an inverse power-law potential at early times avoids the fine-tuning problem and the
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cosmic coincidence problem [22]. Its exponential behavior at late time drives the universe
into a power-law inflationary stage in agreement with the observations. In this model, the
scalar field describes only dark energy, and we have to add radiation and (dark) matter as
additional species.

In the present work, the hyperbolic potential (188) is obtained in a particular limit of a
more general model based on a scalar field with a quadratic equation of state in the presence
of X-fluids. It is valid in the intermediate regime between the early and late inflation. The
scalar field models dark radiation (α = 1/3) or stiff matter (α = 1) and the fluid models
radiation (αX = 1/3) or matter (αX = 0). As α ≥ αX , we are always in the situation where
the scalar field dominates at early times and the X-fluid dominates at late times (note that
the scalar field dominates again in the late universe due to the constant term −(α + 1)ρΛc2

in its equation of state which has been ignored in the intermediate regime). Therefore, in
this intermediate period, the scalar field potential is initially exponential and then becomes
algebraic.

Remark 5. The ΛCDM model corresponds to αX = 0 and α = −1. In that case, φ = cst and
V(φ) = cst. The ΛCDM model can also be obtained by taking αX = −1 and α = 0. In that case,
the scalar field has a potential

V(φ) =
1
2

ρ0c2ΩX,0 sinh2

[(
8πG
3c2

)1/2 3
2

φ

]
. (200)

8. Scalar Field in the Presence of One Fluid in the Late Universe

In this section, we consider the complete model of Section 4 in the late universe (we
consider just one X-fluid in addition to the scalar field). In that case, the scalar field has an
affine equation of state Pφ = αρφc2 − (α + 1)ρΛc2. The scalar field potential is determined
by Equations (98) and (99) which can be rewritten as

φ(a) =
(

3c2

8πG

)1/2√
1 + α

∫ a 1√
ΩX,0
Ωα,0

x3(α−αX) + 1 + ΩΛ,0
Ωα,0

x3(1+α)

dx
x

, (201)

V(a)
ρ0c2 =

(1− α)Ωα,0

2a3(α+1)
+ ΩΛ,0. (202)

The scalar field is described by the index α = 1/3 (radiation) or α = 1 (stiff) and the
X-fluid is described by the index αX = 0 (matter). Unfortunately, the integral cannot be
calculated analytically in general except in the degenerate case α = αX (see below) which is
not relevant in our situation. However, in the very late universe, we can ignore the term in
ΩX,0 in Equation (201). In that case, we are led back to the equations (128) and (129) valid
for a scalar field alone in the universe leading to the potential from Equation (132). Note
that for α = 1 (stiff matter), the potential from Equation (202) is constant:

V(φ) = ρΛc2 (α = 1), (203)

whether or not an X-fluid is present. In addition, for α = 1 and αX = 0 the integral in
Equation (201) can be computed analytically, giving

φ(a) =
√

2
3

(
3c2

8πG

)1/2

ln

 a3

2 + ΩX,0
Ωα,0

a3 + 2
√

1 + ΩX,0
Ωα,0

a3 +
ΩΛ,0
Ωα,0

a6

+ cst. (204)
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For a� 1, it reduces to

φ(a) = −2
√

2
3

(
3c2

8πG

)1/2 Ωα,0

ΩX,0

√
ΩX,0

Ωα,0

1
a3 +

ΩΛ,0

Ωα,0
+ cst. (205)

This expression provides the correction to Equation (128) due to the presence of the X-fluid.

Remark 6. It is interesting at a general level to consider the case α = αX in Equation (201) where
the integral can be calculated analytically. This corresponds to a situation where a scalar field
described by the affine equation of state Pφ = αρφc2 − (α + 1)ρΛc2 evolves in the presence of
an X-fluid described by the linear equation of state PX = αXρXc2 with αX = α.22 In that case,
Equation (201) reduces to

φ(a) = −
(

3c2

8πG

)1/2√
1 + α

1√
ΩX,0
Ωα,0

+ 1

∫ +∞

a

1√
1 + ΩΛ,0

ΩX,0+Ωα,0
x3(1+α)

dx
x

, (206)

where we have chosen the origin of the scalar field at a→ +∞ in order to avoid spurious divergences
at x = 0.23 Making the change of variables

X =
ΩΛ,0

ΩX,0 + Ωα,0
x3(α+1), (207)

we obtain

φ(a) = −
(

3c2

8πG

)1/2 1√
ΩX,0
Ωα,0

+ 1

1
3
√

α + 1

∫ +∞

ΩΛ,0
ΩX,0+Ωα,0

a3(α+1)

1√
1 + X

dX
X

. (208)

Using the identity from Equation (185), we find

φ(a) = −
(

3c2

8πG

)1/2 1√
ΩX,0
Ωα,0

+ 1

2
3
√

α + 1
argsinh

(√
ΩX,0 + Ωα,0

ΩΛ,0

1
a3(α+1)/2

)
. (209)

Inversely,

a =

(
ΩX,0 + Ωα,0

ΩΛ,0

) 1
3(α+1) 1

sinh
2

3(α+1)

[
− 3

2

(
8πG
3c2

)1/2√
1 + α

√
ΩX,0
Ωα,0

+ 1 φ

] . (210)

Finally, combining Equation (210) with Equation (202), we obtain the hyperbolic potential

V(φ)

ρ0c2 =
1
2
(1− α)

Ωα,0ΩΛ,0

ΩX,0 + Ωα,0
sinh2

[
−3

2

(
8πG
3c2

)1/2√
1 + α

√
ΩX,0

Ωα,0
+ 1 φ

]
+ ΩΛ,0. (211)

For a scalar field alone (ΩX,0 = 0), we recover Equation (132).

9. Spectrum of Fluctuations in the Primordial Universe

In this work and in previous ones [39–47], we have developed a model of early inflation
based on the quadratic equation of state (49). This model is able to describe the evolution
of the homogeneous background and to account for a primordial phase of exponential
expansion (de Sitter era) followed by a stiff matter era (α = 1) or a radiation era (α = 1/3).
It also provides a graceful exit to the de Sitter era. However, explaining the evolution of
the homogeneous background is not sufficient. A relevant model of inflation must also
reproduce the observed spectrum of fluctuations in the primordial universe. In this section,
we apply the Hamilton–Jacobi formalism of inflation [60] to a scalar field described by the
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equation of state (49) and we determine the Hubble hierarchy parameters and the spectral
indices. We show that the obtained results are in severe disagreement with the observations.
These negative results suggest that the vacuumon potential V(φ) is just an effective classical
potential that cannot be used to compute the fluctuations in the primordial universe. A
fully quantum mechanics approach may be required.

9.1. Hamilton–Jacobi Formalism

Let us first briefly review the Hamilton–Jacobi formalism of inflation following
Ref. [60]. This formalism is very general. In particular, it does not rely on the slow
roll approximation. This is important because, as we shall see, our model of inflation is
never in the slow roll regime.24 In this section, we assume that the scalar field is alone in
the primordial universe. The basic equations of the problem are the KG equation

φ̈ + 3Hφ̇ +
dV
dφ

= 0 (212)

and the Friedmann equation

H2 =
8πG

3
ρφ, (213)

where
ρφc2 =

1
2

φ̇2 + V(φ) (214)

is the energy density of the scalar field. In the following, we assume that the function
H(φ) is known. It is called the generating function. Specifying H(φ) is equivalent to
specifying the equation of state Pφ(ρφ) or the potential V(φ) of the scalar field. Taking the
time derivative of Equations (213) and (214), combining the results with Equation (212),
and using Ḣ = H′(φ)φ̇, we find

φ̇ = − c2

4πG
H′, (215)

where ′ denotes derivative with respect to φ. Using aH = ȧ = a′φ̇ and Equation (215), we
obtain

aH = − c2

4πG
H′a′. (216)

Integrating this equation, we find that

a(φ) = exp
{
−4πG

c2

∫ H
H′

dφ

}
. (217)

This equation determines the scale factor as a function of φ. On the other hand, combining
Equations (213)–(215), we find

V(φ) =
3c2

8πG

[
H2 − c2

12πG
(H′)2

]
. (218)

This equation determines the scalar field potential. In the slow-roll approximation where
φ̇2 � V(φ) and |φ̈| � V′(φ), the scalar field potential is given by

VSR(φ) =
3c2

8πG
H2. (219)

The first Hubble hierarchy parameter is defined by

εH = −d ln H
d ln a

=
c2

4πG

(
H′

H

)2

, (220)
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where we have used Equation (216) to obtain the second equality. Using ä = (d/dt)(Ha) =
aḢ + Hȧ, implying ä/a = H2 + Ḣ = H2(1 + Ḣ/H2) = H2(1 + Ḣa/Hȧ), we find that

ä
a
= H2(1− εH). (221)

Therefore, εH is related to the deceleration parameter from Equation (14) by

q = εH − 1. (222)

The parameter εH gives information about the acceleration of the universe. During inflation
(ä > 0), we have εH < 1. Inflation ends when ä = 0 yielding εH(tend) = 1. The number of
e-folding before inflation ends is defined by

N(t) =
∫ tend

t
H dt =

∫ tend

t

ȧ
a

dt =
∫ tend

t

da
a

= ln
[

a(tend)

a(t)

]
. (223)

It can be written in terms of the scalar field as

N(φ) =
∫ tend

t
H dt =

4πG
c2

∫ φ

φend

H
H′

dφ =
∫ φ

φend

1
εH

H′

H
dφ, (224)

where we have used Equation (215) to obtain the second equality and Equation (220) to
obtain the last equality. Here, φend is the value of the scalar field at the end of inflation. It is
determined by the condition εH(φend) = 1. The pressure of the scalar field is given by

Pφ =
1
2

φ̇2 −V(φ). (225)

Summing Equations (214) and (225), we find

Pφ + ρφc2 = φ̇2. (226)

Substituting Equations (213) and (215) into Equation (226), we obtain

Pφ =
3c2

8πG
H2

[
c2

6πG

(
H′

H

)2

− 1

]
. (227)

This equation determines the pressure as a function of φ. Finally, the energy density ρφ(φ)
of the scalar field is given by

ρφ =
3H2

8πG
. (228)

Eliminating φ between Equations (227) and (228), we obtain the equation of state Pφ(ρφ).

9.2. Application to Our Model of Inflation

We now apply the Hamilton–Jacobi formalism to our model of early inflation. The
generating function of our model is25

H(φ) =

(
8πGρP

3

)1/2 1
cosh ψ

with ψ =

(
8πG
3c2

)1/2 3
√

α + 1
2

φ. (229)

Using Equations (227) and (228), we obtain the pressure

Pφ =
ρPc2

cosh2 ψ

(
α− α + 1

cosh2 ψ

)
(230)
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and the energy density

ρφ =
ρP

cosh2 ψ
. (231)

This returns the results from Equation (123). Eliminating ψ between these equations, we
obtain the equation of state

Pφ = −(α + 1)
ρ2

φ

ρP
c2 + αρφc2. (232)

This returns the result from Equation (49). Using Equation (218), we obtain the scalar field potential

V(φ) =
1
2

ρPc2 (1− α) cosh2 ψ + α + 1

cosh4 ψ
. (233)

This returns the result from Equation (115). Using Equation (217), we obtain the scale factor

a(φ) ∝ (sinh ψ)
2

3(α+1) . (234)

This returns the result from Equation (122). Using Equations (223) and (234), we find that
the number of e-folding before inflation ends is given by

N(φ) =
2

3(α + 1)
ln
[

sinh(ψend)

sinh ψ

]
. (235)

In our model, we find Ni ∼ ln(a1/lP) ∼ 67 [44]. Using Equations (220) and (222), we obtain
the first Hubble hierarchy parameter and the deceleration parameter through the relation

εH = q + 1 =
3
2
(α + 1) tanh2 ψ. (236)

The condition εH = 1 (i.e., q = 0) gives

tanh2(ψend) =
2

3(α + 1)
. (237)

This equation determines the value ψend of the scalar field at the end of the inflation.
Therefore, inflation takes place between ψ = 0 and ψend. The second and third Hubble
hierarchy parameters are defined by

ηH = −d ln H′

d ln a
=

c2

4πG
H′′

H
(238)

and

ξ2
H =

(
c2

4πG

)2 H′′′H′

H2 , (239)

where we have used Equation (216) to obtain the second equality in Equation (238). For the
generating function from Equation (229), we find

ηH =
3
2
(α + 1)

cosh2 ψ− 2
cosh2 ψ

(240)

and

ξ2
H =

9
4
(α + 1)2 cosh2 ψ− 1

cosh4 ψ
(cosh2 ψ− 6). (241)
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We note that ηH → − 3
2 (α + 1) 6= 0 when ψ → 0, so we are never in the slow roll regime

unless α ' −1 (which is a very peculiar situation [41]). The scalar spectral index ns is given
by [60]

ns − 1 = 2ηH − 4εH . (242)

Using Equations (236) and (238), we obtain

ns − 1 = −3(α + 1). (243)

In our model, the scalar spectral index ns turns out to be independent of φ. The running
scalar spectral index nrun is given by [60]

nrun = 10εHηH − 8ε2
H − 2ξ2

H . (244)

Using Equations (236), (238), and (241), we find

nrun = 0. (245)

In our model, the running scalar spectral index vanishes whatever the values of φ and α.
The gravitational wave spectral index nT is given by [60]

nT = −2εH (246)

and the tensor-to-scalar amplitude ratio is given by [60]

r = 4εH . (247)

In our model, using Equation (236), we find that

r = −2nT = 6(α + 1) tanh2 ψ. (248)

Comparison with Planck data: The values of the parameters of inflation obtained by the
Planck collaboration [82] are ns = 0.9603± 0.0073, nrun = −0.0134± 0.0090, r < 0.11 and
N = 60− 70. A value of ns close to 1 means that we have nearly scale-dependent density
perturbations. For α = 1 (stiff matter), α = 1/3 (radiation) or α = 0 (matter), the value
of ns predicted by our model is very far from unity. This implies that we are not in the
slow roll regime where εH and ηH are small. For α = 1, we find ns = −5; for α = 1/3, we
find ns = −3; and for α = 0, we find ns = −2. It is only for α ' −1 that ns becomes close
to unity. However, in that case, we cannot describe the graceful exit to inflation (i.e., the
smooth transition from inflation to a stiff matter or a radiation era). Therefore, for relevant
values of α, our inflationary model cannot account for the fluctuations in the primordial
universe. This is probably because the vacuumon potential V(φ) (see Equation (233)) is just
an effective classical field that cannot be used to compute the spectrum of fluctuations in
the primordial universe. It may be therefore necessary to develop a fully quantum model
of inflation.

10. Conclusions

We have developed the model of universe introduced in our previous papers [39–47].
This model assumes that the universe is filled with an exotic fluid described by a quadratic
equation of state. The presence of this fluid accounts for a phase of early inflation, followed by
a decelerated expansion, and finally a late accelerating expansion. Therefore, our quadratic
equation of state unifies inflation, relativistic or nonrelativistic matter, and dark energy in the
spirit of a generalized Chaplygin gas. Stiff matter, radiation, and (dark or baryonic) matter
may be incorporated in this exotic fluid at different periods of its evolution or treated as
independent species. We have given the scalar field representation of this exotic fluid and
determined its potential in the absence or presence of other species. For a pure scalar field the
potential can be expressed in terms of the Jacobian Elliptic function. We have shown that the
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mass of the early vacuumon (inflaton) is equal to the Planck mass MP while the mass of the
late vacuumon (quintessence) is equal to the cosmon mass mΛ. Our model is able to describe
the complete history of the universe from an early de Sitter era with density ρP to a late de
Sitter era with density ρΛ, bridged by a phase of decelerated expansion. In our model, the
periods of early and late inflation are described by two polytropic equations of state with index
ne = +1 and nl = −1, respectively. This makes our model of universe very symmetric, the
Planck density ρP in the early universe playing a role similar to the cosmological density ρΛ
in the late universe. They represent fundamental upper and lower density bounds differing
by 123 orders of magnitude. Our model is also fully consistent with the ΛCDM model at
late times and completes it by incorporating in a natural manner a phase of early inflation
that avoids the primordial (big bang) singularity. Therefore, in our model, the universe exists
eternally in the past and in the future and does not present singularities. This has been called
the aioniotic universe [42]. We have also made the connection between our model [39–47]
based on a quadratic equation of state and the RVM [57–59] based on a quartic dependence
of the cosmological constant on the Hubble parameter. In this connection, our exotic fluid
can be viewed as a mixture of a barotropic fluid (representing stiff matter, radiation, or
dark matter) and vacuum energy. Furthermore, our scalar field [42,44] corresponds to
what Basilakos et al. [58] have called later the vacuumon. Despite its interest, our model
cannot account for the spectrum of fluctuations in the early universe. This suggests that
the vacuumon potential is just an effective classical potential that cannot be directly used to
compute the fluctuations in the early universe. A fully quantum field theory may be required
to achieve that goal.
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Appendix A. Energy Conservation Equation for a Real Scalar Field

Starting from the KG Equation (30), we can derive the energy conservation Equation (32)
for a real scalar field as follows. Taking the time derivative of the energy density from
Equation (31), we obtain

dρφ

dt
=

1
c2

[
φ̈ + V′(φ)

]
φ̇. (A1)

Combining Equation (A1) with Equation (30), we find that

dρφ

dt
= −3H

c2 φ̇2. (A2)

Summing the density and the pressure from Equation (31), we find

φ̇2 = ρφc2 + Pφ. (A3)

Substituting Equation (A3) into Equation (A2) we obtain the energy conservation Equation (32).
Inversely, from Equations (31) and (32) we can derive the KG Equation (30).
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Appendix B. Expression of the Energy Density of the Scalar Field Described by our
Quadratic Equation of State

Let us consider a scalar field described by the quadratic equation of state (33). From
this equation, we find

Pφ

c2 + ρφ = (α + 1)

(
−

ρ2
φ

ρP
+ ρφ − ρΛ

)
. (A4)

The two roots of the term in brackets are

ρ
(±)
φ =

ρP
2

(
1±

√
1− 4

ρΛ

ρP

)
. (A5)

As κ = ρΛ/ρP ∼ 10−123 � 1, we can make the approximations

ρ
(+)
φ ' ρP and ρ

(−)
φ ' ρΛ. (A6)

These approximations are essentially exact as κ is extremely small. Therefore, Equation (A4)
can be written in excellent approximation as

Pφ

c2 + ρφ = (α + 1)
1

ρP
(ρP − ρφ)(ρφ − ρΛ). (A7)

Substituting this expression into the energy conservation Equation (32), we obtain

−
∫ ρP dρφ

(ρP − ρφ)(ρφ − ρΛ)
= 3(α + 1) ln

(
a
a1

)
, (A8)

where a1 is a constant of integration. This equation can be rewritten as

−
∫ ( 1

ρP − ρφ
+

1
ρφ − ρΛ

)
dρφ = 3(α + 1) ln

(
a
a1

)
, (A9)

where we have used ρP � ρΛ. We then find

ρP − ρφ

ρφ − ρΛ
=

(
a
a1

)3(α+1)
, (A10)

giving

ρ =
ρP + ρΛ

(
a
a1

)3(α+1)

1 +
(

a
a1

)3(α+1)
. (A11)

Using ρP � ρΛ again, this relation can be rewritten as

ρ = ρΛ +
ρP

1 +
(

a
a1

)3(α+1)
. (A12)

The constant of integration a1 can be obtained by applying Equation (A12) at a = 1 where
ρ = ρ0. This yields

a1 =

(
ρ0 − ρΛ

ρP

) 1
3(α+1)

, (A13)
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where we have used ρP � ρΛ. We note that ρ0− ρΛ = ρα,0 can be interpreted as the present
density of the α-fluid. Equation (A12) can finally be written as

ρ = ρΛ +
ρP

1 + ρP
ρ0−ρΛ

a3(α+1)
. (A14)

Remark A1. Actually, it is possible to integrate Equation (32) with Equation (A4) without making
any approximation as detailed in Appendix C of [44]. However, in view of the extremely small value
of κ = ρΛ/ρP ∼ 10−123 � 1, this exact expression is not particularly useful for our purposes.

Appendix C. Connection between the RVM and our Quadratic Equation of State

In this appendix, we discuss the connection between the RVM [57–59] and our model [39–47].
The RVM assumes that the cosmological constant Λ(H) depends on the Hubble parameter
and that this dependence is specified by a quartic function of H (actually, a quadratic
function of H2). This relationship is motivated by particle physics and the renormalization
group approach. On the other hand, our phenomenological model assumes that the
universe is filled with an exotic fluid described by the quadratic equation of state (33). We
show that the two models are consistent and complementary to each other.

Appendix C.1. Approach Based on a Quartic Λ(H)

Let us first recall the main lines of the RVM [57–59]. For an N-species system, the
conservation law reads

∑
N

[
ρ̇N + 3H

(
ρN +

PN

c2

)]
= 0, (A15)

where ρNc2 and PN denote the energy density and the pressure of each species, respectively.
This equation expresses the conservation of the total energy (summed over all species present
in the universe). If we consider a system composed of just one X-fluid + vacuum, we find

ρ̇X + ρ̇Λ + 3H
(

ρX + ρΛ +
PX

c2 +
PΛ

c2

)
= 0. (A16)

In the general case, the cosmological constant Λ(t) and, correspondingly, the vacuum
energy density

ρΛ(t) =
Λ(t)
8πG

(A17)

may depend on time.26 The equation of state of vacuum is given by

PΛ = −ρΛc2. (A18)

Therefore, Equation (A16) reduces to

ρ̇X + 3H
(

ρX +
PX

c2

)
= −ρ̇Λ. (A19)

We also recall the Friedmann equation

3H2

8πG
= ρX + ρΛ, (A20)

where the right hand side includes the energy density of the X-fluid + the energy density
of vacuum. We note that, according to Equation (A19), the X-fluid and the vacuum energy
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are coupled to each other and are not treated as independent species. Introducing the total
density and the total pressure27,

ρ = ρX + ρΛ, P = PX + PΛ, (A21)

we can rewrite Equations (A19) and (A20) as

ρ̇ + 3H
(

ρX +
PX

c2

)
= 0 (A22)

and

3H2

8πG
= ρ. (A23)

We now assume that the X-fluid has a linear equation of state

PX = wXρXc2, (A24)

where wX is constant. Combining Equations (A22)–(A24), we obtain

Ḣ + 4πG(1 + wX)ρX = 0. (A25)

Using Equation (A21), this equation can be rewritten as

Ḣ + 4πG(1 + wX)(ρ− ρΛ) = 0. (A26)

Finally, using Equation (A23), we find

Ḣ +
3
2
(1 + wX)H2 = 4πG(1 + wX)ρΛ. (A27)

As H = ȧ/a, we can also write this equation as

aHH′ +
3
2
(1 + wX)H2 = 4πG(1 + wX)ρΛ, (A28)

where H′ = dH/da. The foregoing equations are valid whether or not Λ (and therefore
ρΛ) is constant. Therefore, these equations are general. Now, based on results of particle
physics and the renormalization group approach, the authors of [57–59] argue that the
cosmological constant is a function Λ = Λ(H) of the Hubble parameter given by

Λ(H) = 3c0 + 3νH2 + 3αs
H4

H2
I

, (A29)

where the coefficients c0, ν, αs, and HI can be determined in principle by particle physics.
Substituting the vacuum energy density ρΛ(H) from Equations (A17) and (A29) into
Equation (A27) or (A28), we obtain a differential equation for H (see below). The solution
of this equation gives H(t) or H(a). We can then obtain ρ(a) from Equation (A23) and ρΛ(a)
from Equations (A17) and (A29). Finally, we can obtain ρX(a) from ρX(a) = ρ(a)− ρΛ(a)
and a(t) from ȧ/a = H(a). Specifically, for the quartic Λ(H) relation from Equation (A29),
the differential equations (A27) and (A28) for H read

Ḣ +
3
2
(1 + wX)H2 =

3
2
(1 + wX)

(
c0 + νH2 + αs

H4

H2
I

)
(A30)
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and

aHH′ =
3
2
(1 + wX)c0 +

3
2
(1 + wX)(ν− 1)H2 +

3
2
(1 + wX)αs

H4

H2
I

. (A31)

Equation (A31) can be solved by making the same approximations as in Appendix B28, yielding

H2 =
c0

1− ν
+

H2
0 −

c0
1−ν

H2
0−

c0
1−ν

(1−ν)
H2

I
αs

+ a3(1+wX)(1−ν)
. (A32)

Appendix C.2. Approach Based on a Quadratic P(ρ)

Let us now recall the main lines of our approach [39–47]. We assume that the universe
is filled with an exotic fluid characterized by a barotropic equation of state P(ρ). This fluid
may correspond to a scalar field29, but this is not compulsory. The energy conservation
equation is given by

ρ̇ + 3H
(

ρ +
P
c2

)
= 0. (A33)

As H = ȧ/a, we can rewrite this equation as

aρ′ + 3
(

ρ +
P
c2

)
= 0, (A34)

where ρ′ = dρ/da. We also recall the Friedmann equation

3H2

8πG
= ρ. (A35)

Based on heuristic considerations [39–47], we assume that the pressure P(ρ) is a quadratic
function of the energy density given by

P = −(α + 1)
ρ2

ρP
c2 + αρc2 − (α + 1)ρΛc2. (A36)

Substituting P(ρ) from Equation (A36) into Equation (A34), we obtain a differential equa-
tion for ρ (see below). The solution of this differential equation gives ρ(a). We can then
obtain a(t) by solving the Friedmann Equation (A35). Specifically, for the quadratic equa-
tion of state P(ρ) from Equation (A36), the differential Equation (A34) for ρ reads

aρ′ + 3(α + 1)
(
− ρ2

ρP
+ ρ− ρΛ

)
= 0, (A37)

which is solved in Appendix B to give

ρ = ρΛ +
ρ0 − ρΛ

ρ0−ρΛ
ρP

+ a3(α+1)
. (A38)

This solution was first obtained in Refs. [39,40,42,44,47]. The complete analytical solution
a(t) of the Friedmann Equation (A35) with Equation (A38) is given in [42,44]. This solution
(see Equation (47)) describes a universe going from an early de Sitter era to a late de Sitter
era passing by an intermediate phase of decelerated expansion.
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Appendix C.3. Connection between the Two Models

The connection between our model and the RVM can be obtained by identifying the
density and the pressure of the exotic fluid in our model with the total density and pressure
(X-fluid + vacuum) in the RVM. This identification guarantees that the scalar field is the
same in the two approaches (see footnote 27). We can now proceed as follows. Using
Equations (A16), (A20), and (A21), we obtain

ρ̇ + 3H
(

ρ +
P
c2

)
= 0 and

3H2

8πG
= ρ, (A39)

which are equivalent to Equations (A33) and (A35). On the other hand, according to
Equations (A18), (A21), and (A24) we have

P = wXρXc2 − ρΛc2

= wX(ρ− ρΛ)c2 − ρΛc2

= wXρc2 − (wX + 1)ρΛc2. (A40)

Substituting ρΛ(H) from Equations (A17) and (A29) into Equation (A40), we obtain

P = wXρc2 − (wX + 1)
3c2

8πG

(
c0 + νH2 + αs

H4

H2
I

)
. (A41)

Finally using Equation (A23), we find

P = −c0(wX + 1)
3c2

8πG
+ [wX − (wX + 1)ν]ρc2 − (wX + 1)

c2

8πG
3αs

H2
I

(
8πG

3

)2
ρ2. (A42)

Therefore, the RVM yields a quadratic equation of state which is equivalent to the quadratic
equation of state of our model (see Equation (A36)) up to a change of notations

α + 1 = (wX + 1)(1− ν), ρΛ =
3c0

8πG(1− ν)
, ρP =

3H2
I (1− ν)

8πGαs
. (A43)

Using this correspondence, we find that Equation (A32) is equivalent to Equation (A38) as
it should be. Some comments are in order:

1. We face again the “problem” mentioned in the introduction in the sense that the
RVM can accommodate only one X-fluid at a time. In the early universe, this fluid
corresponds to the radiation (wX = 1/3) and in the late universe this fluid corresponds
to the matter (wX = 0). Therefore, we can use Equation (A42) in the early universe
with wX = 1/3 and in the late universe with wX = 0 but we cannot use it to describe
the whole evolution of the universe including the successive periods of inflation,
radiation, matter, and dark energy. In other words, one has to adapt wX to the period
under consideration. This is similar to approach (A) in our model.

2. The RVM determines the evolution of the X-fluid density ρX(t) and of the vacuum
energy density ρΛ(t) while our model, based on the equation of state (A36), determines
only the evolution of the total density ρ(t) = ρX(t) + ρΛ(t), not the evolution of ρX(t)
and ρΛ(t) individually (they do not appear explicitly in our model). Therefore, the RVM
implies Equation (A36) (under the form of Equation (A42)) but this is not reciprocal.
In this sense, the RVM contains more information than our model. However, it is not
quite clear if, during the early inflation for example, we can really disentangle the
radiation from the vacuum energy as in the RVM or if there is just one fluid described
by the equation of state (A36), as in our model, which successively behaves as vacuum
energy then as radiation.
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3. Comparing Equations (A36) and (A42), we see that the coefficient of the linear term is
given by

α = wX − (wX + 1)ν. (A44)

In the matter era, we have wX = 0 implying α = −ν. Therefore, the RVM suggests
that α 6= 0 in the matter era even though wX = 0. A nonvanishing value of α could be
accounted for in our model by assuming that dark matter has an effective temperature
so that P = αρc2 with α = kBTeff/mc2. Taking vc ∼ (kBT/m)1/2 ∼ 100 km/s from the
rotation curves of the galaxies, we find α ∼ 10−7.30 This estimate is consistent with the
RVM provided that ν < 0 and |ν| ∼ 10−7. It is argued in [57,58] that ν can be positive
or negative and that |ν| � 1, probably in the range |ν| = 10−6 − 10−3, and with a
typical value |ν| = O(10−3).

4. Except for the slight differences mentioned above, the RVM [57–59] and our model [39–47]
are consistent and complementary to each other and both represent an interesting
modelling of the evolution of the universe.

Appendix D. Parameters of the Scalar Field in the General Case

In this appendix, we determine the parameters of the scalar field in a more general
situation than the one exposed in Section 6.

Appendix D.1. Generalized Polytropic Equation of State

We consider a scalar field described by a generalized polytropic equation of state of
the form [41–43]

Pφ = αρφc2 − (α + 1)ρφc2
(

ρφ

ρ∗

)1/n
. (A45)

This is the sum of a linear equation of state Pφ = αρφc2 and a polytropic equation of
state Pφ = Kρ

γ
φ with a polytropic index γ = 1 + 1/n and a negative polytropic constant

K = −(α + 1)c2/ρ∗1/n < 0. We assume −1 < α ≤ 1 to simplify the discussion (see [41–43]
for more general results). If w = Pφ/(ρφc2) ≥ −1 (non-phantom universe), the energy
conservation equation (32) with the equation of state (A45) can be integrated into

ρφ =
ρ∗[

1 + (a/a∗)3(1+α)/n
]n , (A46)

where a∗ is a constant of integration.
When n > 0, Equations (A45) and (A46) describe the transition between a phase of

early inflation and a phase of algebraic expansion. For a � a∗ (de Sitter era), we obtain
ρφ ' ρ∗. We can thus identify ρ∗ with the Planck density ρP (see footnote 2). For a � a∗
(α-era), we obtain ρφ ' ρ∗/(a/a∗)3(1+α) and P ∼ αρφc2. Therefore, the scale factor a∗
marks the transition between an early de Sitter era and an α-era. For n = 1, we recover the
results of Section 3.2. The general case is treated in [41].

When n < 0, Equations (A45) and (A46) describe the transition between a phase of
algebraic expansion and a phase of late inflation. For a � a∗ (α-era), we obtain ρφ '
ρ∗/(a/a∗)3(1+α) and P ∼ αρφc2. For a � a∗ (de Sitter era), we obtain ρφ ' ρ∗. We can
thus identify ρ∗ with the cosmological density ρΛ. Therefore, the scale factor a∗ marks the
transition between an α-era and a late de Sitter era. For n = −1, we recover the results of
Section 3.3. The general case is treated in [42].
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Appendix D.2. Scalar Field Potential

The scalar field potential corresponding to the equation of state (A45) is [42]

V(ψ) =
1
2

ρ∗c2 (1− α) cosh2 ψ + α + 1

cosh2(n+1) ψ
, (A47)

where we have defined

ψ =

(
8πG
3c2

)1/2 3
√

α + 1
2n

(φ + cst). (A48)

For ψ→ 0, it can be expanded into

V(ψ)

ρ∗c2 ' 1− 1 + α + 2n
2

ψ2 +
2 + 2α + 4n + 3αn + 3n2

6
ψ4 + . . . (A49)

For ψ→ ±∞, we obtain the asymptotic behaviors

V(ψ)

ρ∗c2 ∼ 22n−1(1− α)e−2n|ψ| (α 6= 1), (A50)

V(ψ)

ρ∗c2 ∼ 22(n+1)e−2(n+1)|ψ| (α = 1). (A51)

We note that the coefficient α = 1 of stiff matter plays a special role as it leads to a faster
decay of the potential. In that case, Equation (A47) becomes

V(ψ) =
ρ∗c2

cosh2(n+1) ψ
(α = 1). (A52)

The relation between the scalar field and the scale factor is [42]

(a/a∗)3(α+1)/2n = sinh ψ. (A53)

This relation allows us to express ρφ, Pφ, etc. as a function of ψ instead of a.

Appendix D.3. Normal form of the Potential

The approximate expression (A49) of the scalar field potential for ψ → 0 can be
compared with the normal form of a quartic potential

V = V0 +
m2c4

2h̄2 φ2 +
λc3

4h̄
φ4, (A54)

where V0 is the value of the potential at φ = 0, m is the mass of the scalar field, and λ is the
dimensionless self-interaction constant. When the scalar field describes the wave function
of a Bose–Einstein condensate (BEC), we have the relation31

λ

8π
=

2as

3λC
=

2as|m|c
3h̄

, (A55)

where as is the scattering length of the bosons and λC = h̄/(|m|c) is their Compton
wavelength. One can also introduce the dimensional self-interaction constant

λs =
4πas h̄2

|m| =
3λh̄3

|m|2c
. (A56)

Comparing Equation (A49) with Equation (A54), and recalling Equation (A48), we obtain
the following results:
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(i) The value of the potential at φ = 0 is given by

V0 = ρ∗c2. (A57)

(ii) The squared mass of the scalar field is given by

m2 = f (α, n)m2
∗, (A58)

where

f (α, n) = −9(α + 1)
4n2 (1 + α + 2n) (A59)

and

m∗ =

(
8πGρ∗ h̄2

3c4

)1/2

. (A60)

(iii) The dimensionless self-interaction constant of the scalar field is given by

λ

8π
= g(α, n)

λ∗
8π

, (A61)

where

g(α, n) =
(α + 1)2

n4 (2 + 2α + 4n + 3αn + 3n2) (A62)

and

λ∗
8π

= 3π
ρ∗
ρP

. (A63)

(iv) The dimensional self-interaction constant of the scalar field is given by

λs =
27π

4
g(α, n)
| f (α, n)|

Gh̄2

c2 , (A64)

where

Gh̄2

c2 = 5.15× 10−71 eV cm3. (A65)

(v) The scattering length of the bosons is given by

as =
27
32

g(α, n)√
| f (α, n)|

r∗, (A66)

where

r∗ =
2Gm∗

c2 (A67)

is the effective Schwarzschild (or gravitational) radius of a particle of mass m∗.

Remark A2. The potential (A47) depends on a single parameter—the density ρ∗—which deter-
mines m∗, λ∗, and r∗. These quantities are related by

λ∗
8π

=
9
8

(
m∗
MP

)2
=

9
32

(
r∗
lP

)2
= 3π

ρ∗
ρP

. (A68)
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Appendix D.4. The Early Universe

In the early universe, the characteristic density ρ∗ is the Planck density

ρ∗ = ρP =
c5

h̄G2 = 5.16× 1099 g m−3. (A69)

We then obtain

m∗ =

(
8πGρP h̄2

3c4

)1/2

=

(
8π

3

)1/2
MP, (A70)

where

MP =

(
h̄c
G

)1/2
= 2.18× 10−5 g (A71)

is the Planck mass. We also obtain

r∗ =
(

8π

3

)1/2 2GMP

c2 = 2
(

8π

3

)1/2
lP, (A72)

where

lP =
GMP

c2 =

(
Gh̄
c3

)1/2
= 1.62× 10−35 m (A73)

is the Planck length (the semi Schwarzschild radius of a particle of mass MP). Finally,

λ∗
8π

= 3π. (A74)

Appendix D.5. The Late Universe

In the late universe, the characteristic density ρ∗ is the cosmological density

ρ∗ = ρΛ =
Λ

8πG
= 5.96× 10−24 g m−3. (A75)

We then obtain

m∗ =

(
8πGρΛ h̄2

3c4

)1/2

=
mΛ√

3
, (A76)

where

mΛ =
h̄
√

Λ
c2 = 2.08× 10−33 eV/c2 (A77)

is the cosmon mass.32 We also obtain

r∗ =
2rΛ√

3
, (A78)

where

rΛ =
GmΛ

c2 =
Gh̄
√

Λ
c4 = 2.75× 10−96 m (A79)
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is the cosmon radius (the semi Schwarzschild radius of a particle of mass mΛ). Finally,

λ∗
8π

= 3π
ρΛ

ρP
= 1.09× 10−122. (A80)

Remark A3. We note that

mΛ

MP
=

rΛ

lP
=

√
8
3

(
λ∗
8π

)1/2
=
√

8π

(
ρΛ

ρP

)1/2
=

(
Gh̄Λ

c5

)1/2
= 1.70× 10−61. (A81)

Appendix E. Scalar Field in the Presence of One Fluid in the Early Universe

In the main text, we have assumed in approach (B) that the early universe is dominated
by the scalar field and that the X-fluids appear later in the evolution of the universe. In
that case, there is first a phase of inflation followed by an α-era both due to the scalar field.
As the scalar field is alone in the early universe, its potential is given by Equation (115).
The α-era may correspond to a stiff matter era (α = 1) or to a radiation era (α = 1/3). If
the α-era corresponds to a stiff matter era (α = 1), we have to introduce an X-fluid with
αX = 1/3 to represent the subsequent phase of radiation while this is not necessary if
the α-era corresponds to a radiation era (α = 1/3).33 Then, there is a matter era due to
another X-fluid with αX = 0, and finally a late inflation due to the constant pressure of the
scalar field.

In this appendix, we consider the possibility that an X-fluid coexists with the scalar
field since the beginning of the universe. In that case, the X-fluid dominates the scalar
field for a → 0 and leads to a big bang singularity where ρX ∝ a−3(1+αX). This X-era is
followed by an inflation era due to the scalar field when ρX � ρP. Then, the evolution of
the universe is dominated by the X-fluid or by the α-fluid (different possibilities can arise
depending on the values of the parameters).34 In any case, we exit this period through a
radiation era due to the scalar field (if α = 1/3) or to the X-fluid (if αX = 1/3). Then, there
is a matter era due to another X-fluid with αX = 0, and finally a late inflation era due to the
constant negative pressure of the scalar field.

Let us determine the potential of the scalar field in the presence of the X-fluid in the
early universe. In that case, the scalar field has a quadratic equation of state Pφ = −(α + 1)
(ρ2

φ/ρP)c2 + αρφc2. The scalar field potential is determined by Equations (96) and (97). For
small a they reduce to

φ(a) =
(

3c2

8πG

)1/2√
1 + α

∫ a

0

(
ΩP,0

Ωα,0

)1/2
x3(α+1)/2

√√√√ ΩP,0
ΩX,0

x3(1+αX ) + ΩP,0

dx
x

, (A82)

V(a)
ρ0c2 = ΩP,0

[
1− 1

2
(α + 3)

ΩP,0

Ωα,0
a3(α+1)

]
. (A83)

The scalar field is described by the index α = 1/3 (radiation) or α = 1 (stiff matter) and the
X-fluid is described by the index αX = 1 (stiff matter) or αX = 1/3 (radiation), respectively.
Unfortunately, neither (96) nor Equation (A82) can be calculated analytically. However,
when the X-fluid dominates, Equation (A82) can be simplified further into

φ(a) =
(

3c2

8πG

)1/2√
1 + α

ΩP,0√
Ωα,0ΩX,0

∫ a

0
x

3
2 (α+αX+2)−1 dx, (A84)

giving

φ(a) =
(

3c2

8πG

)1/2 2
3

√
1 + α

α + αX + 2
ΩP,0√

Ωα,0ΩX,0
a

3
2 (α+αX+2). (A85)
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Substituting Equation (A85) into Equation (A83), we find that the scalar field potential is
given in this regime by

V(φ) = ρPc2 − 1
2

ρPc2(α + 3)
ΩP,0

Ωα,0

[(
8πG
3c2

)1/2 3
2

α + αX + 2√
1 + α

√
Ωα,0ΩX,0

ΩP,0
φ

] 2(α+1)
α+αX+2

. (A86)

Notes
1 It is expected, but not observationally established, that the periods of acceleration are exponential, corresponding to a de Sitter stage.
2 The Planck density corresponds to a mass scale ∼ 1019 GeV/c2. Actually, the scale of primordial inflation could be three orders of

magnitude smaller, corresponding to the grand unification theory (GUT) scale ∼ 1016 GeV/c2. In the following, for convenience,
we shall identify the scale of primordial inflation to the Planck scale. If another scale turns out to be more relevant for our
problem, we just have to replace the Planck density ρP by the corresponding density in the equations.

3 This can be viewed as an “initial conditions problem” or as a “fine tuning problem”. Indeed, as dark matter and dark energy
evolve at different rates with the universe expansion, conditions in the early universe must be set very carefully in order for them
to be comparable to the ones existing today.

4 We stress that there is no initial singularity in our model [45,46] as the stiff matter era starts after the inflation era (de Sitter)
during which the density is constant (finite).

5 Note that Basilakos et al. [58] did not derive the complete energy density evolution nor the complete scalar field potential obtained
in Equations (86), (106), and (121) of [44], but only their asymptotic expressions in the early and late universe.

6 Apparently, their formula (40) in [59] contains a mistake. The potential associated with the inflation + stiff matter era should read
like Equation (F.42) of [46].

7 This is because the other species enter into the Friedmann equation as additional components of the energy density and therefore
alter the evolution of the scale factor and of the Hubble constant with respect to the free scalar field.

8 In this paper, we assume that the scalar field is real. The cosmological evolution of a complex scalar field is considered in [52,61,62].
On the other hand, in order to simplify the equations, we make the change of notation φ→ cφ.

9 We will see in Sections 4 and 5 how to relate the potential V(φ) of the scalar field to its equation of state Pφ(ρ).
10 As discussed in approach (A) of the Introduction, α may change with the density of the universe. Therefore, its value may depend

on the epoch under consideration.
11 To avoid a spurious divergence of the energy density at a = 0, the matter component term Ωm,0/a3 has to be introduced at a

sufficiently late time, i.e., after the inflation era when ρ� ρP.
12 We assume a non-phantom universe wφ > −1. We also assume that the scalar field φ increases with the scale factor a so that

dφ/da ≥ 0.
13 We have left the lower limit of integration undetermined as the expression of the integrand is only valid for sufficiently large

values of a. The lower limit of integration has to be obtained by matching the solutions in the early and late universe.
14 For example, we can take α = 1 (stiff matter) in the equation of state of the scalar field and add radiation and matter as additional species.
15 The case where a radiation era occurs before the inflation era, leading to a big-bang singularity, is considered in Appendix E.
16 This is a particular case of the general solution given in [42].
17 For α = 1 (stiff matter), the scalar field potential is constant V = ρΛc2 (see Equation (135)).
18 A similar quantization rule was introduced by Wesson [68]. By using the dimensional reduction from higher dimensional

relativity and by assuming that the Compton wavelength of a particle cannot take any value, he proposed that the mass is
quantized according to the rule m = (n∗ h̄/c2)

√
Λ/3 = n∗m∗Λ, where n∗ is an integer (this differs from Equation (175) in that it

involves n∗ instead of
√

n∗). Hence, m∗Λ is the minimum mass corresponding to the ground state n∗ = 1. In our model, the mass
of the scalar field associated with the ΛCDM model (α = 0) is (3/2)m∗Λ.

19 Some analytical solutions of the Friedmann equation involving two or more fluids with a linear equation of state (e.g., stiff matter,
radiation, matter, or dark energy) are given in [45].

20 These equations can be obtained from Equations (86) and (87) by using the fact that both the scalar field and the X-fluids have a
linear equation of state. They can also be recovered from Equations (94) and (95) by taking ΩΛ,0 = 0 and ΩP,0 → +∞.

21 The two potentials (149) and (199) are equivalent provided that the terms depending on X in Equation (199) are included in the
constant of integration φ∗ appearing in Equation (149).

22 In the framework of our model, this corresponds to the situation where the scalar field describes dark radiation (α = 1/3) and the
X-fluid describes normal radiation (αX = 1/3). This also corresponds to the situation where the scalar field describes dark matter
(α = 0) and the X-fluid describes baryonic matter (αX = 0).

23 This assumes ρΛ 6= 0. The case ρΛ = 0 leads to Equations (190)–(193).
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24 This is basically why we do not find a good agreement with the observations.
25 The function H(φ) can be obtained from Equations (104), (123), and (213). However, in line with the Hamilton–Jacobi formalism,

we shall proceed here the other way round and take Equation (229) as a starting point from which all the results of our model can
be derived.

26 In this section, the time-dependent vacuum energy density ρΛ(t) should not be confused with the constant cosmological density
ρΛ = 5.96× 10−24 g m−3 appearing in Equation (33).

27 In the scalar field representation of the RVM [58,59], the scalar field is associated with the total density and pressure. This implies
that the X-fluid is part of the scalar field. In other words, the vacuumon is not associated to the vacuum alone, but to the vacuum
+ X-fluid. We also recall that the X-fluid changes with the epoch considered (early or late universe).

28 We show in Appendix C.3 that the calculations in the RVM are equivalent to those of Appendix B.
29 In that case, ρ and P represent the energy density and the pressure of the scalar field denoted ρφ and Pφ in the main text.
30 This value is consistent with the condition α ≤ 10−7 necessary to avoid the presence of oscillations in the matter power spectrum

(see Appendix C in [52]).
31 The factor 2/3 arises because we consider a real scalar field (see [83] for more details). In principle, Equation (A55) makes sense

only if m is a positive real number. However, in order to treat all possible situations, we formally extend this formula to the case
where m is imaginary (m2 < 0) by taking its modulus |m|.

32 This mass scale is often interpreted as the smallest mass of the elementary particles predicted by string theory [84] or as the
upper bound on the mass of the graviton [85]. The mass mΛ also represents the quantum of mass in theories of extended
supergravity [66]. The mass scale mΛ is simply obtained by equating the Compton wavelength of the particle λC = h̄/mc with
the Hubble radius RΛ = c/H0 (the typical size of the visible universe) giving mΛ = h̄H0/c2 ∼ h̄

√
Λ/c2 (as H2

0 ∼ GρΛ ∼ Λ).
The mass mΛ corresponds to Wesson’s [68] minimum mass interpreted as a quantum of dark energy (Wesson’s maximum
mass MΛ = (4/3)πρ0R3

Λ = c3/2GH0 = 9.20× 1055 g is of the order of the mass of the universe). The mass scales MΛ and
mΛ also appear in Refs. [51,86] and represent the mass of the visible universe and the minimum mass of the bosons. Böhmer
and Harko [87] proposed to call the elementary particle of dark energy having the mass mΛ the “cosmon”. Cosmons were
originally introduced by Peccei et al. [88] to name scalar fields that could dynamically adjust the cosmological constant to zero
(see also [89–91]). The name cosmon was also used in a different context [92] to designate a very light scalar particle (dilaton) of
mass ∼ 10−3 eV/c2 which could mediate new macroscopic forces in the submillimeter range.

33 We could, however, introduce an X-fluid with αX = 1/3 to distinguish the radiation due to the scalar field (dark radiation) from
the ordinary radiation due to photons or other relativistic particles.

34 For example, if αX = 1 and α = 1/3 we generically have a stiff matter era (X) followed by an inflation era (SF) and a radiation era
(SF). By contrast, if αX = 1/3 and α = 1 we generically have a radiation era (X) followed by an inflation era (SF), a stiff matter era
(SF) and a radiation era (X).
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