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Abstract: The functional renormalization group flow of a scalar field theory with quartic couplings
and a sharp spatial momentum cutoff is presented in four-dimensional Minkowski space-time for the
bare action by retaining the entanglement of the IR and the UV particle modes. It is argued that the
open interaction channels have to be taken into account in quantum field theory defined by the help
of a cutoff, and a non-perturbative UV-IR entanglement is found in closed or almost closed models.

Keywords: open systems; renormalization group

1. Introduction

One of the most important lessons of contemporary physics is that the observed
phenomena depend qualitatively and quantitatively on the scales of observation. Hence
rather than looking for a “World Equation” or “Theory Of Everything” one looks for
effective theories, valid only in some scale window. We know several such theories, starting
with the Standard Model of Particle Physics and ending with the Standard Model of
Cosmology, and the challenge is to understand the way these models follow each other on
their renormalized trajectory as the resolution of the observations is changed. The goal of
this work is to orient the attention to an important feature of the effective theories, namely
that they deal with open dynamics. However, this point is actually obvious, since the
unobserved degrees of freedom represent an environment for the observed system the
systematic addressing of the problem has been lacking. We choose the simplest non-trivial
model for this purpose, describing a scalar field in 3 + 1 dimensions.

There is another reason to consider open theories. In the first phase of the history of
quantum field theory, attention was turned towards renormalizable models by the help of
renormalized perturbation expansion. However, the need to go beyond this approximation
scheme introduced the cutoff theories, which are defined by a large but finite UV cutoff
back into the foreground of the interest. The cutoff theories describe open dynamics, as well,
since the degrees of freedom beyond the cutoff serve as an environment. One can go a bit
further an state that the inherent UV divergences of quantum field theory simply exclude a
truly closed quantum dynamics by rendering the cutoff necessary. One might object that an
environment consisting of very energetic particle modes should not modify the low energy
physics in an important manner. However the question is more involved and a detailed
knowledge of the scaling laws are needed to understand the role of the open channels at
high energy in the physics at low energy.

Our main results, obtained for the four-dimensional real scalar theory, are as follows:
(i) The change of the cutoff towards either the IR or the UV direction renders the dynamics
open, in other words, closed theories are inconsistent according to the renormalization
group method. This is demonstrated explicitly in Section 3. (ii) There are open interaction
vertices representing open interactions which are relevant and leave a trace on the physical

Universe 2022, 8, 127. https://doi.org/10.3390/universe8020127 https://www.mdpi.com/journal/universe

https://doi.org/10.3390/universe8020127
https://doi.org/10.3390/universe8020127
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0002-2271-2688
https://doi.org/10.3390/universe8020127
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe8020127?type=check_update&version=2


Universe 2022, 8, 127 2 of 22

quantities for arbitrarily high cutoff scale. (iii) The theory with sufficiently long lived quasi
particles displays non-perturbative IR scaling and strong UV-IR entanglement, making the
comparison of the quantum and the classical dynamics more difficult. Therefore quantum
field theories should be used by allowing a mixed vacuum state. The most promising
method to deal with open systems is the Closed Time Path (CTP) scheme (or Schwinger-
Keldysh formalism) hence the renormalization of effective quantum field theories should
be handled in that formalism.

The CTP formalism was first developed for the perturbation expansion in the Heisen-
berg representation [1–3]; however its subsequent use is increasingly in open quantum
systems where the system-environment separation appears in different disguise in different
physical problem. The decoherence [4,5], a necessary condition of the classical limit of
quantum systems [6,7], can easily be grasped by establishing the additive probabilities
of histories [8–11] in a macroscopic environment. The environment of an observed col-
lective mode consists of the rest of the macroscopic system in non-equilibrium statistical
physics [12,13]. The environment of a dissipative system remains unreachable [14,15].
The environment of driven nanophysical, solid state or optical devices is in the macroscopic
domain [16]. The nano wires are imbedded into an environment of their leads [17]. A ther-
mal reservoir can always be assumed as part of the environment, too. High energy physics
applications stretch from thermal field theory [18] to astrophysics [19]. The path integral
representation of quantum mechanics is particularly well suited to this formalism [20],
the calculation we report below has been performed in the framework of the path integral
representation of the CTP formalism, covered concisely in ref. [19]. The environment of a
cutoff field theory is rather particular, it is provided by the UV modes which interact with
the retained IR modes. Our goal is to discover the impact of the entanglement between the
IR and the UV sectors on the IR dynamics.

The functional renormalization group method was already applied in the CTP formal-
ism to follow the coarse graining [21–23], addressing a quantum dot [24], open electronic
systems [25], the transport processes [26], the damping [27], the inflation [28], quantum
cosmology [29] and critical dynamics [30–33]. Furthermore, it can describe the behavior
of the Bose–Einstein condensate [34–36], the form of the spectral function [37,38], or real
time dynamics of gauge theories [39]. The renormalization group scheme was extended
to stochastic field theory [40], too. The need for bi-local terms in the action was argued in
ref. [41]. The extension to the 2PI formalism has been used used to find non-thermal fixed
points [42] and the renormalization group scheme can be transformed to trace the time
dependence [43–45]. The one-loop renormalizability of the scalar model has been worked
out on the one-loop level by the help of the more traditional multiplicative renormalization
group method [46,47].

Before starting, it is worth distinguishing between a regulator and a cutoff of a field
theory. The former renders the theory UV finite and the latter introduces a separation
of the UV and the IR modes. A regulated theory, which is formulated in continuous
space-time at arbitrarily large frequencies and wave vectors, can be called microscopic
and a theory with a cutoff is necessarily effective. A cutoff of scale Λ leaves the field
modes with spatial three-momentum |p| < (1− δ−)Λ untouched in the IR and suppresses
them completely in the UV for |p| > (1 + δ+)Λ where 0 ≤ δ− < 1 and 0 ≤ δ+ < ∞.
The modes (1− δ−)Λ < |p| < (1 + δ+)Λ are neither IR nor UV. A cutoff with δ± = 0 is
called sharp and yields a well defined splitting of the degrees of freedoms into an IR and an
UV class. A smooth cutoff with δ+ = ∞ is only a regulator. In a regulated (UV finite) theory
without cutoff the separation of the UV and the IR sector can be defined only qualitatively
by introducing the UV regime for scales where the dynamics is strongly influenced by
the regulator.

The choice of the width of a smooth cutoff, δ− + δ+, represents a compromise. One
the one hand, the width should be small to separate clearly the observed and the un-
observed modes. On the other hand, the width should be large enough to avoid long
range oscillations in the space-time. According to the traditional strategy, one uses the
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truncated gradient expansion as an ansatz for the action and such oscillations make this
approximation scheme ill-defined even in Euclidean space-time where the dynamics is
free of mass-shell singularities. However, the gradient expansion is a dead end street in
constructing a systematic approximation to real time dynamics owing to Ostrogadsky’s
instability [48,49] and should be replaced by the cluster expansion based on multi-local
action functionals. By anticipating such a strategy for the future, we rely on the functional
renormalization group method based on sharp cutoff with δ± = 0 [50], used in the CTP
formalism in the present work.

The CTP scheme is introduced briefly in Section 2 below and the implementation of
the gliding cutoff follows in Section 3. The renormalization group trajectory is discussed
in Section 4. The summary of our result together with the conclusion are presented in
Section 5.

2. Open Quantum Systems

The lowering of the cutoff, the blocking, has to be performed by keeping track of the
mixed state components generated by the elimination of the dynamical degrees of freedom.
This can be achieved in the CTP formalism, outlined in this section.

2.1. Closed System

We start with the density matrix of a closed system,

ρ[t f , Φ+, Φ−] = 〈Φ+|U(t f , ti)ρ(ti)U†(t f , ti)|Φ−〉, (1)

where ρ(ti) stands for the initial density matrix and U(t f , ti) denotes the time evolution
operator of a closed dynamics. The path integral expression,

ρ =
∫

D[φ̂]eiS[φ̂], (2)

can be obtained by performing the usual slicing procedure in time for U and U† where
φ̂ = (φ+, φ−) denotes the doublet field, the integration is over the field configurations
φ±(t f , x) = Φ±(x), the convolution with the initial density matrix at time ti is suppressed in
the notation for simplicity and the action is given by S[φ̂] = S[φ+]− S∗[φ−], S[φ] denoting
the usual action of the closed theory.

The traditional formalism of quantum field theory dealing with transition amplitudes
between pure states, 〈Φ f |U(t f , ti)|Φi〉, is called Single Time Path (STP) scheme. The redu-
plication of the degrees of freedom in (2) is to cope with the quantum fluctuations of the
bra and the ket in (3). This is not necessary in closed dynamics for pure initial states,
〈Φ+|ρ(ti)|Φ−〉 = Ψi(Φ+)Ψ∗i (Φ−), where these fluctuations are independent and identical.
The expression (2) of the density matrix belongs to the Open Time Path (OTP) scheme
because the trajectories of the path integral are open, have different end points. The redupli-
cation of the degrees of freedom is unavoidable in open systems where the non-factorizable
density matrix of a mixed state describes correlated bra and ket fluctuations.

2.2. Open System

Let us now assume that we observe the dynamics of the field φ which is interacting
with another field, ϕ, the full dynamics is closed and is described by the action S[φ, ϕ] =
Ss[φ] + Se[φ, ϕ]. To assure the reader that the environment influences the observed system
by the interactions taking place only during the observation time we assume that the system
and its environment are not entangled at the initial time meaning that the initial density
matrix factorizes as ρ(ti) = ρs,0(ti)ρe,0(ti). We are interested in the reduced density matrix
of the observed system,

ρ[t f , Φ+, Φ−] = 〈Φ+|Trϕ[U(t f , ti)ρ(ti)U†(t f , ti)]|Φ−〉, (3)



Universe 2022, 8, 127 4 of 22

given by the path integral expression, (2), and the effective action, S[φ̂] = Ss[φ+]− S∗s [φ−] +
Sin f l [φ̂]. The influence functional describes the open interactions [20],

eiSin f l [φ̂] =
∫

D[ϕ̂]eiSe [φ+ ,ϕ+ ]−iS∗e [φ− ,ϕ− ], (4)

where the integration is over the field configurations ϕ+(t f , x) = ϕ−(t f , x) and the convo-
lution with the initial density matrix is suppressed represents the system-environment in-
teractions.

It is advantageous to write the resulting effective action in the form

S[φ̂] = S1[φ+]− S∗1 [φ−] + S2[φ+, φ−], (5)

by separating the uncoupled and the coupled time axis contributions, δ2S2/δφ+δφ− 6= 0.
The independence of the bra and the ket fluctuations is reflected in the simple additive
structure of the action and the single time axes contribution, S1, comprises the closed,
conservative interactions. The coupling between the axis, S2, generates open classical
forces, correlates the bra and ket fluctuations and renders the reduced density matrix
mixed [51].

The physical content of the effective theory can be extracted from the generator
functional for the connected Green functions,

eiW[ ĵ] = TrφTrϕ[U(t f , ti; j+)ρ(ti)U†(t f , ti;−j−)] (6)

where the system dynamics is extended by the introduction of the external source j(x),
coupled linearly to the field φ(x) in the action, giving rise to the time evolution operator
U(t f , ti; j). This equation defines the CTP scheme because the path integral expression
of the generator functional contains closed trajectory pairs owing to the trace over the
Fock space. The shifts ti → ti + τ and t f → t f + τ is a symmetry of the dynamics due to
the time translation invariance of the action. This symmetry, which is important in the
STP formalism to keep the Green functions diagonal in the frequency space, is violated
by the trace operation. To regain the symmetry and simplify the formalism, we perform
the long evolution time limit, ti → −∞, t f → ∞, which renders the propagator of local
excitations diagonal in the continuous frequency space. However this step is more involved
as in the STP case [52]. In fact, this limit is assured in the latter case by Feynman’s iε
prescription, the adiabatic suppression of the excitations for long time evolution. Rather
than approaching slowly the vacuum, the final state is allowed to be chosen freely by the
dynamics itself in the CTP formalism hence the dynamics is non-trivial at any finite t f .

Finally, a comment on the time reversal invariance. The limit ti → −∞ and t f → ∞
simplifies the time reversal transformation to S[φ+, φ−] → T(S[φ+, φ−]) = −S∗[φ−, φ+],
namely the CTP generator functional with an action S[φ+, φ−] = −S∗[φ−, φ+] and without
any particular rule at the initial and the final time is time reversal invariant. The action
of a closed dynamics is time reversal invariant in this limit. The influence functional (4)
preserves this symmetry therefore open dynamics remains time reversal, as well. There is no
contradiction with the presence of dissipative forces which may arise in an open dynamics
since the time reversal, as defined above, reverses the direction of the time both for the
system and for its environment. In particular, the coupling between the time axis generates
terms in the (effective) equation of motion with broken time reversal symmetry [51].

2.3. Propagator

The limits ti → −∞ and t f → ∞ can easily be found for free quantum fields in the
following manner. The dynamics defined by the translation invariant action

S0 =
1
2

∫
dxdyφ̂(x)D̂−1(x− y)φ̂(y) (7)
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yields the generator functional

eiW[ ĵ] =
∫

D[φ̂]eiS0[φ̂]+i
∫

dxĵ(x)φ̂(x) = e−
i
2
∫

dxdyĵ(x)D̂(x−y) ĵ(y) (8)

with the CTP propagator,

δ2iW[ ĵ]
δi ĵ(x)δi ĵ(y)

= iD̂(x− y) =
(

Tr[T[φ+(x)φ+(y)]ρ] Tr[φ−(y)φ+(x)ρ]
Tr[φ−(x)φ+(y)ρ] Tr[T[φ−(y)φ−(x)]∗ρ]

)
, (9)

containing the Feynman propagator and its complex conjugate in the diagonal and the
Wightman function in its off-diagonal blocks. First one calculates these functions in the
operator formalism in the limit ti → −∞ and t f → ∞ for the vacuum as initial state,

D̂p =
∫

dxeip(x−y)D̂(x− y) =

( 1
p2−m2+iε −2iπδ(p2 −m2)Θ−p0

−2iπδ(p2 −m2)Θp0 − 1
p2−m2−iε

)
(10)

for a scalar particle of mass m. Please note that the only source of the off-shell amplitudes
in the propagator is the time ordering, the Wightman functions are on-shell and the
Heaviside functions represent the vacuum initial condition. Next the kernel of the free
action, the inverse propagator is found,

D̂−1
p =

(
p2 −m2 + iε −2iεΘ−p0

−2iεΘp0 m2 − p2 + iε

)
, (11)

by direct inversion of (10) when the Dirac-delta distribution is represented by a regulated
normalized Lorentzian peak.

The doublet fields φ±(x) are coupled only at the final time for finite t f . One would
have thought that this coupling becomes unimportant in the limit t f → ∞. However, such
a naive argument is misleading, since the suppression of the coupling between the doublets
removes the trace in (6) for whatever large t f we use. According to (11), the limit t f → ∞
indeed suppresses the coupling at t f and renders the dynamics translation invariant in
time, but the two time axes remain coupled by an infinitesimal, time translation invariant
operator, the off-diagonal elements on the right had side of (11). This coupling represents
the difference between the CTP and the STP schemes and is non-local in time,

Θ̃(t− t′) =
∫ dω

2π
e−iω(t−t′)Θω

= − i
t− t′ − iε

, (12)

to assure that the elementary excitations above the vacuum, propagating with (10), corre-
spond to positive energies.

2.4. Initial State

The initial state ρ(ti) in (3) influences the effective action for the observed subsystem.
We choose the perturbative vacuum as initial state in the limit ti → −∞ and assume the
usual adiabatic building up the true, interactig vacuum. This procedure can be summarized
by stating that the excitations over the initial state can only have positive energy.

To assess the importance of the positivity of the excitation energies, let us consider the
off-diagonal block of the propagator,

iD−+(x− y) = ∑
n
〈n|φ(y)ρ(ti)φ(x)|n〉, (13)

where the trace is obtained by summing over the stationary states of the full closed dynam-
ics. The contributions come from excited bra and ke states, |φ(x)〉 and ≤ φ(y)|, respectively.
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Hence this block of the propagator is non-vanishing only for positive energies states |n〉,
c.f. Figure 1 and Equation (11). A similar argument applies to D+−(x− y) which is non-
vanishing for negative energies. It is easy to see that this structure is inherited by the higher
order Green function; in addition, Tr[T[∏j φ(yj)]ρT[∏k φ(xk)]

∗ρ] is vanishing when the
total energy flowing from the legs yj to xk is negative.

time
t

t

f

i
< |>|

y x

φ φ

y x

(a) (b)

Figure 1. A solid line stands for the propagator in a CTP Feynman graph. The vertical dotted line sep-
arates the ket and the bra sectors where the field variable φ+ and φ− are used, respectively. The time
runs upward. (a) The Wightman function D−+(x − y) connects the bra and the ket components.
(b) An alternative representation of the Wightman function where the lines follow the world lines of
the excitations until the final time when the trace operation carried out in (6) connect them. These
excited states are on-shell.

Such a restriction leads to a remarkable simplification of the interactive Green func-
tions [51]. The CTP Feynman graphs can be grouped into three classes: the homogeneous
graphs are where all external and internal lines belong to the same CTP copy. The external
legs correspond to the same CTP copy but there are end points of the internal lines land at
both copies in inhomogeneous graphs. Finally, the genuine CTP graphs have external legs
attached to both copies. The homogeneous graphs are identical to the their STP counter-
parts and the genuine CTP graphs represent processes which generate excitations at the
final time. The interesting question is whether the inhomogeneous graphs differ in STP
and CTP. The answer to this question is negative if the excitations have positive energy, cf.
Figure 2.

G
+

G− G
G+

−

(a) (b)

Figure 2. An inhomogeneous Feynman graph contributing to a sixth order Green function of the
field φ+. The subgraphs G+ and G− belong to ket and bra excitations, respectively. (a) The sum of
the energies flowing into G− is vanishing hence at least on of the line carries negative energy and
the graph is vanishing. (b) The alternative representation with the lines indicating the excitations
contributing to the trace. This process is suppressed if the energy is vanishing at the initial time.

2.5. Open Interaction Vertices

The action S[φ+, φ−] of an open dynamics couples the field variables corresponding
to the bra and the ket. We have seen that such a coupling must be non-local in time and the
simplest classification of non-local action is the cluster expansion. The lowest order which
incorporates the condition of positive energy excitations is the bilocal level,

S[φ̂] =
1
2

∫
dxφ̂(x)D̂−1φ̂(x)−

∫
dx[U(φ+(x))−U∗(φ−(x))]



Universe 2022, 8, 127 7 of 22

−
∫

dxdyV(x− y, φ−(x), φ+(y)). (14)

The kernel of the first term is the inverse of the massless free propagator (11) and the
conservative interaction is described by a local potential,

U(φ) = ∑
0≤n≤N

gn

n!
φn. (15)

The open interactions are represented by a bilocal potential,

V(x− y, φ−, φ+) = Θ̃(x− y) ∑
0≤n++n−≤N

hn− ,n+

n−!n+!
φ

n−
− φ

n+
+ , (16)

where Θ̃(x− y) = Θ̃(x0 − y0)δ(x− y). Though one could in principle extend the ansatz by
allowing a non-trivial dependence in xµ − yµ such a restriction is needed for the invariance
with respect to the orthochronuos Lorentz group, the subgroup of the full Lorentz group
which preserves the direction of the time. The symmetry with respect to time reversal of the
open system dynamics is broken by the initial condition of the environment. The potentials
are complex, gn = gnr + igni, hmn = hmnr + ihmni, the imaginary part is generated by the
intermediate states of the Feynman diagrams according to the optical theorem and the
time reversal invariance of the full closed dynamics requires hmmr = 0. A closed theory
is obtained by the choice g2i = −ε, h11i = 2ε and vanishing higher orders, hn− ,n+ = 0 for
n± > 1.

We use below the truncation with N = 4,

U(φ) =
g2

2
φ2
+ +

g4

4!
φ4
+,

V(x− x′, φ−, φ+) = Θ̃(x− x′)
(

ih11iφ−φ+ + i
h22i

4
φ2
−φ2

+

)
. (17)

One has in principle O
(
φ−φ3

+

)
and O

(
φ3
−φ+

)
vertices but their evolution is of fourth

order in the cluster expansion hence they are ignored in our second order truncation scheme.
In the absence of energy conservation, the stability follows from the finiteness of the path
integral Im S[φ̂] > 0 which amounts to g4i < 12|h22i|. Since we assume the triviality of the
saddle point for the blocking the condition g2i < 0 has to be imposed, too.

2.6. UV-IR Entanglement and Decoherence

A distinguished feature of an open quantum system is that the system-environment
entanglement renders the system state mixed. A mixed state consists of several pure states,
the eigenstates of the density matrix, corresponding to a probability which is given by the
corresponding eigenvalue. It is crucial to note that different pure states do not enter into
interference with each other in the expectation value of observables [53]. Such a restriction
of the coherence is usually called decoherence [4,5], defined roughly as the suppression of
the off-diagonal elements of the density matrix. Naturally, such a definition depends on
the basis where the off-diagonal elements are taken. The decoherence is displayed below in
the field diagonal basis by the help of the influence functional [20].

It is enlightening to employ the parameterization φ± = φ± φd/2, by interpreting φ
and φd as the classical field and the quantum fluctuations, respectively. This comes from
the observation that the decoherence in the field’s diagonal basis arising in the classical
limit suppresses φd and the expectation value of any functional of φ± agrees with that of φ.
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The quantum fluctuation φd is suppressed by the real part of the exponent in the
path integral (2). Hence the generic φd suppression, present for φ = 0, is driven by its
φ-independent part,

− ImS|φ=0 =
∫ dp

(2π)4

φd,−p
g2i − h11iΘp0

4
φd,p + (φ2

d)−p
g4i +

h22i
4 Θp0

12
(φ2

d)p

, (18)

where (φ2
d)p denotes the Fourier transform of φ2

d(x). The finiteness of the life-time of the
quasi-particles created by φ(x) and φ2(x) in the closed dynamics is encoded by g2i and g4i
in a frequency independent manner. Though these parameters appear in the closed part of
the action they represent both closed and open interactions, the finite life-time formed in a
closed system and the leaking of the quasi-particle state into the environment via the open
interaction channels. The environment-induced decoherence appears exclusively as the
modification of the quantum fluctuations owing to the interaction with the environment
at positive energies, described by the parameters h11i and h22i. It is remarkable that
decoherence may turn into recoherence depending on the sign of the parameters, the latter
indicating the emergence of coherent structures due to the environment.

The φd-dependent part of ImS[φ, φd] for a given φ(x) describes the decoherence and
recoherence of the classical field configuration φ(x). Though the joint dynamics of both
φ and φd is stable as long as g4i < 12|h22i| the recoherence of a particular classical field
becomes strong for

− h22i
4

< g4i < 12|h22i|. (19)

3. Gliding Cutoff

The central point of this work, the need for treating the mixed components of the
vacuum state of a cutoff theory is discussed with the help of the functional renormalization
group method within the CTP formalism, introduced in this section.

3.1. Euclidean Field Theory at Thermal Equilibrium

Lowering the cutoff is the simplest to cast in terms of the partition function of an
Euclidean quantum field theory at finite temperature, written in a path integral form,

Tr[e−βHk ] =
∫

D[φ]e−Sk [φ], (20)

where the field is periodic in time with period length β and the regularization procedure is
considered a part of the action, Sk[φ], k denoting the gliding cutoff. The right hand side is
considered to be a partition function of a d-dimensional classical statistical physical system
with a Hamiltonian Sk[φ] at unit temperature. The cutoff should be introduced only for the
spatial components of the momentum to preserve the temperature.

The blocking of the bare dynamics consists of the decrease of the UV cutoff, k→ k−∆k
with ∆k = (δ− + δ+)k and the splitting the field variable into the sum φ→ φ + ϕ, where φ
and ϕ contains the IR (|p| < k(1− δ−)) and the UV (k(1− δ−) < |p| < k(1 + δ+)) modes,
respectively. The blocked action of the thinned theory is found by integrating over the UV
field [50],

e−Sk−∆k [φ] =
∫

D[ϕ]e−Sk [φ+ϕ]. (21)

One should in principle follow the cutoff-dependence of the generator functional for
the connected Green functions,

eWk [j] =
∫

D[φ]e−Sk [φ]+
∫

dxj(x)φ(x), (22)

to keep track of the cutoff-dependence of the dynamics. However, the presence of the
IR field on both side of the blocking relation (21) allows us to follow the evolution of the
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dynamics in the blocked action directly. The initial condition for the renormalized trajectory
is the bare action at the initial UV cutoff, Λ.

3.2. Real Time Dynamics of Quantum Field Theories

The realization that the change of the cutoff can be treated in a similar manner in
classical and quantum statistical physics had a strong impact on our way to handle many
body systems. It arose from interpreting the Sk[φ] in (21) either as the potential energy of a
classical field theory in d + 1 dimensions or as the action of an Euclidean d-dimensional
quantum field theory. However there is a fundamental difference between the classical and
the quantum dynamics, namely the entanglement, which forces us to follow a different
route in the case of quantum systems.

We continue with an isolated, closed dynamics with the initial value Λ of the cutoff.
The blocked action (20) can be used in thermal equilibrium to obtain the reduced density
matrix and the canonical partition function of the IR modes. However the IR-UV entangle-
ment creates a problem when the real time effective dynamics is sought. The traditional
use of (21) is to find the usual Green functions for the IR field, generated by

〈0Λ|U(t f , ti; j)|0Λ〉 =
∫

D[φ]eiSΛ [φ]+i
∫

dxj(x)φ(x) (23)

where |0Λ〉 denotes the vacuum of the closed cutoff theory with the initial cutoff Λ.
The problem with this expression is that it corresponds to a transition amplitude between
pure states while the elimination of a dynamical degree of freedom generates a mixed state.
In other words, the blocking takes us beyond the traditional STP formalism of quantum
field theory and forces us to use the reduced density matrix to represent the state of the
retained degrees of freedom. One can naturally construct the reduced density matrixes
by convoluting Green functions with different final states with the density matrix of the
full system. Rather than following such an involved scheme we turn to the CTP formalism
where these final state sums are already build in to streamline the calculation and to have
more transparent equations.

3.3. Changing the Cutoff in Open Quantum Systems

The generalization of the blocking (21) for CTP follows the steps of ref. [50], by starting
with

eiSk−∆k(φ̂) =
∫

D[ϕ̂]eiSk [φ̂+ϕ̂] (24)

and the continuing with the one-loop approximation,

eiSk−∆k(φ̂) =
∫

D[ϕ̂]eiSk [φ̂+ϕ̂0]+
i
2 ϕ̂

δ2Sk [φ̂+ϕ̂0 ]
δϕ̂δϕ̂ ϕ̂+O(∆k2). (25)

The unexpected strength of this procedure is the emergence of a one-loop equation
which is exact. In fact, the limit of infinitesimal blocking δ− + δ+ = ∆k→ 0 suppresses the
higher loops contributions. To simplify the resulting evolution equation one assumes that
the saddle point is trivial, ϕ̂0 = 0. One arrives in this manner at the Fresnel integral

ei[Sk−∆k(φ̂)−Sk(φ̂)] =
∫

D[ϕ̂]e
i
2 ϕ̂

δ2Sk [φ̂]
δϕ̂δϕ̂ ϕ̂ (26)

which yields the CTP form of the Wegner-Houghton equation

Ṡ[φ̂] = −i
k
2

Tr ln
[

δ2S
δφ̂δφ̂

]
, (27)

where the trace is over the UV field space and the dot stands for the derivative with respect
to τ = ln k/Λ. The solution of the evolution equation is rendered unique by specifying
the initial condition, the bare action at k = Λ. The compactness Equation (24) hides the
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an essential element of the blocking in quantum systems: We seek the reduced density
matrix (3) for the IR modes hence these are handled in the OTP formalism by the help
of the blocked action. The elimination of the UV modes and the execution of the partial
trace in (3), is carried out in the CTP formalism. The blocking is the placing of the modes to be
eliminated from the OTP to the CTP scheme. Without the infinitesimal off-diagonal term of (11)
in the free UV action the IR action remains additive and (24) represents the product of two
independent STP amplitudes.

To make the solution of this evolution equation feasible we project it onto the func-
tional space of the bilocal action (14). This step transforms the evolution Equation (27) into
a set of coupled differential equations for the running parameters of the blocked action.
These parameters are defined by evaluating the blocked action on a family of IR field con-
figurations, φs(x), called subtraction point. The parameters of a cutoff theory characterize
the physics at the cutoff scale, hence the subtraction point should be placed close to the
gliding cutoff. The imaginary time theories are free of mass-shell singularities and one cus-
tomarily places their subtraction point at the IR end, at a homogeneous field configuration
φx(x) = Φ, by hoping that the truncated gradient expansion can still reproduce the desired
dynamics around the cutoff scale. The real time dynamics is dominated by the propagating
quasi-particle modes hence the subtraction point should be placed into their kinematical
region [54]. Thus, the evolution equation is evaluated at the subtraction point, defined by
the IR field configuration φ

(s)
ω,p = Φ±(2π)4δ(p)ρω where φq =

∫
dxeiqxφ(x) and

ρω =
η

2π

[
1

(ω−ωs)2 + η2 +
1

(ω + ωs)2 + η2

]
, (28)

ωs = cs
√

k2 + g2r, cs ≥ 1 being a cutoff-independent dimensionless parameter of the
subtraction scheme. The η parameter introduces a regular wave packet in time and a
monochromatic subtraction point in the limit η → 0.

3.4. Evolution Equation

The contribution of the closed local part to the left hand side of the evolution equation
at the subtraction points, ∫

dtU(Φρ(t)) = ∑
n

gnun

n!
Φn, (29)

yields

un =

(
iη
2π

)n ∫
dte−nη|t|

(
eiωrt

ωs + iη
− e−iωrt

ωs − iη

)2

. (30)

The open part contributes by

∫
dtdt′V(t− t′, φ−(t), φ+(t′)) =

∞

∑
n±=0

hn− ,n+un− ,n+

n−!n+!
Φn−
− Φn+

+ , (31)

with

un− ,n+ =

(
iη
2π

)n−+n+ ∫
dtdt′

∫ ∞

0

dω

2π
e−i(t−t′)ω−(n−+n+)η(|t|+|t′ |)

×
(

eiωrt

ωs + iη
− e−iωrt

ωs − iη

)n−
(

eiωrt′

ωs + iη
− e−iωrt′

ωs − iη

)n+

. (32)

The right hand side of the evolution equation contains the second functional derivative,

δ2S
δφ̂pδφ̂q

= D̂−1
p δp,q − Σ̂p,q (33)
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with δp,q = (2π)4δ(p− q). The inverse propagator,

D̂−1
p =

(
p2 − g2 + iε − i

2 h11i[1− sign(p0)]

− i
2 h11i[1 + sign(p0)] −p2 + g∗2 + iε

)
, (34)

yields the propagator

D̂p =

 1
p2−g2

− ih11i
(p2−g2r)2+g2

2i
Θ−p0

− ih11i
(p2−g2r)2+g2

2i
Θp0) − 1

p2−g∗2

, (35)

in the absence of the IR subtraction field. It contains the Feynman propagator with complex
mass in the diagonal and the corresponding Lorentz-spread mass-shell condition in the
off-diagonal matrix elements. The self energy is

Σ(+,p)(+,p′) = δp,p′
1
2

Ip′0−p0(g4Φ2
+ + Θp′0−p0 h22Φ2

−),

Σ(−,p)(−,p′) = δp,p′
1
2

Ip0−p′0(Θp0−p′0 h22Φ2
+ − g∗4Φ2

−),
Σ(−,p)(+,p′) = δp,p′ J−p0,−p′0 h22Φ+Φ−,
Σ(+,p)(−,p′) = δp,p′ Jp′0,p0 h22Φ+Φ−, (36)

with

Iω =
∫ dω′

2π
ρω−ω′ρω′ ,

Jω,ω′ =
∫ dω′′

2π
Θω′′ρω′′+ωρω′′+ω′ . (37)

The Neumann expansion of the right hand side of the evolution equation in the self
energy,

Ṡ = −i
k
2

(
Tr[ln D̂−1]−

∞

∑
n=1

1
n

Tr[(D̂Σ̂)n]

)
, (38)

is sufficient up to the quadratic order and the identification of the coefficients of the terms
O
(
Φn
±
)
, n ≤ 4 produces the beta functions, the derivatives of the parameters with respect

to t,

ġ2 = Ag4,
ġ4 = Bg2

4,
ḣ11i = Ch11ih22i,
ḣ22i = Dg∗4 g4h2

11i + Eg4h22i + E∗g∗4 h22i, (39)

cf. Figures 3 and 4 where the g2-dependent coefficients are

A = −i
k3 I0

4π2u2

∫ dω

2π
D(k)
++ω,

B = −i
3k3

4π2u4

∫ dω

2π

dω′

2π
I2
ω−ω′D

(k)
++ωD(k)

++ω′ ,

C = −i
k3

4π2u1,1

∫ dω

2π
d(k)ω (Θ−ω J−ω,−ω + Θω Jω,ω),

D =
k3

4π2u2,2

∫ dω

2π

dω′

2π
d(k)2ω Θ−ωΘω′ I

2
ω−ω′ ,

E = −i
k3

8π2u2,2

∫ dω

2π

dω′

2π
D(k)
++ωD(k)

++ω′ I
2
ω−ω′Θω−ω′ , (40)
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with D̂(k)
ω = D̂(k)

ω,kn and n2 = 1, d(k)ω = −i/[(ω2 − k2 − g2r)
2 + g2

2i]. The higher than two-
cluster contributions arising from the Neumann expansion have been ignored in deriving
the beta functions. The integrations can been carried out analytically.

● ◗

◗

●

●

Figure 3. The Feynman graphs contributing to the STP parameters. The horizontal dashed line
connects the two clusters of the bi-local vertices which couple the bra and the ket.

◗

◗ ● ● ●

◗

◗

Figure 4. The Feynman graphs contributing to the CTP parameters. The time inverted version of the
last graph enters, as well.

It is remarkable that the STP beta functions contain no open parameters; in other
words, the STP parameters evolve as in the traditional STP formalism of Quantum Field
Theory. This follows immediately from the equivalence of the inhomogeneous CTP and the
STP graphs, mentioned in Section 2.4.

3.5. Separatrices and Phase Transition

A quantum phase transition corresponds to a separatrix of the renormalization group
flow, indicating that small modifications of the theory in the UV lead to large changes
in the IR. One cannot strictly establish a phase transition with the help of a truncated
renormalization group flow but it is reasonable to assume that while stable flows of an
appropriately truncated flow represent a good approximation of the exact case this does
not hold for trajectories with IR singularity. In fact, the latter never occurs for the exact
flow and suggests that important parameters are missed due to the limited ansatz space
for the blocked action. Hence the trajectory on the border of the stable IR flow indicates a
separatrix of the exact solution.

One can gain some qualitative insight into the scaling laws of the closed parameters
by writing the first two equation of (39) as a single equation for x = g2,

ẍ = −νx ẋ + ξ ẋ2, (41)

describing the complex trajectory of a one-dimensional damped motion with

νx = −∂τ A
A

,

ξ =
∂x A + B

A
(42)

in terms of the complex beta function parameters A(τ, x) and B(τ, x). The quartic coupling
is found by g4 = ẋ/A. It is instructive first to inspect this equation in simpler cases.

In an O(4) invariant Euclidean field theory the parameters are real and one finds at
the subtraction point φ(s)(x) = 0

AE = − k4

16π2ω2
k

,

BE =
3k4

16π2ω4
k

, (43)
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and

νxE = −2
k2 + 2g2

k2 + g2
,

ξE = − 4
k2 + g2

. (44)

The renormalized trajectory starting with the initial conditions g2(Λ)� k2
in, ġ2(Λ) =

Ag4(Λ) stretches toward negative τ. In the UV scaling regime, k2 > |g2(k)|, νx ≈ −2, ξ ≈ 0,
and the evolution starting with positive velocity (towards decreasing t!) is slowed down by
the friction. In the IR regime, k2 < |g2(k)|, νx ≈ −4, ξ ≈ −4/g2, both the friction and the
O
(

ẋ2) term continue to damp the evolution. However, for sufficiently negative g2(Λ) the
damped increase of g2 may be slow enough to reach g2(k) = −k2 at k = ksp > 0. As this
crossover is approached B diverges sending g4 to zero and an IR singularity is generated.

In the real time theory with sharp momentum cutoff at the subtraction point φ(s)(x) =
0 one finds

AM,0 = − k3

8π2ωk
,

BM,0 =
3k3

16π2ω3
k

, (45)

and

νx,M,0 = −2k2 + 3g2

k2 + g2
,

ξM,0 = − 2
k2 + g2

. (46)

The parameters remain real and the symmetry broken phase is recovered in a qualita-
tively similar manner as in the imaginary time case.

The evolution of the theory in Minkowski space-time defined by a plane wave sub-
traction point (28) with η → 0 at the threshold, cs = 1, is driven by

AM,1 = − k3

4π2ωk
,

BM,1 =
6k3

π2ω2
k

(
1− i

ωk
2g2i

)
, (47)

where

νx,M,1 = −2k2 + 3g2

k2 + g2
,

ξM,1 = − 49
2(k2 + g2)

+
12i
g21

, (48)

and the symmetry broken phase is recovered as well. The complex trajectory may avoid the
singularity by having g2i(ksp) 6= 0. A short enough finite life-time of the quasi particles may
weaken the crossover singularity and render the simple ansatz for the action applicable in
the IR region within the symmetry broken phase.

The evolution of the open parameters can be read off from the scale-dependence of
y = ln h11j satisfying the equation

ÿ = −νyẏ−U′(y) (49)
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corresponding to a one-dimensional particle of unit mass, moving under the influence of a
friction force with Newton constant

νy = − Ċ
C
− (Eg4 + E∗g∗4), (50)

and a potential

U(y) = −CD
2

g∗4 g4e2y. (51)

The real beta function parameters are τ-dependent, C(τ, x(τ)), D(τ, x(τ)) and
E(τ, x(τ)). The other open parameter is given by h22i = ẏ/C. The trajectory starting
in the vicinity of the Gaussian fixed point where C, D, E < 0 with y(0) ≈ −∞ and ẏ(0) ≈ 0.
The dominant scale-dependence of C and D with finite η is e3τ , which weakens the potential
but keeps the friction stable and approximately scale invariant. The coordinate y rolls down
on the potential in the positive direction reflecting the irreversible accumulation of the
system-environment entanglement during the change of the cutoff. The entanglement is
weak for short lived quasi particle excitations hence C and D decreases with increasing
−g2i(Λ). Thus, the exponentially fast decreasing potential cannot destabilize the evolution
for large enough −g2i(Λ). However, the lowering of −g2i(Λ) strengthens the potential
and the exponentially steep potential may make the trajectory divergent at finite scale,
generating a separatrix for the flow of the open parameters. The evolution in the UV
direction makes the instability stronger since ν < 0.

4. Renormalization Group Flow

The issues we intend to comment on or clarify by the numerical integration of the
evolution equations are (1) the phase structure of the theory, (2) the closed bare theory limit,
(3) the relevance of the open parameters of the action and (4) the renormalizability. We
do this by exploring the renormalization group flow restricted to initial conditions in the
vicinity of the Gaussian fixed point.

4.1. Phase Structure

The closed parameters evolve independently from the open channels hence the usual
phase transition between the Z2 symmetrical and the spontaneous broken phases takes
place at the same place as in the closed theory. The singularity at τ = τsp is a spinodal
instability indicating that the vacuum is in the symmetry broken phase [55–59]. The IR
singularity of the open channels indicates that the theory may undergo a phase transition
where the system-environment interactions increases abruptly for the IR modes.

Such a phase structure is borne out by the integration of the evolution equations (39).
The four phases are shown on the complex g2(Λ) plane of Figure 5. The spontaneous
breakdown of the Z2 symmetry is indicated within the framework of the local potential
approximation by the divergence of the propagator, k2 + g2(k)→ 0, followed by a spinodal
instability as the cutoff is lowered. The transition between the symmetric and the symmetry
broken phase is a slightly right bended vertical line. The phases with regular or divergent
h22i are separated by the curve which increases with g2r.

When the quasi-particles are stable enough to interact with the environment, the the-
ories below the curve, the evolution drives h22i → ∞ at finite cutoff. The large positive
h22i turns on the interactions with the environment indicating a large amount of system-
environment entanglement generated by the lowering of the cutoff. Hence the phases
under the curve are called symmetric or symmetry broken entangled phases. The exact
renormalized trajectories are regular in the IR direction and the singularity in the entangled
phase indicates the insufficiency of our ansatz to give account of the increased amount
of entanglement. A safe conclusion, point (iii) of the introduction, is that the long range
macroscopic dynamics turns suddenly non-perturbative in terms of the microscopical
quasi-particles at the curve separating the upper and the lower phases. With an improved
ansatz for the action which allows us to penetrate the entangled phase the lower end of
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the separation of the phases SE and SBE should become visible since the STP parameters
evolve independently from the open interactions.

-1.0 -0.5 0.0 0.5 1.0

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

g2 r( )

-
g
2

i

(Λ
)

S

SB

SE

SBE

Figure 5. The phase structrure on the complex g2(Λ) plane at g4(Λ) = 0.1, h11(Λ) = −i2g11i(Λ),
h22(Λ) = 0 and η = 1, S: symmetrical phase, SB: symmetry broken phase and the entengled phases
with the subscript E.

The Lorentzian width η of the subtraction point controls the energy interval around
the ωs where the contributions to the evolution of the running coupling constants are read
off from the right hand side of Equation (27) and smaller width makes the propagating
quasi-particles dominate. The general trend is that the entangled phase shrinks with the
increase of η, we need propagating quasi-particles to pick up the system-environment
entanglement. The decrease of η leads ultimately to numerical instabilities, c.f. Section 4.2.
Among the initial conditions with reliable solution we found no example that the closed
limit −g2,i(Λ) = h11i(Λ)/2→ 0, cf. the inverse propagator (11), with g4i = h22i = 0 would
avoid the entangled phase.

The typical trajectories, shown in Figure 6, indicate the presence of two independent
phase transitions, one for the closed and the other for the open parameters. The left
inequality of (19) is satisfied in the entangled phase indicating the presence of strong
decoherence. A more detailed flow at the SB− SBE phase boundary is given in Figure 7.
The strong increase of −g2i and −g4i in the SB phase before the evolution has to be halted
indicates that the quasi particle become unstable at the onset of the spinodal instability.
On the other side of the phase transition, in the SBE phase, the singularity appears only in
the open parameters.

4.2. Closed Initial Dynamics

The main message of this work is the necessity of using open quantum field theories
and retaining the inevitable UV-IR entanglement during the renormalization; see point (i) in
the Introduction. While it is well known that the system-environment entanglement plays a
decisive role in open quantum dynamics this feature has not been followed in quantum field
theory. One can already see from the qualitative picture of Section 3.5 that the movement
with the cutoff either towards the IR or the UV direction leads to the accumulation of
the entanglement contributions. A more detailed view of the generation of the mixed
contributions to the blocked action can be found by inspecting the renormalization group
flow in the limit of a closed initial theory, ε = −g2i = h11i/2→ 0 and g4i = h22i = 0.
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Figure 6. Typical trajectories at g4(Λ) = 0.1, h11(Λ) = −i2g2i(Λ), h22(Λ) = 0 in the phases S
(g2(Λ) = 0.2− i0.002, continuous line), SB (g2(Λ) = −0.006− i0.002, dashed line), SE (g2(Λ) =

0.45− i0.002, dotted line) and SBE (g2(Λ) = −0.006− i0.001, dashed-dotted line), η = 1.

Let us make a blocking step k→ k− ∆k in a closed theory with infinitesimal η when
φ(s)(x) = (eiωst + e−iωst)/2 and consider the beta function of g4. The energy flowing
through the third Feynman graph of Figure 3 is ω̄ = ±2ωs or ω̄ = 0. The integrand
of the loop integral with integral variable ω contains two propagators with energies ω
and ω̄ − ω in the second line of Equation (40). The imaginary Dirac-delta peaks of the
propagators, written by the help of the identity 1/(x + iε) = P1/x− iπδ(x), coincide for
cs = 1, ω̄ = ±2ωs at ω = ±ωs and generate an O

(
ε−1) imaginary contribution to the

beta function. The same holds for 1 ≤ cs < 1 +O(ε) however the imaginary part drops
to O(ε) when 1 +O

(
ε0) < cs. Such a threshold singularity renders the subtraction point

dominated by the propagating particles, 1 ≤ cs < 1 +O(ε), difficult to use numerically.
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Figure 7. Zooming into the SB − SBE phase boundary. The trajectories in the SB (dotted line)
and SBE (dashed line) phases together with the separatrix (continuous line) belong to the initial
conditions g2r(Λ) = −0.12 (dashed line), g2r(Λ) = −0.141 (solid line), g2r(Λ) = −0.18 (dotted line),
g2i(Λ) = −0.001, g4(Λ) = 0.1, h11(Λ) = −i2g2i(Λ), h22(Λ) = 0 and η = 1.

One can avoid the threshold singularity by the use of a subtraction point with finite
η which is a wave packet rather that a monochromatic wave. The coinciding poles of the
closed theory still generate O

(
ε−1) imaginary contribution to the beta functions of g4 and

h22 but the dependence on the subtraction point, on the cs parameter, is now regular. We
could follow the trajectories down to ε ∼ 10−7 with cs = 1 and η being at least around 10
however the roundoff errors in the initial phase of the evolution arising from the incomplete
cancellation between the O

(
ε−1) partial fractions of the loop integral make the trajectory

unreliable beyond this limit.
The renormalized trajectory of the symmetric non-entengled phase is shown as ε and

is decreased in Figure 8. The limit is best tested by the convergence of g2r or h11i. The almost
vertical evolution of g4i and h22i, the parameters with vanishing initial condition, is an
artifact of the logarithmic plot. In terms of elementary processes, the second graph of
Figure 4 drives a rapid increase of h22i by starting in a closed theory which feeds back
to accelerate the increase of the originally infinitesimal h11i. These two processes are
represented by the coefficient C, D of the exponential function in the potential (51).
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Figure 8. The closed limit, ε → 0, followed in the interval −10−6 < ε < −10−7 in the symmetric
phase at g2(Λ) = 0.1− iε, g4(Λ) = 0.1, h11(Λ) = −i2ε, h22(Λ) = 0, η = 9.2.

4.3. Relevance of Open Channels

The second quantitative point showing the importance of the open interaction channels
consists of an estimate of their impact on the expectation values of physical quantities.
Here we face the issue of the relevance of the IR-UV entanglement for observables defined
at a scale far below the cutoff scale where the observed system and its environment are
separated. A simple power counting argument indicates that the parameters h11 and h22
are renormalizable and therefore should be kept in the action.

A more detailed view of the mixed contributions to the blocked action can be found
by inspecting the renormalized trajectory. The open channels bring in new two parameters
into the action, h11 and h22. The former is relevant (super renormalizable) according to
power counting. The latter is marginal and higher order contributions make it relevant or
irrelevant (non-renormalizable). To see what happens, we followed the evolution of h22i
corresponding to initial conditions where only its initial condition was slightly changed
around zero. The trajectories plotted on Figure 9 correspond to the initial conditions
h22i(Λ) = i0.0001, i0.0005, i0.001 and their increasing separation in the UV scaling regime
indicates the relevance of this coupling constant, as in point (ii) of the Introduction.
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Figure 9. Scaling of the open parameters at g2(Λ) = 0.2− i0.002, g4(Λ) = 0.1, h11(Λ) = −i2g2i,
h22(Λ) = i0.0001 (solid line), h22(Λ) = i0.0005 (dashed line), h22(Λ) = i0.001 (dotted line), η = 1.

4.4. Towards the UV

Finally, a few words about the UV direction and the issue of renormalizability. The con-
ditions of renormalizability can be imposed on four, increasingly restrictive, levels. (i) The
cutoff can be sent to infinity without encountering divergences. The perturbative condition
is given by power counting and the φ4 model of our ansatz belongs to this class. (ii) The
renormalization conditions, a set of non-linear equations, are soluble for the bare parame-
ters. These conditions are violated in non-asymptotically free theories which are restricted
to free theories as the cutoff is removed. The simple qualitative view of the renormalization
group flow of the open parameters, mentioned in Section 3.5, suggests an UV Landau pole
for h22i since the friction term with its “wrong”, unstable sign sends h22i to infinity at finite
scale. (iii) The last condition can be strengthened by requiring the stability of the dynamics.
The stability is expressed in terms of inequalities for the imaginary parts of some running
parameters, which are specially difficult to maintain. All the trajectories encountered in our
numerical efforts to follow the theory in the UV direction led to a condensate, g2i < 0, or to
the violation of the stability conditions. (iv) The cutoff is assumed to be very large in the
multiplicative renormalization group scheme where the contributions, proportional to a
negative powers of the cutoff, are neglected. This approximation is untenable in effective
theories where the possibility of placing freely the cutoff to higher energy is assured by
requiring the absence of the UV Landau pole. Since the functional renormalization group
method handles all contribution within the restricted functional space it is better suited to
test the renormalizability.

One can see without going into the details that the renormalization procedure and
the interpretation of possible UV fixed points of open theories remains a challenging open
question at the present time.

5. Summary

The functional renormalization group equation of the four-dimensional φ4 model is
discussed here to clarify the importance of the open channels of a quantum field theory.
The solution of the evolution equation is sought within a rather simple functional space for
the action where the local vertices in space are kept up to fourth order in the field with the
minimal necessary time dependence for the open channels. Furthermore, the absence of
condensate is assumed in deriving the evolution equation.

It is argued that open interactions arise when the cutoff is moved either in the UV
or the IR direction. Furthermore, it is found that the open parameters of the action are
relevant around the Gaussian fixed point. Thus, closed theories are simply excluded from
considerations by requiring an adjustable separation between the observed IR and the
unresolved UV degrees of freedom.

Another result which is important in establishing a relation between the macroscpic
and the microscopic physics is that our simple model exhibits a non-perturbative relation
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between the microscopic (UV) and the strongly decohered macroscopic (IR) degrees of
freedom within a closed or almost closed system. Thus, one cannot take the correspondence
principle between the classical and the quantum degrees of freedom for granted.

These results obviously raise further questions. An obvious issue is the systematic
extension of the anstaz space for the action and the check of the stability of these results.
This direction requires the use of multi-local actions [60] and the increase of the order of the
truncation in the field amplitude. Another question is the boost invariance. The separation
of the degrees of freedom into IR and UV classes is based on the de Broglie wavelength
and is not boost invariant. Furthermore, there is a conflict between regulators and boost
symmetry since the latter has infinite volume [61]. Hence the question arises whether
Lorentz symmetry can be maintained in a quantum field theory at any scale. Furthermore,
the obvious importance of the system-environment entanglement in open dynamics results
in the spectacular success of quantum field theory, by ignoring the open interaction channels
rather surprising. A revisiting of the renormalization program of realistic models is needed
to locate the mechanism which operates in certain observations and suppresses the UV-
IR entanglement.
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