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Abstract: Oscillation of two-flavour neutrinos is considered within a quantum mechanical framework
of consistent (decoherent) dynamic histories. We investigate how consistency of selected three-time
histories is affected by oscillation parameters. We show that the presence of normal matter is crucial
to maintain consistency of certain classes of neutrinos’ dynamic histories and that the consistency
does not depend on a Majorana phase and remains insensitive to a potential CP violation.
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1. Introduction

A measurement allows gaining knowledge about the present of quantum systems.
It is, however, difficult to infer from this what the system’s past had been. It is even
harder to say something about quantum systems that are essentially closed (such as,
for example, the whole universe is) and which do not allow for an external observer,
or those that are simply resistant to measuring attempts. Neutrinos, hardly interacting with
anything, can serve as a natural example of such a ’measurement-resistive’ system. Time-
evolving neutrinos [1,2] and their oscillations are an example of quantum systems that are
particularly difficult to measure. Despite tremendous progress in experimental techniques,
even the latest and most sophisticated experiments [3] do not resolve all doubts concerning
the fundamental properties of these mysterious and fascinating particles, stimulating
research from various perspectives. The dynamic properties of neutrino oscillations [4–6],
initially studied in the most natural particle physics [1] context, are rich of various aspects
typically related to quantum information processing [5,7–13]. Such a broad and multi-
perspective interest is motivated not only by the natural applicability of methods and
computational techniques borrowed from quantum information processing in the domain
of particle physics, but also by recent proposals of information transfer protocols utilizing
neutrinos [14] as a resource, or even reflecting the enduring human dream of interstellar
communication [15].

The discovery of neutrino oscillations was the first evidence in favour of physics
beyond the Standard Model, obviously attracting the particle community [16]. Comple-
mentary studies of neutrino oscillations from the perspective of quantum information and
communication are naturally supported by an effective description of neutrinos, after limit-
ing to a simplified two-flavour model, as a qubit [4,10,12,13,17–19]. The time evolution of a
neutrino qubit originates from a fundamental non-correspondence between the neutrino’s
flavour {|νe〉, |νµ〉} and massive states |1〉, |2〉. Motivation for, and even the importance of,
such research is additionally boosted by results of recent neutrino experiments [3] regarding
possible non-trivial CP-violations. Potentially violated CP symmetry may indicate a need
for the reformulation of many fundamental aspects of the universe from the micro to macro
scales. It is because of the charge-conjugation parity reversal that CP symmetry between
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matter and antimatter can be questioned in light of the results of the above-mentioned
experiment [3].

Making a measurement and finding a quantum particle in a particular quantum state
does not allow inferring its state in the past. Orthodox researchers claim that one cannot talk
about a quantum particle between measurements at all. This obvious limitation of standard
quantum theory inspires its extensions. The two-state vector formalism [20] and consistent
(or decoherent) histories approaches [21–25] are but two fruitful examples going beyond
(and sometimes across) the Copenhagen interpretation. We have recently been witnessing
how the two above-mentioned approaches are competitively applied to a problem of the
past behaviour of a quantum particle in an interferometric experiment [26–29]. Consistent
histories, which we further utilize in this paper, are known to gain an additional insight to
problems ranging from the small—but fundamental [30–33]—to the largest of scales [34,35].
The consistency of histories allows one to assign probabilities to sequences of suitably
defined events for a quantum system beyond that which can be achieved with the Born rule
only. As the quantum events in this perspective do not rely on the notion of measurement
per se, the consistent histories approach enables one to design a new type of logical
approach [22]. This approach is essentially different than the Birkhoff and von Neumann
quantum logic [36]. There is a particular practical advantage of using consistent histories
formalism to gain information about a system if an external measurement is not available
either because of fundamental reasons, or simply technical reasons. Quantum reasoning
based on consistent histories [37] uses projective decomposition of identity PDI = {Pk},
a framework,

PjPk = δjkPk, ∑
j

Pj = I (1)

as a cornerstone [21], serving as a quantum counterpart of the event algebra used in
standard stochastics. The operators Pk ∈ PDI are projectors mapping quantum states on
subspaces of a Hilbert space of the quantum system under analysis. If the subspace is one
dimensional, Pk = |k〉〈k| where |k〉 is a vector spanning the subspace. Projectors Pk ∈ PDE
correspond to quantum properties i.e., features of a quantum system. Contrary to standard
quantum logic [36], in the consistent histories approach, logical operations, such as k1 ∧ k2,
can be applied to the quantum properties k1,2 provided that the properties are compatible,
i.e., they correspond to commutative projectors [Pk1 , Pk2 ] = 0 with an obvious relation to
the co-measurability of the observables in ’usual’ quantum mechanics. PDIs equipped
with the admissible logical operation are (for the consistent histories approach) natural
analogues of event algebras in standard stochastics.

A quantum history (an analogue of a random process) of length n of a quantum system
is a sequence of quantum events at successive times {Pi}, with one projector for each time
ti, i = 0, . . . , f . There is, however, one fundamental additional requirement imposed:
it is the single framework rule [21,30,37] bounding the meaningfulness of simultaneous
reasoning to physical properties that are compatible [21,30,31,37]. In other words, one
cannot formulate meaningful statements concerning the properties of observables unless
they are co-measureable. In particular, one can assign probabilities to events provided that
they belong to a single framework. This requirement imposed by the consistent histories
approach allows one to dissolve otherwise paradoxical features [30,37]. At each time
instant, ti, all the quantum properties of a system correspond to elements of a PDI(ti).
The properties have their assigned probabilities and a time evolution of the quantum system
studied with consistent histories model can be considered as a stochastic process. With such
an approach, neither the future nor the past states of the system must be determined by the
present state. Instead, they are (only) related by the probabilities approaching particular
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values which are zero or one for a deterministic time evolution. A mathematical way to
describe sequences of events is the tensor product of ’instantaneous’ Hilbert spacesH(ti)

H̆ =
n⊙

i=0

H(ti) (2)

where, following [21], we applied � instead of ⊗ as a symbol for temporal (multi-time)
rather than spatial (multi-partite) composites. Let us note, however, that in most cases (and,
in particular, further in this work) the time dependence of a system’s Hilbert space is trivial
i.e., H(ti) = H for i = 0, . . . , n. In formal terms, quantum properties (events) related to
time-evolving systems are its histories forming time-dependent PDI

Mj Mk = δjk Mk, where ∑
j

Mj =
n⊙

i=0

I = Ĭ ∈ B(H̆)

Mk =
n⊙

i=0

P(i,k), P(i,k) ∈ PDI(ti)

(3)

where (generically) PDI(ti) 6= PDI(tj) for j 6= i. Then, there is a chance to pose differ-
ent questions concerning different quantum properties of the systems at different time
instants. Assigning probabilities to non-commuting quantum properties in Equation (3)
is meaningful only if there is no interference between pairs of histories that are supposed
to be decoherent. After extending the celebrated Born rule to multi-time history Mi (the
consistent histories formalism exhibits, here, its true predictive power), one can assign it a
weight [21,22,30,31,37]:

W(Mk) = 〈K(Mk), K(Mk)〉 = Tr
[
K†(Mk)K(Mk)

]
(4)

where for a time evolution operator T(ti, tj)

K(Mk) = P(n,k)
n−1

∏
i=0

T(ti+1, ti)P(i,k) = PnT(tn, tn1)Pn−1 · · · P1T(t1, t0)P0 (5)

is termed as the chain operator [21]. Then the consistency condition [21,22,30,31,37] granting
the decoherence of histories, reads as follows:

〈K(Mk), K(Ms)〉 = 0, for all k 6= s (6)

The rationale behind Equation (6) [21] is rooted in standard probability theory. As the
histories Equation (3) form a PDI, the meaningful linear combinations M = ∑i ci Mi can
also be constructed. The corresponding weight reads as follows:

W(M) = ∑
i

ciW(Mi) (7)

On the other hand, the linearity of K(M) = ∑i ciK(Mi) Equation (4) implies

W(M) = ∑
i

∑
j

cicj〈K(Mi), K(Mj)〉 (8)

Let us note that Equations (7) and (8) can be satisfied provided that Equation (6)
is granted.

Let us note that a quantum history of a physical system is a sequence of quantum
events at successive times, where a quantum event at a particular time can be any quantum
property of the system in question [21]. Such a convenient tool can serve to analyse
properties of systems that are very difficult to measure or replicate experimentally, as in
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the case of neutrinos. A neutrino in a particular mass state is an example of ’an event’ of a
quantum property that is hard (maybe technically impossible) to measure. It is because the
neutrino masses corresponding to different mass states are extremely small, and probably
too small to resolve experimentally. That is why one is left with considering coherent
superposition of the mass states: the flavour states. As a result, one recognizes two classes
of neutrino oscillation experiments. In the first, having a beam of a given flavour, one may
investigate how many neutrinos have disappeared. In the second, starting with a pure
beam of a particular and known flavour, one may investigate how often neutrinos of a
different flavour are detected [2].

In this paper, we consider a simplified two-flavour model of neutrino oscillation
limited to the electron–muon neutrino oscillation [1,2,4,17,18]. Despite the simplicity of
the two-flavor model (as it is analytically treatable), it allows one to understand some of
the origins and mechanisms behind the oscillations. We also consider the shortest non-
trivial three-time histories of the two-flavour neutrino evolution. Such histories cannot be
analysed solely within standard Born rule and the formalism of consistent histories allows
one to investigate their properties inaccessible from the standard treatment. The beginning
and ending points of the histories are events (in the sense described above) of a neutrino
in a flavour state. However, as the intermediate event of the three-time history, there
is a neutrino in a mass state. According to the decoherent histories model [21], such
histories, provided that they are consistent, allow inferring otherwise non-measured, but in
principle measurable, quantum properties of the oscillating neutrino. Our primary aim is to
investigate consistency of such histories induced by the presence of normal matter affecting
the oscillation. We show that modification of neutrino dynamics due to this presence of
matter makes the histories otherwise belonging to inconsistent family of dynamical events
consistent. We show that a potential CP-violation (indicated by non-vanishing Majorana
phase) does not affect the consistency of the considered neutrino histories, and, hence, our
findings hold true regardless of neutrino being a Dirac or Majorana particle. We show that
the presence of normal matter is a feature that plays a crucial role in the dynamic properties
and consistency of the neutrino oscillation considered here.

2. Histories of Two-Flavour Neutrino Oscillation

Working in a two-flavour approximation, we consider two orthogonal vacuum-
massive states, |1 〉 and | 2 〉, and two neutrino flavours: electron (e) and muon (µ).
The electron neutrino state is given by | ve 〉 = cos θ | 1 〉+ eiφ sin θ | 2 〉, and the muon
neutrino state is | vµ 〉 = − sin θ | 1 〉+ eiφ cos θ | 2 〉, where θ = θ12 is the mixing angle.
The phase φ is the Majorana phase (CP violating), which is non-zero under the U(1) global
transformation in the Majorana case, unlike that in the Dirac case, where this transforma-
tion renders it zero, or eliminates it [1]. A vacuum Hamiltonian-generating oscillation of a
relativistic neutrino [1] is given by

H0 =

(
E− ∆m2

21
4E 0

0 E +
∆m2

21
4E

)
(9)

where ∆m2
21 = m2

2 − m2
1 is the square-mass splitting of the mass states in the normal

hierarchy case and E is the energy of the massless neutrino. The neutrino Wolfenstein
effective Hamiltonian [1,4] while propagating in matter is given by

H = H0 +
V0

2

(
1 + cos 2θ e−iφ sin 2θ

eiφ sin 2θ 1− cos 2θ

)
(10)

where V0 =
√

2 cos2 θ13GF Ne, 0.953 ≤ θ13 ≤ 1 [1] is one of the oscillation parameters
with 3σ bound, Ne is the electron density and GF is the Fermi constant. V0 is the effective
interaction potential due to oscillation of the neutrino in the presence of ordinary matter. It
results from the coherent forward scattering on electrons via charged current interactions [1].
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The corresponding charged current interaction term for muon is not included, as only the
usual matter is considered. As per the standard model, the neutral current interaction does
not enter effectively into the Hamiltonian [1].

Information gained from applying the consistent history approach to quantum dy-
namics becomes non-trivial if one considers at least three-time histories. Such histories
cannot be directly analyzed with the Born rule [21]. A family of three-times histories of
quantum events at t0, t1 and t2 that is going to be considered, here, is the following:

M0 : [vµ]� [I]� [I]

M1 : [ve]� [1]� [vµ]

M2 : [ve]� [1]� [ve]

M3 : [ve]� [2]� [vµ]

M4 : [ve]� [2]� [ve]

(11)

where [x] = |x〉〈x|, x = νe,µ, 1, 2. As discussed in the previous section, the presence of
[x = 1] or [x = 2] as a middle event in the histories corresponds to a mass state as neutrino’s
quantum property. All the histories in Equation (11), except M0, which is included to obtain
a temporal PDI, describe a neutrino starting in an electron flavour and finishing in one of
two flavours: muon or electron. Our objective is to verify if one can consistently include
a quantum event [i], i = 1, 2 in the oscillation history i.e., whether the neutrino, being in
its mass state, is an event of a consistent ontological value [31]. The family Equation (11)
describes different possibilities (histories) starting from an electron neutrino only, but an
analogous family starting with a muon neutrino can be defined and all the following results
remain valid for such a choice. The chain operators

K(M0) = T2T1 | vµ 〉〈 vµ |
K(M1) = 〈 vµ | T2 | 1 〉〈 1 | T1 | ve 〉. | vµ 〉〈 ve |
K(M2) = 〈 ve | T2 | 1 〉〈 1 | T1 | ve 〉. | ve 〉〈 ve |
K(M3) = 〈 vµ | T2 | 2 〉〈 2 | T1 | ve 〉. | vµ 〉〈 ve |
K(M4) = 〈 ve | T2 | 2 〉〈 2 | T1 | ve 〉. | ve 〉〈 ve |

(12)

grant consistency of the corresponding histories provided that 〈 K(Mi) | K(Mj) 〉 =
0 f or all i 6= j. Applying the consistency condition to all members of the family, we see
that all histories are mutually exclusive of each other, regardless of the dynamics of the
system apart from M1 versus M3, and M2 versus M4. We have

〈 K(M1) | K(M3) 〉 = 〈 1 | T†
2 | vµ 〉〈 ve | T†

1 | 1 〉〈 vµ | T2 | 2 〉〈 2 | T1 | ve 〉
〈 K(M2) | K(M4) 〉 = 〈 1 | T†

2 | ve 〉〈 ve | T†
1 | 1 〉〈 ve | T2 | 2 〉〈 2 | T1 | ve 〉

(13)

where T1 = exp[i(t0 − t1)H] and T2 = exp[i(t1 − t2)H] represent the time evolution
operators for the first and second interval of the three-time histories Equation (11). The aim
is to recognize conditions turning the family of histories Equation (11) consistent:

〈 K(M1) | K(M3) 〉 ≡ 0

〈 K(M2) | K(M4) 〉 ≡ 0
(14)

2.1. Vacuum-Only Oscillation

Consistent histories approach inherently depends on the probability distribution used
to assign probabilities of quantum events, and, thus, on the dynamics of the system [21].
For further simplicity, we set initial time t = 0 and we compute the inner products between
the chain operators for M1 and M3, and between M2 and M4 Equation (13) to equate them
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to zero, and obtain the consistency Equation (14). To achieve the consistency Equation (14)
in vacuum (i.e., for the time evolution generated by H = H0 Equation (9)), at least one of
the three equations that follow need to be satisfied:

cos
(

t
(

E−
∆m2

21
4E

)
)− i sin

(
t
(

E−
∆m2

21
4E

))
= 0

cos
(

t
(

E +
∆m2

21
4E

+
φ

t

)
)− i sin

(
t
(

E +
∆m2

21
4E

+
φ

t

))
= 0

cos
(

t
(

E +
∆m2

21
4E
− φ

t

)
)− i sin

(
t
(

E +
∆m2

21
4E
− φ

t

))
= 0

(15)

where t is either t1, or t2 representing time intervals between the first and second events
in the histories Equation (13). Let us note that either the real parts in Equation (15) can be
zeroed, or the imaginary parts, but not both simultaneously. Thus, in the absence of matter,
the family of histories Equation (11) is never consistent under the dynamics generated by
H0 in Equation (9). In other words, in the absence of matter, one cannot credibly assign
consistency, and, hence, probability, to the events in Equation (11). It changes, however,
in the presence of matter.

2.2. The Impact of Matter

Let us now consider a neutrino propagating in matter. The effective Hamiltonian
describing two-flavour neutrino oscillation in the presence of normal matter Equation (10),
written in its diagonal representation, reads as follows:

H =
1
2
(A + B + D)|X〉〈X|+ 1

2
(A + B− D)|Y〉〈Y| (16)

where

A = E−
∆m2

21
4E

+
V0

2
(1 + cos 2θ)

B = E +
∆m2

21
4E

+
V0

2
(1− cos 2θ)

C =
V0

2
sin 2θ

D =
√
(A− B)2 + 4C2

(17)

and the Eigenstates:

| X 〉 = 1
u

(
| 1 〉+ 1

2
eiφ(B− A + D)

C
| 2 〉

)
, u =

√
4C2 + ei2φ(B− A + D)2

2C

| Y 〉 = 1
v

(
| 1 〉+ 1

2
eiφ(B− A− D)

C
| 2 〉

)
, v =

√
4C2 + ei2φ(B− A− D)2

2C

(18)

The flavour states expressed in terms of the Eigenstates in Equation (18) read as:

| ve 〉 =
1

2D

[
uJ | X 〉 − vK | Y 〉

]
| vµ 〉 =

1
2D

[
uL | X 〉+ vN | Y 〉

] (19)
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where, for further convenience, we introduce

J = cos(θ)(A− B + D) + 2 sin(θ)C

K = cos(θ)(A− B− D) + 2 sin(θ)C

L = 2 cos(θ)C− sin(θ)(A− B + D)

N = sin(θ)(A− B− D)− 2 cos(θ)C

(20)

We then compute the inner products between the chain operators for M1 and M3,
and between M2 and M4, respectively, to the equate them to zero in order to achieve the
consistency Equation (14). Our aim is to find values of V0 (and possibly φ) causing the
family of histories Equation (11) consistently.

Let us note that the inner products in Equation (13) consist of four components each.
To achieve the said consistency Equation (14), one expects at least one of the components of
each inner product to equal zero. Note that unless t1 = t2, only one of two components in
Equation (13) can vanish. However, the particular value of time instants in the evolution
providing consistency of the oscillation’s history affects only the probability of the histories,
but not the consistency itself. Thus, for the sake of computing, it is not necessary to consider
the consistency achieved via time evolution at t1 or t2 separately. It is enough to observe
that at least one of the four equations below need to be satisfied:

| u |2 L(A− B + D)− | v |2 N(A− B− D)eitD = 0

| u |2 J(A− B + D)+ | v |2 K(A− B− D)eitD = 0

| u |2 L− | v |2 NeitD = 0

| u |2 J+ | v |2 KeitD = 0

(21)

All the parameters above, except u and v (having non-trivial imaginary parts), are real.
Thus, the inner products Equation (13)) leading to the consistency Equation (14) can be
broken down into real and imaginary parts, which are further considered separately. The
requirement of the vanishing of the imaginary parts in Equation (21) reads as follows:

| v |2 N(A− B− D) sin(tD) = 0

| v |2 K(A− B− D) sin(tD) = 0

| v |2 N sin(tD) = 0

| v |2 K sin(tD) = 0

(22)

Let us note that each element of Equation (22) is of a form | v |2 αγ sin(tD) where
α is either N or K and γ is either (A − B − D) or 1. Clearly, neither v = 0 as given in
Equation (19) nor γ = 0, at least in the presence of normal matter V0 6= 0. To see that
α cannot be zero requires a little more complicated analysis. If α = 0 the corresponding
real part for each element is of the form | u |2 βδ, where β is either L or J and δ is either
(A− B + D) or 1. Similar to v and (A− B− D), | u |2 and (A− B + D) cannot equal 0, so
δ cannot be 0. The only way to achieve consistency, then, is β = 0. As L with N and J with
K appear in pairs, both α and β being zero would lead to vanishing and, thus, nonphysical
flavour states. The imaginary parts in Equation (22) vanish, provided that sin(tD) = 0
where t is either t1 or t2, i.e., provided that D = nπ

t1
or D = nπ

t2
(for n ∈ N) where t1, and

t2 are the time intervals in the set of three-time histories Equation (11). The real parts of
Equations (21) should also vanish to allow consistency of histories Equation (11)
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| u |2 L(A− B + D)− | v |2 N(A− B− D) cos(tD) = 0

| u |2 J(A− B + D)+ | v |2 K(A− B− D) cos(tD) = 0

| u |2 L− | v |2 N cos(tD) = 0

| u |2 J+ | v |2 K cos(tD) = 0

(23)

Substituting explicit forms of | u |2, and | v |2 Equations (19)–(23) leads to

(B− A + D)L(A− B + D) + (B− A− D)N(A− B− D) cos(tD) = 0

(B− A + D)J(A− B + D)− (B− A− D)K(A− B− D) cos(tD) = 0

(B− A + D)L + (B− A− D)N cos(tD) = 0

(B− A + D)J − (B− A− D)K cos(tD) = 0

(24)

and one concludes that the consistency of the set of histories Equation (11) of neutrinos
propagating in matter does not dependent on φ. As vanishing of the imaginary parts of
Equation (21) given in Equation (22) holds true provided that tD = nπ where n ∈ N,
searching for the consistency conditions of Equation (14) can be further split into two cases:
(i) for n even and (ii) odd. For n even (i) each of Equations (23) becomes solved for D = 0,
which we reject as nonphysical. Therefore, histories in Equation (11) of our system are
inconsistent for n even. On the other hand, for n odd (ii) the (non-negative) solution to

the equations Equation (23) is given by V0 =
∆m2

21
2E . It imposes the consistency conditions,

V0 =
∆m2

21
2E , D = 2 sin θ

∆m2
21

2E , jointly with n = tD
π being an odd number.

3. Discussion

Let us place emphasis on a crucial qualitative difference [21] between histories of
vanishing probability and inconsistent families of histories. There are non-trivial histories,
M, for which K(M) = 0. Such histories are of zero weight, or vanishing probability,
and—as they never occur—they are termed as dynamically impossible. On the other hand,
inconsistent families of histories are meaningless in the sense that there is no way (at
least within consistent history model) to assign probabilities to these histories using time
development governed by the laws of quantum dynamics [21]. One might be tempted to
say that an inconsistent family of histories never occurs. However, that would be a highly
inaccurate description of the physically deep notion of inconsistency [31].

As it is stated earlier in this work, if evolution times t1,2 are not equal t1 6= t2 and D is
either nπ

t1
, or nπ

t2
the family of histories Equation (11) is consistent for the dynamics generated

by Equation (10). Let us note, however, that a particular choice of D (among D being nπ
t1

, or
nπ
t2

) does significantly affect probabilities (weights) of the histories Equation (12). For n odd,

D = 2 sin θ
∆m2

21
2E = nπ

t1
and V0 =

∆m2
21

2E the family of histories Equation (11) is consistent.
This leads to the chain operators K(Mi) = 0, i = 1, 2. Thus, the probability of both histories
M1, and M2 in Equation (11) vanishes. The only non-zero histories in the family are then
M0,3,4. For D = nπ

t2
the consistency of Equation (11) is provided with the chain operators

K(Mi) = 0 for i = 2, 3, i.e., probabilities of histories M2 and M3 in Equation (11) vanish
and the only non-zero histories are then M0,1,4. For t1 = t2 = t and D = nπ

t the family of
histories Equation (11) is consistent with K(Mi) = 0 for i = 1, 2, 3 and the only non-zero
histories are M0,4.

The results based upon consistent histories presented here confirm, from a qualitative
perspective, the Mikheyev–Smirnov–Wolfenstein conditions. The MSW effect not only
shows us that the oscillations for neutrinos propagating in matter differ from those propa-
gating in vacuum, but also provides us with the MSW resonance condition for a maximal
probability for change of flavor for neutrino. However, using consistent histories approach
as we do, devoid of predicting magnitude of the survival or flavour change probability, we
rather aim to search for consistency for a complete family of histories where survival or
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change of flavour are both considered with an oscillation to a pure mass state in between.
That is why the formalism of consistent histories applied here allows one to investigate the
features of the neutrino oscillation problem complementary to the well-established and
known results.

4. Conclusions

The consistent histories approach allows one to describe quantum time development
as a process that is essentially and always stochastic or probabilistic, and not just when
measurements are being carried out. The consistency condition allows one to decide which
among the potential histories can occur or can even be considered. We investigated if a class
of simple, three-time histories Equation (11) (including quantum property of a neutrino
having a definite mass) can be consistent. As a result, we infer whether one can assign a
probability to such an ‘event’.

Our analysis showed that, for an overwhelming majority of cases, the set of histories
that we considered remained inconsistent and, as a consequence, meaningless. The family of
histories we proposed was inconsistent when a neutrino propagated in vacuum. However,
under certain tailored dynamical conditions, the family of histories became consistent when
a neutrino propagated in the presence of matter, provided that an interaction potential, V0,
took a very particular value. This value was not only precisely determined by the consistent
histories formalism, but also needed to be confronted with known experimental estimates
reading for solar neutrinos ∆m2

21 = 1.4906× 10−60mP (8× 10−5 eV2) [38].
The magnitudes of V0 and D were extremely small for even a relatively meager value

of E for our analysis. We recalled that the quantity D represents twice the difference in
Eigenvalues for our system and, for such small values of D, the difference in the Eigenval-
ues for the system was also extremely small. From this perspective, consistent histories
provided additional and supplementary evidence for the neutrino mass states’ being hardly
accessible. This result was gained not only from technical viewpoint, as it is in the ’usual’
quantum mechanics, but also from a fundamental perspective, as it was enforced by the con-
sistent histories approach. Although the Majorana CP-violation phase does not influence
the neutrino oscillation in a 2-flavour case [39], consistency conditions could shed light on
neutrinos being Dirac or Majorana type if consistency would depend on it. The consistency
of the class of histories investigated in this paper was not affected by the CP-violating
Majorana phase; however, the results presented here, then, hold true for both Majorana or
Dirac neutrinos, and would be unchanged after the CP problem becomes (sooner or later)
finally resolved.

In our work, we aimed to present the general properties that lead to the consistency of
the proposed family of histories in a general setting for a matter-assisted propagation, not
limited to a particular type of neutrino. In our model calculations, we showed that normal
matter plays a crucial role in inducing the consistency of certain classes of histories of
neutriono oscillations. It suggests that considering vacuum-only models may be, at least for
some purposes, an oversimplification. Such an oversimplification may result in excluding—
as seemingly meaningless—quantum properties that otherwise can, at least in principle
and in a tailored parameter regime, be consistently studied.

Quantum formalism based on consistent histories is of great predictive power, as it can
be applied to gain a useful knowledge concerning quantum systems without measuring
them. There are quantitative properties that can be calculated using consistent formalism
and are inaccessible in a standard quantum approach. Probabilities (weights) of multi-time
histories going beyond a standard Born rule are probably the best examples thereof. On the
other hand, consistent histories, such as a quantum formalism, allow one to investigate
the qualitative features of quantum evolution, such as the consistency of certain histories.
As considering the consistency, per se, goes beyond standard quantum formalism, all the
results obtained in our work are essentially novel with respect to that known about neutrino
oscillation so far. The qualitative results concerning the consistency of certain histories
presented in our work were supplemented with quantitative predictions on consistency-
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granting parameters. Let us emphasise that, at least in our work, a primary advantage is
using consistent histories as a predictive tools for the qualitative properties of neutrino
oscillations. We hope that our contribution may motivate further studies of neutrino
properties with consistent histories’ formalism as a useful complementary tool.
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