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Abstract: It has been pointed out that different choices of momenta can be associated to the same
noncommutative spacetime model. The question of whether these momentum spaces, related by
diffeomorphisms, produce the same physical predictions is still debated. In this work, we focus
our attention on a few different momentum spaces that can be associated to the Galilean Snyder
noncommutative spacetime model and show that they produce different predictions for the energy
spectrum of the harmonic oscillator.

Keywords: noncommutative geometry; quantum spacetime; deformed quantum mechanics

1. Introduction

The Snyder noncommutative spacetime model was proposed in Ref. [1] with the aim
of removing the divergencies emerging in the quantum field theory. The main idea was that
spacetime coordinates could acquire a discrete spectrum characterized by a fundamental
length scale without breaking Lorentz invariance. This was the first time noncommuting
coordinates were considered in the literature, and this paper anticipated the development
of noncommutative geometry by several decades 1. While this is well-known, it was
recently made explicit [3–6] that this model was also the first instance were spacetime
noncommutativity is linked to momentum space curvature.

In fact, in Snyder’s construction, the momentum manifold has a de Sitter geometry, and
spacetime coordinates are identified with the translation generators over such a manifold.
Then, spacetime noncommutativity can simply be understood as a consequence of the
curvature of the momentum manifold.

Such a feature has recently emerged as a general implication of noncommutative
spacetime models [7,8], including those where relativistic symmetries are described by
a (Planck-scale) deformation of the standard Lorentz transformations [9–13]. These de-
velopments converged in the relative locality proposal [14,15], which pointed out that
locality of interactions becomes an observer-dependent statement in these models, thus
motivating a shift of focus from spacetime to momentum space, at least for what concerns
phenomenological applications [16–19].

Because of the prominent role played by momentum space geometry in uncovering the
phenomenology of noncommutative spacetime models and of quantum gravity in general,
it is important to understand whether diffeomorphisms on momentum space, which induce
a change of coordinates on the manifold, have physically relevant implications. When
importing the intuition from general relativity, where spacetime diffeomorphisms do not
modify the physics, one is led to think that this should also be the case for momentum
space [20–22]. However, while one can indeed identify a duality between features of
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models with curved momentum space and models with curved spacetime [23], the two
constructions have fundamental differences, due to the different role played in physics
by spacetime and momentum space. For instance, while we know that the evolution of
spacetime geometry is governed by Einstein’s equations, at the moment we have no strong
motivation to introduce dynamics on momentum space. Additionally, it seems difficult
to link momentum diffeomorphisms to a change of observer, which is contrary to the
interpretation of coordinate invariance in general relativity.

In this paper, we aim to contribute to the understanding of this issue by focussing
on the phenomenological consequences of different choices of momentum coordinates
for the Snyder model. While the canonical momenta in the Snyder model are given by
the Beltrami projective coordinates on the de Sitter manifold, in recent work [5,6] it was
noted that, in fact, any choice of projective coordinates on the manifold provides viable
momentum coordinates, which are commutative and behave classically under the Lorentz
transformations. Because the phase space algebra associated to any such set of coordinates
is different, in Refs. [5,6] it was suggested that indeed, the physical predictions of the
Snyder model would depend on this choice, but no explicit example was provided. The
possibility of generalizing a Snyder model was already noticed in Refs. [24,25] from an
algebraic point of view, but its phenomenology was not investigated, except in the context
of the field theory.

Here, we fill this gap by focussing on what could be considered the simplest nontrivial
example, namely that of a one-dimensional harmonic oscillator. Because this is a quantum-
mechanical setting, we will work in the nonrelativistic limit of the Snyder model 2. Until
recently, this limit was usually taken by simply considering the three-dimensional Euclidean
version of the model, thus neglecting the role of the time coordinate [27–32]. However,
in the Ref. [5] it was shown that explicitly taking the limit for c → ∞ gives rise to more
complicated relations, where a mix between time and space variables is still present. The
resulting model has been called a Galilean Snyder model, to emphasize that it is invariant
under Galilean transformations. This is reviewed in Section 2, where we also discuss the
different sets of momentum space coordinates that will be used in our analysis. These are
the Beltrami projective coordinates, which we mentioned earlier, the Poincaré projective
coordinates, and the embedding coordinates of the de Sitter manifold. In Sections 3 and 4,
we derive, for each of these three sets of coordinates, the deformed Schrödinger equation
for the harmonic oscillator and its eigenvalues. We find that indeed, the energy levels differ
in the various cases. We comment on our results in the concluding Section 6.

In this work, we shall limit our investigation to the Snyder model, with a positive
coupling constant, but similar calculations can be performed for the anti-Snyder model [27],
taking into account its different properties. We work with a mostly plus metric, Latin
uppercase indices run from 0 to 4, Greek lowercase indices run from 0 to 3, and Latin
lowercase indices run from 1 to 3.

2. The Snyder Model and Its Galilean Limit

As we mentioned, Lorentz invariance of the Snyder model is guaranteed by the fact
that spacetime coordinates are identified with the translation generators over a curved
manifold with de Sitter geometry. In 3 + 1 dimensions, the full algebra of symmetries over
such manifold is given in terms of boosts Ki, rotations Ji, and translations Pα as follows:

[Ji, Jj] = εijk Jk, [Ji, Pj] = εijkPk, [Ji, Kj] = εijkKk,

[Ki, P0] = Pi, [Ki, Pj] =
1
c2 δijP0, [Ki, Kj] = − 1

c2 εijk Jk,

[P0, Pi] = −β2 Ki, [Pi, Pj] = β2 1
c2 εijk Jk, [P0, Ji] = 0.

(1)

Following Ref. [5], we write the speed of light c explicitly in order to be able to easily
perform the Galilean limit. Here, β2 plays the role of curvature of the de Sitter manifold.
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The Snyder noncommutative spacetime parametrized by the coordinates xµ is then
obtained upon the identification

x0 := −1
c

P0, xi := −c Pi, (2)

so that spacetime coordinates satisfy the following commutation relations induced by the
curvature of the de Sitter manifold:

[x0, xi] = −β2 Ki,
[
xi, xj

]
= β2 εijk Jk. (3)

In the Snyder model, momenta live on the de Sitter manifold. However, the specific
choice of coordinates on this manifold to be identified with the physical momenta is not
univocal. Indeed, several options, described in detail in Ref. [6], satisfy the basic properties
of being commutative and transforming classically under Lorentz transformations. The
starting point is given by the ambient coordinates on the de Sitter manifold, ηA, that satisfy
the constraint

η2
4 − β2 η2

0 +
β2

c2

(
η2

1 + η2
2 + η2

3

)
= 1. (4)

The canonical choice for physical momenta, also used in the original paper by Snyder [1], is
given by the (appropriately rescaled) Beltrami projective coordinates, related to the ambient
coordinates as follows:

p0 := c
η0

η4
, pi :=

1
c

ηi
η4

. (5)

With this choice of physical momenta, and turning coordinates and momenta into
Hermitian operators, x̂µ ≡ ih̄xµ, p̂ν ≡ pν, that act on the space of functions of momenta
ψ(p), the Snyder phase space commutation relations read:

[x̂0, x̂i] = −ih̄β2 K̂i,
[
x̂i, x̂j

]
= ih̄β2 εijk Ĵk,

[x̂0, p̂α] = ih̄(−δ0α +
β2

c2 p̂0 p̂α), [x̂i, p̂0] = ih̄β2 p̂0 p̂i,[
x̂i, p̂j

]
= ih̄(δij + β2 p̂i p̂j),

[
p̂α, p̂β

]
= 0,

(6)

with boost and rotation generators given by

K̂i = −x̂0 p̂i +
1
c2 x̂i p̂0, Ĵi = εijk x̂j p̂k. (7)

It is easy to check that these phase space commutators are invariant under Lorentz
transformations and that both spacetime coordinates and momenta transform classically
under Lorentz symmetries.

In Ref. [6], different choices for the physical momenta were analyzed. In particular,
it was noted that any set of projective coordinates for the de Sitter manifold would have
the required properties and so be a viable option, all choices being related by a momen-
tum space diffeomorphism. For example, one could define momenta via the Poincaré
projective coordinates:

p̃0 := c
2η0

1 + η4
, p̃i :=

1
c

2ηi
1 + η4

. (8)

These momenta are related to the Beltrami momenta via the following diffeomorphism:

p̃α =
2pα

1 +
√

1− β2

c2 p2
0 + β2(p2

1 + p2
2 + p2

3)
, pα =

p̃α

1 + β2

4c2 p̃2
0 −

β2

4 ( p̃2
1 + p̃2

2 + p̃2
3)

. (9)

Using as physical momenta the ones related to the Poincaré coordinates, the resulting
Snyder phase space is
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[x̂0, x̂i] = −ih̄β2 K̂i,
[
x̂i, x̂j

]
= ih̄β2 εijk Ĵk,

[x̂0, p̃α] = ih̄
(
−δ0α

(
1 +

β2

4c2 p̃2
0 −

β2

4
( p̃2

1 + p̃2
2 + p̃2

3)

)
− β2

2c2 p̃0 p̃α

)
, [x̂i, p̃0] = ih̄ β2

2 p̃0 p̃i,[
x̂i, p̃j

]
= ih̄

(
δij

(
1 +

β2

4c2 p̃2
0 −

β2

4
( p̃2

1 + p̃2
2 + p̃2

3)

)
+

β2

2
p̃i p̃j

)
,

[
p̃α, p̃β

]
= 0,

(10)

where we omitted the hat on the p̃α operators in order to simplify the notation. The Lorentz
boosts and rotations now take the form

K̂i =
−x̂0 p̃i +

1
c2 x̂i p̃0

1 + β2

4c2 p̃2
0 −

β2

4 ( p̃2
1 + p̃2

2 + p̃2
3)

, Ĵi =
εijk x̂j p̃k

1 + β2

4c2 p̃2
0 −

β2

4 ( p̃2
1 + p̃2

2 + p̃2
3)

. (11)

Finally, one can obtain a quasi-canonical structure for the Snyder phase space by adopt-
ing physical momenta that are more directly related to the de Sitter ambient coordinates:

π0 := c η0, πi :=
1
c

ηi. (12)

In this case, the Snyder phase space algebra reads:

[x̂0, x̂i] = −ih̄β2 K̂i,
[
x̂i, x̂j

]
= ih̄β2 εijk Ĵk,[

x̂α, π̂β

]
= ih̄ηαβ

√
1 + β2

c2 π̂2
0 − β2(π̂2

1 + π̂2
2 + π̂2

3),
[
π̂α, π̂β

]
= 0,

(13)

and the Lorentz generators are given by

K̂i =
−x̂0π̂i +

1
c2 x̂iπ̂0√

1 + β2

c2 π̂2
0 − β2(π̂2

1 + π̂2
2 + π̂2

3)
, Ĵi =

εijk x̂jπ̂k√
1 + β2

c2 π̂2
0 − β2(π̂2

1 + π̂2
2 + π̂2

3)
. (14)

Having kept track of the factors of c throughout our brief summary, it is easy to work
out the Galilean limit c→ ∞ of the Snyder model in either set of momentum coordinates.
Using the Beltrami momenta, the Galilean limit gives the following phase space relations:

[x̂0, x̂i] = −ih̄β2 K̂i,
[
x̂i, x̂j

]
= ih̄β2 εijk Ĵk,

[x̂0, p̂α] = −ih̄δ0α, [x̂i, p̂0] = ih̄β2 p̂0 p̂i,[
x̂i, p̂j

]
= ih̄(δij + β2 p̂i p̂j),

[
p̂α, p̂β

]
= 0,

(15)

where now the boost generator is the Galilean one:

K̂i = −x̂0 p̂i . (16)

Using the momenta given by the Poincaré projective coordinates, the phase space
algebra in the Galilean limit reads:

[x̂0, x̂i] = −ih̄β2 K̂i,
[
x̂i, x̂j

]
= ih̄β2 εijk Ĵk,

[x̂0, p̃α] = −ih̄ δ0α

[
1− β2

4
( p̃2

1 + p̃2
2 + p̃2

3)

]
, [x̂i, p̃0] = ih̄ β2

2 p̃0 p̃i,[
x̂i, p̃j

]
= ih̄

[
δij

(
1− β2

4
( p̃2

1 + p̃2
2 + p̃2

3)

)
+

β2

2
p̃i p̃j

]
,

[
p̃α, p̃β

]
= 0,

(17)

with Galilean boost and rotation generators:

K̂i =
−x̂0 p̃i

1− β2

4 ( p̃2
1 + p̃2

2 + p̃2
3)

, Ĵi =
εijk x̂j p̃k

1− β2

4 ( p̃2
1 + p̃2

2 + p̃2
3)

. (18)
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Finally, using the momenta given by ambient coordinates, the Galilean phase space reads:

[x̂0, x̂i] = −ih̄β2 K̂i,
[
x̂i, x̂j

]
= ih̄β2 εijk Ĵk,[

x̂α, π̂β

]
= ih̄ ηαβ

√
1− β2(π̂2

1 + π̂2
2 + π̂2

3),
[
π̂α, π̂β

]
= 0,

(19)

with Galilean boost and rotation generators

K̂i =
−x̂0π̂i√

1− β2(π̂2
1 + π̂2

2 + π̂2
3)

, Ĵi =
εijk x̂jπ̂k√

1− β2(π̂2
1 + π̂2

2 + π̂2
3)

. (20)

As was already emphasized in Ref. [5], the Galilean limit does not remove the mixing
between space and time components of the phase space, as is instead the case in standard
mechanics. In the following sections we shall study the spectrum of the harmonic oscillator
in this limit and compare it with the case of classical quantum mechanics and the Euclidean
Snyder model.

3. The Snyder–Galilei Harmonic Oscillator in Embedding Coordinates

We can now embark into the investigation of the one-dimensional quantum harmonic
oscillator in the framework of the Galilean Snyder model, starting from the simplest case
which is given by the embedding coordinates. First of all, we observe that the phase
space coordinates x̂µ and π̂µ can be realized in terms of canonical coordinates x̄µ and p̄µ

such that 3 [
x̄µ, x̄ν

]
= 0,

[
x̄µ, p̄ν

]
= ih̄ηµν

[
p̄µ, p̄ν

]
= 0, (21)

the realization being given by:

x̂µ =
√

1− β2 p̄2
k x̄µ, π̂µ = p̄µ. (22)

Starting from this realization, we can easily define a momentum representation for the
phase space operators, setting p̄1 → p, x̄1 → ih̄ ∂

∂p , p̄0 → E, x̄0 → −ih̄ ∂
∂E , so that

π̂1 = p, x̂1 = ih̄
√

1− β2 p2 ∂

∂p
, (23)

π̂0 = E, x̂0 = −ih̄
√

1− β2 p2 ∂

∂E
, (24)

and the relevant Hilbert space is a (1+1)-dimensional space given by square integrable
functions ψ(p, E) of p and E.

We assume that the Hamiltonian for the harmonic oscillator takes the standard form
in terms of the Snyder spacetime coordinates and physical momenta:

H =
π̂2

1
2m

+
mω2

2
x̂2

1. (25)

In the representation (23) and (24) the associated Schrödinger equation reduces to

Eψ =
1

2m

[
−h̄2m2ω2

(
(1− β2 p2)

∂2

∂p2 − β2 p
∂

∂p

)
+ p2

]
ψ. (26)

The energy coordinate E completely decouples from the equation, so one can set
ψ = ψ(p), with Hilbert space measure

dΩ =
dp√

1− β2 p2
, (27)

so that the space coordinate operator x̂1 in (23) is Hermitian.
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The Schrödinger equation can be solved exactly in terms of Mathieu functions. In
fact, after defining a new variable z = β−1 arcsin βp, which induces a trivial measure in the
Hilbert space, dΩ = dz, the Schrödinger equation reads:

d2ψ

dz2 −
1
α2

(
sin2 βz

β2 − 2mE

)
ψ = 0, with α = h̄mω. (28)

After another change of variables, defining y = βz, Equation (28) can be further
simplified and written in the standard form of a Mathieu equation:

d2ψ

dy2 + (a− 2q cos 2y)ψ = 0, with q = − 1
4α2β4 , a =

−1 + 4β2mE
2α2β4 . (29)

The dimensionless variable q so defined is very large, and in this regime the eigenval-
ues of (29) can be obtained from Equation (20.2.30) of [33], giving

En = h̄ω

[(
n +

1
2

)
− αβ2

4

(
n2 + n +

1
2

)
+ o(α2β4)

]
. (30)

Alternatively, corrections to the standard energy spectrum for small β can be found
via a perturbative approach, writing

sin2 βz
β2 = z2 − β2

3
z4 + o(β4), (31)

so that the Schrödinger Equation (28) simplifies to

d2ψ

dz2 −
1
α2

(
z2 − β2

3
z4 − 2mE

)
ψ = 0. (32)

This is the equation of an anharmonic oscillator and can be treated using standard
perturbation theory. The solutions of the unperturbed equation are

ψn =
1√√

πα 2nn!
e−z2/2α Hn

(
z√
α

)
, En = h̄ω

(
n +

1
2

)
, (33)

and the corrections to the spectrum to first order in β2 are given by

∆En = − h̄ωβ2

3α2 (ψn, z4 ψn) = −
h̄ωαβ2

8

(
n2 + n +

1
2

)
. (34)

Hence the energy levels of the harmonic oscillator read:

En = h̄ω

[(
n +

1
2

)
− αβ2

4

(
n2 + n +

1
2

)
+ o(α2β4)

]
, (35)

and one recovers (30).

4. The Snyder–Galilei Harmonic Oscillator in Beltrami Coordinates

As we mentioned, we are interested in comparing the physical predictions of the
Snyder model when different choices for the physical momenta are taken. To this aim,
in this section we derive the energy spectrum of the harmonic oscillator using a different
set of momentum space coordinates than the one of the previous section, namely those
associated to the Beltrami projective coordinates, defined in Equation (5).
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Following the same steps as in the previous section, we start by identifying a realization
of the Galilean Snyder phase space (15) in terms of canonical coordinates (21):

x̂0 = x̄0, x̂i = x̄i + β2 p̄i p̄α x̄α, p̂µ = p̄µ. (36)

In 1 + 1 dimensions this reduces to

x̂0 = x̄0, x̂1 = (1 + β2 p̄2
1)x̄1 − β2 p̄1 p̄0 x̄0, p̂µ = p̄µ, (37)

and allows us to find a representation on momentum space:

p̂1 = p, x̂1 = ih̄(1 + β2 p2)
∂

∂p
+ ih̄β2 p E

∂

∂E
, (38)

p̂0 = E, x̂0 = −ih̄
∂

∂E
. (39)

The Hilbert space of these operators is that of square integrable functions ψ(p, E) of p
and E. With the choice (38) of operator ordering, the measure in this Hilbert space is 4

dΩ =
dp dE

(1 + β2 p2)3/2 . (40)

As before, we write the Hamiltonian for the harmonic oscillator in the standard form
in terms of the Snyder spacetime coordinates and physical momenta, which are now the
Beltrami momenta:

H =
p̂2

1
2m

+
mω2

2
x̂2

1. (41)

Using the representation (38) and (39), the Schrödinger equation can be written as

[
E− p2

2m

]
ψ = − α2

2m

[
(1 + β2 p2)2 ∂2

∂p2 + 2β2(1 + β2 p2)p
∂

∂p

(
1 + E

∂

∂E

)
+

(
E2 ∂2

∂E2 + 2E
∂

∂E

)
β4 p2 + β2E

∂

∂E

]
ψ, (42)

with α defined in (28). Because on the r.h.s. of this equation the terms that contain E are
homogeneous, a possible ansatz for the eigenstate ψ is

ψ(E, p) = Eµφ(p). (43)

In this case, Equation (42) reduces to an ordinary Schrödinger equation for φ(p):[
(1 + β2 p2)2 ∂2

∂p2 + 2(1 + µ)(1 + β2 p2)β2 p
∂

∂p
+

(
2Em
α2β2 + µ

)
β2 +

(
µ2 + µ− 1

α2β4

)
β4 p2

]
φ = 0. (44)

An equation of this form has been solved in the Ref. [34] in the way we sketch in the
following. Changing variables

z =
p√

1 + β2 p2
, with ′ =

d
dz

, (45)

and defining
φ = (1− β2z2)λ/2 f (βz), (46)

one obtains

(1− β2z2) f ′′ − (1− 2µ + 2λ)βz f ′ +
(

µ− λ +
2Em
α2β2

)
f +

(
µ2 + µ + λ2 − λ− 2λµ− 1

α2β4

)
β2z2

1− β2z2 f = 0. (47)
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To have a normalizable solution the last term must vanish, fixing the value of λ to

λ = µ +
1
2

(
1±

√
1 +

4
α2β4

)
. (48)

Choosing the positive sign for the square root, Equation (47) reduces to a Gegenbauer
equation with eigenvalues

En = h̄ω

[(
n +

1
2

)(√
1 +

α2β4

4
+

αβ2

2

)
+

n2

2
αβ2

]
, (49)

and the solution ψ of the Schrödinger Equation (42) is:

ψ(E, p) = const× Eµ
n (1− β2z2)λ/2Cλ

n (βz). (50)

An important result is that in spite of the explicit dependence on the energy of the
Schrödinger equation, its eigenvalues only depend on the parameters α and β. Thus, En
is independent of µ, which can therefore be chosen arbitrarily. The most natural choice is
µ = 0, namely λ = 1

2

(
1 +

√
1 + 4

α2β4

)
, so that the solution ψ of the Schrödinger equation

becomes independent of E and can be normalized.

5. The Snyder–Galilei Harmonic Oscillator in Poincaré Coordinates

The final set of coordinates we will use in order to compare predictions of different
choices for the physical momenta in the Snyder model is that associated to the Poincaré
projective coordinates, defined in Equation (8). In 1 + 1 dimensions, Poincaré coordinates
lead to calculations rather similar to the previous case.

The realization of the Galilean Snyder phase space (17) in terms of canonical coordi-
nates (21) reads:

x̂µ =

(
1− β2

4
p̄2

α

)
x̄µ +

β2

2
p̄µ p̄α x̄α, p̃µ = p̄µ. (51)

In 1 + 1 dimensions this reduces to

x̂0 = x̄0, x̂1 =

(
1 +

β2

4
p̄2

1

)
x̄1 −

β2

2
p̄1 p̄0 x̄0, p̃µ = p̄µ, (52)

and allows us to find the following representation on momentum space:

p̃1 = p, x̂1 = ih̄
(

1 +
β2

4
p2
)

∂

∂p
+ ih̄

β2

2
p E

∂

∂E
, (53)

p̃0 = E, x̂0 = −ih̄
∂

∂E
. (54)

The Hilbert space of these operators is that of square integrable functions ψ(p, E) of p
and E. With the choice (53) of operator ordering, the measure in this Hilbert space is

dΩ =
dp dE(

1 + β2

4 p2
)3/2 . (55)

We again choose the standard Hamiltonian for the harmonic oscillator, written now in
terms of the Snyder-Poincaré coordinates:

H =
p̃2

1
2m

+
mω2

2
x̂2

1. (56)
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Using the representation (53) and (54), the resulting Schrödinger equation can be
written as(

E− p2

2m

)
ψ = − α2

2m

[(
1 +

β2

4
p2
)2

∂2

∂p2 +
β2

2

(
1 +

β2

4
p2
)

p
∂

∂p

(
1 + 2E

∂

∂E

)
+

(
E2 ∂2

∂E2 +
3
2

E
∂

∂E

)
β4

4
p2 +

β2

2
E

∂

∂E

]
ψ, (57)

with α defined in (28). Following the same steps as in the previous section, we make
the ansatz

ψ(E, p) = Eµφ(p), (58)

so that the Schrödinger Equation (57) reduces to[(
1 +

β2

4
p2
)2

∂2

∂p2 +
1 + 2µ

2

(
1 +

β2

4
p2
)

β2 p
∂

∂p
+

(
2Em
α2β2 +

µ

2

)
β2 +

(
µ2 +

µ

2
− 4

α2β4

)
β4

4
p2

]
φ = 0. (59)

This can be solved as in the previous case by changing variables as

z =
p

2
√

1 + β2

4 p2
, with ′ =

d
dz

, (60)

and defining

φ =
(

1− β2z2
)λ/2

f (βz). (61)

Then Equation (59) reads

(1− β2z2) f ′′ − (1− 4µ + 2λ)βz f ′ +
(

2µ− λ +
8Em
α2β2

)
f +

(
4µ2 + 2µ + λ2 − λ− 4µλ− 16

α2β4

)
β2z2

1− β2z2 f = 0. (62)

Again, the solution is normalizable if the last term vanishes, namely

λ = 2µ +
1
2

(
1±

√
1 +

64
α2β4

)
. (63)

Choosing the positive sign in (63), Equation (62) reduces to a Gegenbauer equation
with eigenvalues

En = h̄ω

[(
n +

1
2

)(√
1 +

α2β4

64
+

αβ2

8

)
+

n2

8
αβ2

]
, (64)

and the eigenfunction of the Schrödinger equation (57) is

ψ(E, p) = const× Eµ
n (1− β2z2)λ/2Cλ

n (βz). (65)

Also in this case En is independent of µ, and we can choose µ = 0, namely λ =
1
2

(
1 +

√
1 + 64

α2β4

)
, so that ψ becomes independent of E and normalizable.

6. Conclusions

The goal of this work was to investigate whether different choices of momentum
space coordinates associated to the same noncommutative spacetime models are physically
relevant. We did so by focussing on the well-known Snyder model, for which spacetime
coordinates can be identified with the translation generators over a de Sitter manifold
and momenta with coordinates on such manifold. We derived the energy spectrum of



Universe 2022, 8, 108 10 of 13

the harmonic oscillator in three different cases corresponding to the following choices
of physical momenta, related to each other by a momentum space diffeomorphism: one
where the physical momenta are those related to the embedding coordinates of the de Sitter
manifold, one where they are related to the Beltrami projective coordinates, and finally, one
where they are related to the Poincaré projective coordinates. We found that these different
choices of physical momenta indeed imply different behaviours of the energy spectrum. In
fact, the leading order contributions, up to O(β2), can be written as

En = h̄ω

[(
n +

1
2

)
+ εαβ2

(
n2 + n +

1
2

)]
, (66)

where ε = − 1
4 for embedding coordinates, ε = 1

2 for Beltrami coordinates, and ε = 1
8 for

Poincaré coordinates. In all cases, the leading corrections are qualitatively similar, but the
coefficients of the correction terms beyond the standard contribution are different, con-
firming that different parametrizations of the momentum space give rise to nonequivalent
physical models.

Let us remark that this result was obtained by considering changes in the momentum
space coordinates as active diffeomorphisms on the momentum space, to use the termi-
nology of [35,36] 5. In fact, for each set i of momentum space coordinates, p(i)α , we take the
Hamiltonian of the harmonic oscillator to be written in the standard form in terms of these,
namely H = p(i) 2

2m + mω2

2 x̂2
1. The p(i)α are thus identified with the physical momenta. Our

results confirm, in a completely different setting and using a different model, the conclu-
sions of the Ref. [35], that active diffeomorphisms lead to different physical predictions.
Of course, if we were to start from a Hamiltonian that takes a standard form in terms of
some momentum space coordinates p(i)α and then simply mapped to some new momenta
p(j)

α by writing p(i)
(

p(j)
)

, we would be doing a mere change of variables, or a passive
diffeomorphism, using the terminology of [35,36]. In this case, the Hamiltonian would take

a different, non-standard, form in terms of the new momenta p(j)
α , H =

p(i)(p(j)) 2

2m + mω2

2 x̂2
1,

but then we would not expect to see physically relevant differences.
As an additional result of our analysis, we were able to start comparing the predictions

of the Galilean limit of the Snyder model, which we used in this work, to the predictions
of the Euclidean Snyder model [27], where only spatial coordinates are affected by non-
commutativity. The latter had been widely used to describe the modifications induced
by Snyder-like spacetime noncommutativity on non-relativistic systems, see for example,
Refs. [27–29,31,32]. In Ref. [5] it was shown that the proper non-relativistic limit of the
Snyder model leads, in fact, to the Galilean Snyder model, which differs from the Euclidean
one because of a residual noncommutativity between the space and time coordinates. How-
ever, this difference might not be significant in the simple model we considered here, since
the energy levels of the harmonic oscillator in the Euclidean Snyder model [27] coincide
with those obtained here with the Beltrami coordinates, Equation (30), which are also the
coordinates used in Ref. [27]. This can be traced back to the fact that, in the representation
used here for the Beltrami coordinates, the spatial coordinate does depend on energy and
its derivative, but in a homogeneous way. Thus, the solutions to the Schrödinger equation
are separable and the part depending on momenta satisfies the same Schrödinger equation
as the solutions in the Euclidean model. One may wonder whether this is true also for the
other choices of parametrization of the phase space considered in this paper or for less
elementary models. The first option does not seem to be the case. In fact, we notice that
for the Poincaré coordinates we can make a similar remark to the one that applies to the
Beltrami coordinates. Moreover, the representation of the embedding coordinates does
not mix spatial momenta and energy. We thus conjecture that the second option is more
likely, since the only way to have effects different from the Euclidean case would be to have
a time-dependent Hamiltonian, so that the time coordinate introduces terms that are not
homogeneous in the energy.
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From a phenomenological point of view, one may estimate the size of the corrections
to the quantum mechanical spectrum. These are of order h̄ωβ2. As usual with the Snyder
model, if one identifies β with the Planck length, the corrections are very small and hence
not detectable experimentally. For example, if one considers an atomic-size oscillator with
mω ∼ 1021 kg/s, they are of order 10−14. However, one cannot exclude that the parameter
β has a much greater value [37,38] (see also discussion in Ref. [39] and references therein).

A simple application of our results is given by the computation of the partition function
for the different models. This is given by

Z =
∞

∑
n=0

e−
En
T , (67)

where T is the temperature and we have set to 1 the Boltzmann constant. Using the
spectrum (66) and expanding to the first order in αβ2, one obtains

Z ≈
∞

∑
n=0

e−
h̄ω
T (n+ 1

2 )

[
1− εαβ2

(
n2 + n +

1
2

)]
=

2
sinh h̄ω

2T

[
1− εαβ2 h̄ω

2T
coth2 h̄ω

2T

]
. (68)

From the partition function one can obtain the specific heat of the oscillator as CV = 1
T2

δ2Z
δ(1/T)2 .

Its behavior is similar to that of the anharmonic oscillator [40] and is displayed in Figure 1
for the various models. For T → 0 it is analogous to the standard harmonic oscillator, but
for high values of T it is rather different. In particular, in the case of Beltrami or Poincaré
coordinates it decreases for high temperature, while in embedding coordinates it increases.
This behavior can be compared to the standard case, where it tends to a constant value.
This property could lead to interesting phenomenological consequences.

0.2 0.4 0.6 0.8 1.0 1.2 1.4

T

Ñw

0.2

0.4

0.6

0.8

1.0

1.2

CV

Figure 1. Specific heat of the oscillator in the different cases: Beltrami coordinates (green curve),
Poincaré coordinates (purple curve) embedding coordinates (red curve); the blue curve corresponds
to the standard harmonic oscillator. In the plot we set αβ2 = 0.1, in order to make the difference
between the curves visible.

It would be interesting to further investigate the issues raised in the present paper,
possibly considering other physical frameworks, especially in three spatial dimensions,
such as the hydrogen atom, which could be compared with the results obtained in the
Ref. [29] in the case of the Euclidean Snyder model.
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Notes
1 For a short review, see [2].
2 It has been noticed that in a covariant formulation of relativistic quantum mechanics the non-interacting Snyder model is

trivial [26]. The model studied here is interacting and non-relativistic, so we do not expect that the observations of [26] apply in
this case.

3 From now on lovercase Greek indices run from 0 to 1, since we are working in 1 + 1 dimensions.
4 It would also be possible to choose a representation with x̂0 = −ih̄

(
∂

∂E + 1
2

)
and dΩ =

dp dE
1+β2 p2 , obtaining of course identical

results.
5 Related to this, notice that diffeomorphisms in momentum space do not define “generalized canonical” transformations for the

deformed phase space algebra, since they do not leave the algebra unchanged.
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