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Abstract: This paper uses the Kolmogorov–Smirnov test to perform a fitting analysis on the mass data
of Saturn’s regular moons and found that the lognormal distribution is its best-fitting distribution
with an extremely high p-value of 0.9889. Moreover, novel dynamic equations for the variable-mass
restricted three-body problem are established based on the newly discovered distribution of mass
data, rather than the empirical Jeans’ law, and the Lindstedt–Poincaré perturbation method was
used to give the approximate analytical periodic orbits near the Lagrangian point L3. Furthermore,
this paper also discusses the influence of the three-body gravitational interaction parameter, the
variable-mass parameter of the third body, and the scale parameter in the statistical results on the
periodic orbits and the position of the Lagrangian point L3 through numerical simulation.

Keywords: Saturn’s regular moons; periodic orbit; three-body problem; Kolmogorov–Smirnov test;
variable mass

1. Introduction

Humanity will be challenged by the threat of resource shortages in the future. Some
small celestial bodies, planets, and moons may become a breakthrough for obtaining re-
sources. In October 2019, the Sheppard team of the Carnegie Institution in the United States
announced the discovery of 20 new moons of Saturn [1]. To date, the Saturn family has
82 members, making it the planet with the largest number of moons in the solar system
(see [2] for specific classification). These natural satellites are divided into regular and irreg-
ular moons based on their distance from Saturn, orbital eccentricity, and inclination. From
their dynamic behavior and the composition and structure of matter, the Saturnian system
is similar to a miniature solar system. For example, scientists discovered an atmosphere
and liquid water on Titan. Some scientists have thought that the moon might be an asteroid
captured by its host star or the debris produced by its parent body or other moons colliding
together [3]. The sources of collisions are diverse, such as main belt asteroids and various
comets [3,4]. Dorofeeva [5] believed that the original matter that composes the regular
moon Enceladus came from a particular comet, and Castillo-Rogez et al. [6] considered that
Phoebe came from a library of C-type asteroids. Gao et al. [7,8] conducted a fitting distribu-
tion study on the irregular moon distribution of Jupiter. According to the p-value obtained
by the Kolmogorov–Smirnov (K-S) test, they proposed that the log-logistic distribution
is the best distribution of their main physical characteristics. The best distribution model
inferred from the data can help predict unknown moon physical properties and even help
humans discover new natural satellites.

In celestial mechanics, the restricted three-body model describes the motion of an
object with a relatively infinitely small mass under the gravitational force of two finite-
mass bodies (that is, the main star). It is called the circular restricted three-body problem
if the finite mass bodies move in a uniform circular motion around their mass center.
This model can approximate the local dynamics of planets or moons with small orbital
eccentricities. Considering that the mass and radiation of celestial bodies are constantly
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changing in practical problems, this has prompted scholars to study the variable-mass
three-body problem that is more in line with the actual situation. Therefore, considering
variable mass, radiation, albedo, etc., in the restricted three-body problem will be more
realistic [9–22]. For example, if a star has a strong radiation ability, the dynamic equation
established by ignoring its radiation factor will become unreliable. However, we must
admit that the interference of multiple perturbation factors will also complicate the problem,
which is not conducive to our study of the influence of certain perturbation factors on
the system’s dynamic behavior. Bosanac et al. [23] and Suraj et al. [24] improved the
circular restricted three-body problem, that is considering the existence of the three-body
interaction, and studied its related dynamic properties. Since periodic orbits have a wide
range of practical application values, many scholars have studied the periodic orbits near
the Lagrangian points: Abouelmagd and Guirao [25] explored the existence of Lagrangian
points under the effects of the perturbations in Coriolis and centrifugal forces, and it was
proven that the orbits of the infinitesimal body around the five Lagrangian points are
ellipses; Poddar and Sharma [26] proved the existence of periodic orbits when the third
coordinate of the infinitesimal mass is zero; Abouelmagd et al. [27] obtained the second-
order approximate periodic orbit near the Lagrangian point; Gao [11] also studied the
degree of coincidence between the second- and third-order periodic orbits and analyzed
the influence of parameter changes on the periodic orbits; Qian [28] obtained the periodic
orbit near the triangular Lagrangian points through the polynomial expansion method.
Due to the rapid development of computer technology, more researchers have discovered
the important periodic orbits of the three-body problem through numerical methods;
see [29–32] for details. Moreover, Yang et al. [33] proposed an artificial-neural-network-
based model to improve the computing efficiency.

Inspired by the above references, this article considers the Sun–Saturn-third body
model. The third body has a varying mass and can be regarded as the “parent body” of the
moons of Saturn, but its mass is negligible compared to the Sun and Saturn. This paper
mainly focuses on the approximately analytical periodic orbit around the Lagrangian point
and the influence of the three-body interaction parameter and the variable mass parameters
of the third body on this orbit. Compared with the references mentioned above, the most
significant feature of this paper is that we consider the distribution law of the mass of
the actual Saturn moons and then establish a new restricted three-body problem model
based on this law. The structure of this paper is as follows: Section 2 uses the K-S test
method in statistical inference to give the best-fitting distribution of regular moon mass
data. The corresponding restricted three-body dynamic control equation is established
based on the distribution law of moon mass data, and the approximate analytic periodic
orbit around the Lagrangian point is calculated in Section 3. In Section 4, the influence of
the scale parameters of the mass distribution of Saturn’s moons, the three-body interaction
parameter, and the varying mass ratio of the moons on the periodic orbits around the
Lagrangian point are discussed. The last section is the conclusions.

2. Best-Fitting Distribution of the Regular Moons’ Mass

To explore whether the mass data of Saturn’s regular moons (see Table 1) have statisti-
cal regularity, this section uses the single-sample K-S test to evaluate the mass data of the
regular moons. The K-S test is a method to test whether a certain set of sample data comes
from a specific distribution. The main idea of this test method is to compare the empirical
distribution function of the sample data with the selected theoretical distribution function
and check whether the sample data come from this theoretical distribution function accord-
ing to the difference between the two. The main steps of the test are as follows: first, set
the null hypothesis H0: the sample data obey a particular distribution, then the alternative
hypothesis H1: the sample data do not obey the particular distribution. Suppose we use
D = max |Fn(x)− F0(x)| to represent the maximum value of the gap between the empirical
distribution function Fn(x) and the theoretical distribution function F0(x) of the sample
data. In that case, the critical value D(n, α) is determined by the number of known sample
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data n and the significance level α, and if the value of D falls within the rejection range, the
null hypothesis is rejected. Otherwise, the null hypothesis is not rejected.

Table 1. Mass data of Saturn’s regular moons.

Names of Saturn’s Regular Moons Mass (kg) Names of Saturn’s Regular Moons Mass (kg)

Aegaeon 59,946,737,324 Methone 8,992,010,598,583
Anthe 1,498,668,433,097 Mimas 37,505,676,206,690,400,000
Atlas 6,594,141,105,627,650 Pallene 32,970,705,528,138
Calypso 2,547,736,336,265,230 Pan 4,945,605,829,220,740
Daphnis 77,930,758,521,054 Pandora 138,476,963,218,181,000
Dione 1,095,745,430,185,280,000,000 Polydeuces 4,496,005,299,292
Enceladus 107,944,591,230,692,000,000 Prometheus 160,956,989,714,639,000
Epimetheus 526,032,620,017,115,000 Rhea 2,307,089,151,289,080,000,000
Helene 11,389,880,091,538,700 S/2009 S1 ——
Hyperion 5,585,537,250,153,240,000 Telesto 4,046,404,769,362,420
Iapetus 1,805,952,411,282,580,000,000 Tethys 617,551,805,221,061,000,000
Janus 1,892,818,231,001,750,000 Titan 134,552,523,083,241,000,000,000

In the hypothesis-testing problem, relative to the D-value, the p-value (0 ≤ p ≤ 1) can
also reflect the credibility of statistical inference. The p-value is the minimum significance
level that can reject the null hypothesis H0 in the hypothesis-testing problem. In other
words, the p-value is the probability of falsely rejecting the null hypothesis H0, which is
called a Type 1 error. The null hypothesis may become more significant as the p-value
increases and decrease as the p-value decreases. When the p-value is smaller than the se-
lected significance level α (this article selected α = 0.05 according to international practice),
the null hypothesis H0 is considered invalid. That is, the sample data do not obey the given
theoretical distribution. When multiple distribution functions can fit the same sample data,
the distribution function with the most significant p-value can be used as the best-fitting
distribution of the sample data. For the mass data of Saturn’s regular moons, a total of
22 common distribution functions were fit in this section, and the specific fitting results are
shown in Table 2. It is not difficult to find that the maximum p-value can reach 0.9889; the
corresponding best-fitting distribution is the lognormal distribution, and its probability
density function (PDF) is:

f (x) =
1

x
√

2πσ
exp
−(ln x− µ)2

2σ2 ; (1)

the PDF of the normal distribution corresponding to this distribution is:

f (ln x) =
1√
2πσ

exp
−(ln x− µ)2

2σ2 . (2)

Here, the location parameter −∞ < µ < +∞ is the mean of the logarithmic value,
and the scale parameter σ ≥ 0 is the standard deviation of the logarithmic value. The
lognormal distribution is sometimes called the Galton distribution, which can be obtained
after logarithmic transformation of the normal distribution. It should be noted that the
lognormal distribution requires that each datum X be a positive number because ln(X) is
meaningful only when X > 0. If X follows the lognormal distribution with parameters
µ and σ, then ln(X) follows the normal distribution with mean µ and standard deviation
σ. Similarly, if X follows the normal distribution with parameters µ and σ, then exp(X)
obeys the lognormal distribution. µ refers to the position parameter of the lognormal
distribution, not the position parameter of Saturn’s regular moons. From the results of
statistical inference, the estimated value of parameter µ in Equations (1) and (2) is 39.1272
with the corresponding confidence interval being [35.7438, 42.5106], and the estimated
value of parameter σ is 7.82406 with the corresponding confidence interval being [6.05109,
11.0738]. The cumulative distribution function (CDF) of moon mass data and the CDF
corresponding to the best-fitting distribution are shown in Figure 1. It is easy to find that
the lognormal distribution can fit the mass distribution of Saturn’s regular moons well.
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Table 2. Statistical inference results of the mass of Saturn’s regular moons.

Beta Birnbaum–
Saunders Burr Exponential Extreme

Value Gamma Generalized
Extreme Value

Generalized
Pareto

Half
Normal

Inverse
Gaussian Logistic

Mass (kg)

h

null

1 0 1 1 0 1 0 1 1 1
p 0.0345 0.8643 0.0000 0.0000 0.3145 0.0000 0.1723 0.0000 0.0000 0.0000

parameter β = 8.9038 × 1016

γ = 370.466

α = 3.76388 × 1020

c = 0.170255
k = 2.83657

µ = 6.11012 × 1021 µ = 2.40706 × 1022

σ = 4.92323 × 1022
a = 0.0760157
b = 8.03796 × 1022

k = 0.569397
σ = 1.32889 × 1016

µ = 7.07519 × 1015

k = 11.3686
σ = 1.55618 × 1013

θ = 0

µ = 0
σ = 2.8064 × 1022

µ = 6.11012 × 1021

λ = 1.29748 × 1012
µ = 6.11012 × 1021

σ = 1.54407 × 1022

confidence
interval

β ∈ [3.5716 × 1016,
1.4236 × 1017]
γ ∈ [263.409,
477.524]

α ∈ [664.59,
2.13166 × 1038]
c ∈ [0.0739575,
0.39194]
k ∈ [0.0204874,
392.734]

µ ∈ [4.21915 × 1021,
9.63871 × 1021]

µ ∈ [2.54927 × 1021,
4.5592 × 1022]
σ ∈ [3.85631 × 1022,
6.28534 × 1022]

a ∈ [0.049786,
0.116065]
b ∈ [1.72057 × 1022,
3.75508 × 1023]

k ∈ [0.494556,
0.644238]
σ ∈ [7.47124 × 1015,
2.36367 × 1016]
µ ∈ [1.14168 × 1015,
1.30087 × 1016]

k ∈ [6.12161,
16.6156]
σ ∈ [1.31349 × 1012,
1.84372 × 1014]
θ = 0

µ = 0
σ ∈ [2.18117 × 1022,
3.93671 × 1022]

µ ∈ [−Inf,Inf]
λ ∈ [−Inf,Inf]

µ ∈ [−Inf,Inf]
σ ∈ [−Inf,Inf]

Log-logistic Lognormal Nakagami Negative
Binomial Normal Poisson Rayleigh Rician t Location-

Scale Weibull Stable

Mass(kg)

h 0 0 0

null

1 1 1 1 1 0 1
p 0.9759 0.9889 0.2574 0.0000 0.0000 0.0000 0.0000 0.0000 0.7818 0.0000

parameter µ = 39.1312
σ = 4.58867

µ = 39.1272
σ = 7.82406

µ = 0.0357998
ω = 7.8759 × 1044

µ = 6.11012 × 1021

σ = 2.80064 × 1022 λ = 6.11012 × 1021 B = 1.98443 × 1022 s = 1
σ = 2.71315 × 108

µ = −1.54662 × 1015

σ = 1.81001 × 1016

ν = 0.177628

A = 4.42076 × 1018

B = 0.142598

α = 0.4
β = 0.987279
c = 3.62044 × 1018

µ = 2.24553 × 1018

confidence
interval

µ ∈ [35.7976,
42.4648]
σ ∈ [3.29169,
6.39669

µ ∈ [35.7438,
42.5106]
σ ∈ [6.05109,
11.0738]

µ ∈ [0.0236219,
0.0542557]
ω ∈ [9.08296 × 1043,
6.82924 × 1045]

µ ∈ [−6.00076 × 1021,
1.8221 × 1022]
σ ∈ [2.166 × 1022,
3.96389 × 1022]

λ ∈ [6.11012 × 1021,
6.11012 × 1021]

B ∈ [1.64901 × 1022,
2.49241 × 1022]

s = 1
σ ∈ [2.71315 × 108,
2.71315 × 108]

µ ∈ [−Inf,Inf]
σ ∈ [−Inf,Inf]
ν ∈ [-Inf,Inf]

A ∈ [2.12356 × 1017,
9.20299 × 1019]
B ∈ [0.104361,
0.194845]

α ∈ [0,2]
β ∈ [−1,1]
c ∈ [0,Inf]
µ ∈ [−Inf,Inf]



Universe 2022, 8, 63 5 of 15

0 2 4 6 8 10 12

10
22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1. The mass CDF of Saturn’s regular moons and the corresponding CDF of the best-
fitting distribution.

3. Dynamic Equations and Approximate Periodic Orbits
3.1. Dynamic Model with Variable Mass

Based on the law of mass distribution in the previous section, this section mainly
analyzes the dynamic behavior of the restricted three-body problem composed of the Sun,
Saturn, and the third body with variable mass (the mass is negligible relative to the Sun
and Saturn). The third body here can be regarded as the “parent planet” of Saturn’s moons
because it has long been suspected that the moons were formed when the larger bodies
disintegrated. According to the results of statistical inference, let the mass m of the third
body obey the lognormal distribution with the location parameter µ and the scale parameter
σ; then, ln(m) obeys the normal distribution with mean µ and standard deviation σ. Note
that if the mass m of the third body is a function that changes with the evolution time τ,
then its probability density expression is:

f (ln m(τ)) =
1√
2πσ

exp
−(ln m(τ)− µ)2

2σ2 . (3)

Performing the time scale transformation t = (ln m(τ)− µ)2/2, we have:

1√
2πσ

exp
−t
σ2 , m(t), (4)

then:
dm(t)

dt
= − 1

σ2 m(t). (5)

We considered the movement of the third body in the gravitational field of the Sun
and Saturn and established a center-of-mass rotating coordinate system O-UVW: taking
the center-of-mass of the Sun–Saturn system as the origin, the plane of relative motion as
the orbital plane, the U axis passing through the line of the Sun and Saturn, the V axis
perpendicular to the U axis in the plane of motion, and the W axis passing through the
center-of-mass of the Sun–Saturn system and rotating perpendicular to its plane of motion.
Normalize related physical quantities. Let the mass of the Sun be m1 and the mass of Saturn
be m2; then, the mass ratio parameter µ = m2/(m1 + m2) ≤ 1/2, m1 = 1− µ, m2 = µ.
Therefore, the dimensionless dynamic equation of the third body can be described as:
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(ü− 2v̇) +
ṁ
m
(u̇− v) = Ω∗u,

(v̈ + 2u̇) +
ṁ
m
(v̇ + u) = Ω∗v ,

ẅ +
ṁ
m

ẇ = Ω∗w,

(6)

where the potential energy function is:

Ω∗ =
1
2

(
u2 + v2

)
+

(1− µ)q1

ρ1
+

µq2

ρ2
+

k
ρ1ρ2

, (7)

where k is the three-body interaction parameter, ρ2
1 = (u+µ)2 + v2 +w2 and ρ2

2 = (u− (1−
µ))2 + v2 + w2 are the distances from the third body to the Sun and Saturn, respectively,
and q1 and q2 are the radiation factors of the Sun and Saturn, respectively. For more
explanation, please refer to [15,23,24]. To simplify Equation (6), according to the space–time
transformation formula:

(ξ, η, ζ) = γ q(u, v, w), dΓ = γ l dτ, (8)

where γ = m/m0 represents the mass ratio and m0 is the mass of the third body at the
initial moment. Substituting Equations (5) and (8) into Equation (6) and letting q = 1/2,
l = 0, Equation (6) becomes:

ξ̈ − 2η̇ = Ωξ ,

η̈ + 2ξ̇ = Ωη ,

ζ̈ = Ωζ ,

(9)

where the potential energy function is:

Ω =
1
2

(
ξ2 + η2

)
+ γ

3
2

[
(1− µ)q1

r1
+

µq2

r2

]
+

kγ2

r1r2
+

1
8σ4

(
ξ2 + η2 + ζ2

)
, (10)

here r2
1 = (ξ + µγ1/2)2 + η2 + ζ2, r2

2 =
(

ξ − (1− µ)γ1/2
)2

+ η2 + ζ2.

3.2. Periodic Orbits near the Lagrangian Point L3

Without loss of generality, we analyzed the periodic orbits around the Lagrangian
point L3. Consider the dynamic equations of the third body on the U-V plane:

ξ̈ − 2η̇ = Ωξ ,

η̈ + 2ξ̇ = Ωη ,
(11)

where:

Ωξ =− γ
3
2

 q1(1− µ)(ξ + µγ1/2)(
(ξ + µγ1/2)2 + η2

) 3
2
+

q2µ(ξ − (1− µ)γ1/2)(
(ξ − (1− µ)γ1/2)2 + η2

) 3
2


− kγ2(

(ξ + µγ1/2)2 + η2
) 1

2
(
(ξ − (1− µ)γ1/2)2 + η2

) 1
2

[
ξ + µγ1/2

(ξ + µγ1/2)2 + η2

(12)
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+
ξ − (1− µ)γ1/2

(ξ − (1− µ)γ1/2)2 + η2

]
+ ξ

(
1 +

1
4σ4

)
,

Ωη =− γ
3
2 η

 q1(1− µ)(
(ξ + µγ1/2)2 + η2

) 3
2
+

q2µ(
(ξ − (1− µ)γ1/2)2 + η2

) 3
2


− kγ2η(

(ξ + µγ1/2)2 + η2
) 1

2
(
(ξ − (1− µ)γ1/2)2 + η2

) 1
2

[
1

(ξ + µγ1/2)2 + η2

+
1

(ξ − (1− µ)γ1/2)2 + η2

]
+ η

(
1 +

1
4σ4

)
.

(13)

By introducing the transformation ξ = ξL3 + x and η = y, where (ξL3 , 0) is the
coordinate of Lagrangian point L3, the dynamic Equation (11) becomes:

ẍ− 2ẏ = Ωx,

ÿ + 2ẋ = Ωy.
(14)

Using Taylor’s formula to expand the right side of Equation (14) to the second- and
third-order, respectively, we obtain:

ẍ− 2ẏ = K1x + K2x2 + K3y2,

ÿ + 2ẋ = P1y + P2xy.
(15)

ẍ− 2ẏ = K1x + K2x2 + K3y2 + K4x3 + K5xy2,

ÿ + 2ẋ = P1y + P2xy + P3y3 + P4x2y.
(16)

The coefficient expressions of the expansion items above are listed as follows:

K1 =

(
1 +

1
4σ4

)
+ 2γ

3
2

[
q1(1− µ)

d3
01

+
q2µ

d3
02

]
+

2kγ2

d01d02

(
1

d2
01

+
1

d2
02

)
+

2kγ2

d2
01d2

02
V1V2,

K2 = −γ
3
2

[
3q1(1− µ)

d4
01

V1 +
3q2µ

d4
02

V2

]
− 3kγ2

d4
01d02

V1 −
3kγ2

d01d4
02

V2 −
3kγ2

d2
01d3

02
V1 −

3kγ2

d3
01d2

02
V2,

K3 =
3
2

γ
3
2

[
q1(1− µ)

d4
01

V1 +
q2µ

d4
02

V2

]
+

3kγ2

2d4
01d02

V1 +
3kγ2

2d01d4
02

V2 +
kγ2

2d2
01d3

02
V1 +

kγ2

2d3
01d2

02
V2,

K4 = 4γ
3
2

[
q1(1− µ)

d5
01

+
q2µ

d5
02

]
+

4kγ2

d5
01d02

+
4kγ2

d3
01d3

02
+

4kγ2

d01d5
02

+
4kγ2

d4
01d2

02
V1V2 +

4kγ2

d2
01d4

02
V1V2,

K5 = −6γ
3
2

[
q1(1− µ)

d5
01

+
q2µ

d5
02

]
− 6kγ2

d5
01d02

− 2kγ2

d3
01d3

02
− 6kγ2

d01d5
02
− 3kγ2

d4
01d2

02
V1V2 −

3kγ2

d2
01d4

02
V1V2,

P1 =

(
1 +

1
4σ4

)
− γ

3
2

[
q1(1− µ)

d3
01

+
q2µ

d3
02

]
− kγ2

d3
01d02

− kγ2

d01d3
02

,

P2 = 3γ
3
2

[
q1(1− µ)

d4
01

V1 +
q2µ

d4
02

V2

]
+

3kγ2

d4
01d02

V1 +
3kγ2

d01d4
02

V2 +
kγ2

d2
01d3

02
V1 +

kγ2

d3
01d2

02
V2,

P3 =
3
2

γ
3
2

[
q1(1− µ)

d5
01

+
q2µ

d5
02

]
+

3kγ2

2d5
01d02

+
kγ2

d3
01d3

02
+

3kγ2

2d01d5
02

,

P4 = −6γ
3
2

[
q1(1− µ)

d5
01

+
q2µ

d5
02

]
− 6kγ2

d5
01d02

− 2kγ2

d3
01d3

02
− 6kγ2

d01d5
02
− 3kγ2

d4
01d2

02
V1V2 −

3kγ2

d2
01d4

02
V1V2,
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where d01 =
∣∣∣uL3 + µγ

1
2

∣∣∣, d02 =
∣∣∣uL3 + (µ− 1)γ

1
2

∣∣∣ and V1 = sgn
(

uL3 + µγ
1
2

)
, V2 =

sgn
(

uL3 + (µ− 1)γ
1
2

)
.

Assume that the solutions of Systems (15) and (16) with respect to the perturbation
parameter ε(|ε| ≤ 1) are expressed as:

x = x1ε + x2ε2,

y = y1ε + y2ε2.
(17)

x = x1ε + x2ε2 + x3ε3,

y = y1ε + y2ε2 + y3ε3.
(18)

Substituting Equations (17) and (18) into Equations (15) and (16), respectively, and
comparing the degree of parameter ε, we have:

ε1 :

{
ẍ1 − 2ẏ1 = K1x1,

ÿ1 + 2ẋ1 = P1y1.
(19)

ε2 :

{
ẍ2 − 2ẏ2 = K1x2 + K2x2

1 + K3y2
1,

ÿ2 + 2ẋ2 = P1y2 + P2x1y1.
(20)

ε3 :

{
ẍ2 − 2ẏ2 = K1x3 + 2K2x1x2 + 2K3y1y2 + K4x3

1 + K5x1y2
1,

ÿ3 + 2ẋ3 = P1y3 + P2x1y2 + P2x2y1 + P3y3
1 + P4x2

1y1.
(21)

Note that Hu [34] used the Lindstedt–Poincaré perturbation method to give its periodic
solution of Equation (19) in the following form:

x1 = a1 cos(ωt) + b1 sin(ωt),

y1 = a2 cos(ωt) + b2 sin(ωt),
(22)

where ω = 2π/T and T is the period. Substituting Equation (22) into Equation (19) yields:[
(K1 + ω2)a1 + 2ωb2

]
cos(ωt) +

[
(K1 + ω2)b1 − 2ωa2

]
sin(ωt) = 0,[

(P1 + ω2)a2 − 2ωb1

]
cos(ωt) +

[
(P1 + ω2)b2 + 2ωa1

]
sin(ωt) = 0.

(23)

If Equation (19) has a nonzero periodic solution, it only needs to satisfy the coeffi-
cient determinant:

D =

∣∣∣∣ K1 + ω2 ±2ω
±2ω P1 + ω2

∣∣∣∣ = 0. (24)

Selecting the parameters a1 = 1, b1 = 0, correspondingly a2 = 0, b2 = −2ω/(P1 +ω2),
then the periodic solution of Equation (19) is:

x1 = cos(ωt),

y1 = b2 sin(ωt).
(25)

Similarly, the periodic solution of Equation (20) can be written as follows:

x2 = a3 + a4 cos(ωt) + a5 cos(2ωt) + b3 sin(ωt) + b4 sin(2ωt), (26)

y2 = a6 cos(ωt) + a7 cos(2ωt) + b5 sin(ωt) + b6 sin(2ωt), (27)
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then it can be obtained by a similar method that:

x2 = a3 + a5 cos(2ωt),

y2 = b6 sin(2ωt),
(28)

where:

a3 = −
K2 + K3b2

2
2K1

,

a5 =
−K2

(
P1 + 4ω̄2)+ b2

[
4P2ω + K3b2

(
P1 + 4ω̄2)]

32ω4 + 8(K1 + P1 − 4)ω2 + 2K1P1
,

b6 =
−P2b2

(
K1 + 4ω2)− 4ω

(
K3b2

2 − K2
)

32ω4 + 8(K1 + P1 − 4)ω2 + 2K1P1
.

Therefore, the periodic solution of the second-order expansion of the system (15) at
the Lagrangian point L3 with respect to the perturbation parameter ε is:

x = ξL3 + cos(ωt)ε + [a3 + a5 cos(2ωt)]ε2,

y = b2 sin(ωt)ε + b6 sin(2ωt)ε2.
(29)

In the same way, the periodic solution of the third-order expansion of system (16) at
Lagrangian point L3 concerning the perturbation parameter ε is:

x = ξL3 + cos(ωt)ε + [a3 + a5 cos(2ωt)]ε2 + a10 cos(3ωt)ε3,

y = b2 sin(ωt)ε + b6 sin(2ωt)ε2 + b12 sin(3ωt)ε3,
(30)

where ω is the positive real root of the equation (24), and:

a10 =

(
P1 + 9ω2)(−4K2a5 + 4K3b2b6 − K4 + K5b2

2
)
+ 6ω

(
2P2b6 + 2P2a5b2 − P3b3

2 + P4b2
)

324ω4 + 36(K1 + P1 − 4)ω2 + 4K1P1
,

b6 =
−P2b2

(
K1 + 4ω2)− 4ω

(
K3b2

2 − K2
)

32ω4 + 8(K1 + P1 − 4)ω2 + 2K1P1
,

b12 =

(
K1 + 9ω2)(−2P2b6 − 2P2a5b2 + P3b3

2 − P4b2
)
− 6ω

(
−4K2a5 + 4K3b2b6 − K4 + K5b2

2
)

324ω4 + 36(K1 + P1 − 4)ω2 + 4K1P1
.

4. Numerical Simulation

This section discusses the influence of the scale parameter σ of the regular moons’
mass distribution, the three-body interaction parameter k, and the variable-mass parameter
γ on the dynamic behavior of the periodic orbit near the Lagrangian point L3. According
to Stefan–Boltzmann’s theorem [35], the radiation factor parameters of the Sun and Saturn
are q1 ≈ q2 ≈ 1. In addition, the actual mass ratio parameter of the Sun and Saturn is
µ = 0.0002857.

4.1. Influence of the Scale Parameter σ

According to the value range of parameter k in [23], we chose k = −0.03, and γ = 0.5,
ε = 0.1. When the scale parameter σ of the lognormal distribution is 1, 2, 7.82406, and 100,
the second- and third-order approximate periodic orbits near the Lagrangian point L3 on
the x-y plane are shown in Figure 2. The degree of agreement between the second-order and
third-order approximate periodic orbits increases as σ increases. To visualize the influence
of the change in the value of σ on the periodic orbit, we depict the third-order periodic
orbits corresponding to different values of σ in the same three-dimensional coordinate
system and project them to the three coordinate axis planes, as shown in Figure 3.
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(a) (b)

(c) (d)

Figure 2. Approximate periodic orbits near the Lagrangian point L3 when (a) σ = 1, (b) σ = 2,
(c) σ = 7.82406, and (d) σ = 100, respectively.

Figure 3. Third-order periodic orbits and their planar projections under different σ-values.

When the scale parameter σ located on the denominator of the potential energy
function decreases, we found that the shape of the periodic orbits becomes complicated, as
shown in Figures 2 and 3. With the increase in σ in Figure 3, the shape of the third-order
approximate periodic orbit hardly changes, the position of Lagrangian point L3 gradually
moves away from the center-of-mass and then stays near (−0.7018, 0), and the periodic
orbit in the directions of x and y finally stabilizes in the area of (−0.8,−0.6)× (−0.2, 0.2).
The range of σ is limited to the confidence interval [6.05109, 11.0738]. In this case, we found
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that not only the second- and third-order periodic orbits are very close to each other under
a given σ-value in the confidence interval, but also the shape and amplitude of the orbit,
and the position of the Lagrangian point L3 remains almost unchanged. This also indicates
that when the moons’ mass obeys the best-fitting distribution, the statistical error has a
minimal effect on the periodic orbit near the Lagrangian point L3.

4.2. Influence of the Three-Body Interaction Parameter k

We selected the parameters γ = 0.5, σ = 0.65, and ε = 0.1. The approximate periodic
orbits near the Lagrangian point L3 on the x-y plane are shown in Figure 4 when k takes
−0.1, 0, 0.3, and 0.7.

(a) (b)

(c) (d)

Figure 4. Approximate periodic orbits near the Lagrangian point L3 when (a) k = −0.1, (b) k = 0,
(c) k = 0.3, and (d) k = 0.7, respectively.

To examine the influence of the change in k on the periodic orbit and the position
of the Lagrangian point L3, we describe the third-order periodic orbits corresponding to
different values of k in the same three-dimensional coordinate system and projected them
to the three coordinate axis planes, as shown in Figure 5.

From Figures 4 and 5, we found that the shapes of the second- and third-order periodic
orbits have slight differences when k takes a given value. At this time, the degree of
agreement between approximate periodic orbits of different orders cannot be effectively
improved by increasing the orbital order. Moreover, as shown in the projections of Figure 5,
the periodic orbit amplitudes along the x-direction do not change with the increasing k,
but they gradually increase along the y-direction. In addition, the periodic orbits and the
position of the Lagrangian point L3 move away from the center-of-mass.
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Figure 5. Third-order periodic orbits and their planar projections under different k-values.

4.3. Influence of the Variable-Mass Parameter γ

W selected the parameters σ = 0.65, k = −0.03, and ε = 0.1. The approximate periodic
orbits near the Lagrangian point L3 on the x-y plane are shown in Figure 6, when the
variable-mass parameter γ (0 ≤ γ ≤ 1) of the third body is 0.05, 0.1, 0.6, and 1.

(a) (b)

(c) (d)

Figure 6. Approximate periodic orbits near the Lagrangian point L3 when (a) γ = 0.05, (b) γ = 0.1,
(c) γ = 0.6, and (d) γ = 1, respectively.

Similarly, to explore the influence of the variable-mass parameter γ on the periodic
orbits and the position of the Lagrangian point L3, we describe the third-order periodic
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orbits corresponding to different values of γ in the same three-dimensional coordinate
system and projected them onto the three coordinate axis planes, as shown in Figure 7.

Figure 7. Third-order periodic orbits and their planar projections under different γ-values.

Figures 6 and 7 show that the difference between the second- and third-order ap-
proximate periodic orbits is considerable when γ is small. This is because a smaller γ
corresponds to a smaller third-body mass; in addition to being affected by the gravitational
force of the Sun and Saturn, it is also vulnerable to the gravitational or perturbation factors
of other celestial bodies, resulting in poor orbital stability, and there is an apparent differ-
ence between orbits of different orders. When γ is close to one, the degree of agreement
between the second- and third-order periodic orbits is near perfect, and the second-order
periodic orbit can be used to approximately replace the third-order periodic orbit. As the
mass of the third body decreases, that is as γ decreases, the periodic orbit will shift towards
the center-of-mass, and the position of the Lagrangian point L3 will gradually approach
the center-of-mass of the system. However, the change in γ hardly affects the amplitude of
the periodic orbit, and the areas of the periodic orbits are also approximately equal.

5. Conclusions

Based on the nonparametric test in statistics, this paper concluded that the best
distribution of the mass of Saturn’s regular moons is the lognormal distribution. A p-value
close to one indicates that the best-fitting works well. According to the results of statistical
inference, a mass function relationship that is different from the empirical Jeans’ law was
obtained, and on this basis, the dynamic equations of the variable mass restricted three-
body problem were established. With the help of the Lindstedt–Poincaré perturbation
method, the analytical expression of the approximate periodic orbit near the Lagrangian
point L3 was obtained. In addition, the effects of changes in scale parameter σ, the three-
body interaction parameter k, and the variable-mass parameter γ on the periodic orbit and
the position of the Lagrangian point L3 were also discussed.

When σ increases, the Lagrangian point L3 will gradually move away from the sys-
tem’s center-of-mass, and the degree of coincidence between the second- and third-order
periodic orbits will also be significantly improved. In the range of its confidence interval
[6.05109, 11.0738], the shape and amplitude of the orbit and the position of the Lagrangian
point L3 will remain almost unchanged, which shows that the statistical error has a small
effect on the periodic orbit near the Lagrangian point L3. For the change of k, the difference
between the second- and third-order periodic orbits will not change significantly, but the
increase of the value of k will not only make the Lagrangian point L3 move back to the
center-of-mass of the system, but also, the amplitude of the orbit will increase. The closer γ



Universe 2022, 8, 63 14 of 15

is to one, the better the coincidence between the second- and third-order periodic orbits. In
the mission of orbit design, it is believed that the second-order periodic orbit can replace
the third-order periodic orbit as the initial approximation of the orbit design. Within a
specific range, the change in γ will only affect the evolution of the periodic orbit and the
Lagrangian point L3.
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