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Abstract: In general relativity, an inertial frame can only be established in a small region of spacetime,
and local inertial frames are mathematically represented by a tetrad field in gravity. The tetrad field
is not unique due to the freedom to perform Lorentz transformations in local inertial frames, and
there exists freedom to choose the local inertial frame at each spacetime point. The local Lorentz
transformations are known as non-Abelian gauge transformations for the tetrad field, and to fix the
gauge freedom corresponding to the Lorentz gauge ∂µAµ = 0 and the Coulomb gauge ∂iAi = 0
in electrodynamics, the Lorentz gauge and Coulomb gauge for tetrad fields are proposed in the
present work. Moreover, properties of the Lorentz gauge and the Coulomb gauge for tetrad fields are
discussed to show their similarities to those in electromagnetic fields.
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1. Introduction

Spacetime is flat in special relativity, and a global inertial frame (GIF) can always be
established. Any observer with a constant three-velocity in a GIF is an inertial observer,
and the laws of physics look the same to all such observers. In general relativity, one main
issue that no unique global inertial frame can be established, arises from flat-to-curved
spacetime. However, in small regions of spacetime, the spacetime looks approximately flat,
and freely falling observers who perform physics experiments in these small regions of
spacetime around them would see that physics is approximately the same as that seen by
an inertial observer in flat spacetime. Therefore, to retain the notation of inertial frames,
one can define local inertial frames (LIFs) in the small enough regions of spacetime, but
they cannot be globally extended throughout spacetime.

LIFs are described by the tetrad field [1,2], which is briefly discussed in the following.
The freedom of the tetrad field due to the local Lorentz transformations (LLTs) provides
different LIFs at the same spacetime point, and the choice of a LIF at the same spacetime
point is, accordingly, quite arbitrary. In the view of gauge theory, Lorentz transformations
play the role of gauge transformations. The redundant gauge freedoms compensate for
elegant mathematical expressions but, meanwhile, result in an obstacle to identifying the
real physical degrees of freedom. In electrodynamics, the vector potential Aµ is used to
describe the massless photon, where the Lorentz gauge ∂µAµ = 0 and Coulomb gauge
∂iAi = 0 can both remove certain degrees of the gauge freedom. The Lorentz gauge,
however, leaves some degrees of unphysical freedom, while the Coulomb gauge is sufficient
to specify the two physical degrees of a photon’s polarization. Similar to in electrodynamics,
the Coulomb gauge for gravity in weak-field approximation was proposed and discussed
in [3,4].

Due to the freedom of the local choice of inertial frame in curved spacetime, there is
no way to determine the same direction of LIFs at two separated spacetime points. This
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is a dramatic problem; for instance, the spin entanglement state shared by two separated
parties has an ambiguous meaning in curved spacetime. To overcome this issue, a gauge
condition can be introduced to remove the degrees of freedom, as is usual in gauge theory,
and an appropriate gauge condition leaving only physical freedom is further appreciated.
In this paper, corresponding to those in electrodynamics, we investigate the Lorentz gauge
and Coulomb gauge for tetrad fields, and the properties of the two gauge conditions
are discussed.

2. Mathematical Representation of LIFs

In general relativity, spacetime is a four-dimensional Lorentzian manifoldM with
a metric tensor gµν(x), and the tangent space TxM at some point x ∈ M is spanned by
the natural basis {eµ = ∂/∂xµ}. LIFs can be mathematically represented by a tetrad field
e µ

α (x) [1,2], which gives a set of orthonormal basis vectors of a LIF, say

eα̂ = e µ
α ∂µ {e µ

α } ∈ GL(4,R). (1)

The variables {eα̂} are usually called non-coordinate bases, and the orthonormality is satisfied by

g(eα̂, eβ̂) = gµνe µ
α e ν

β = ηαβ, (2)

where ηαβ is the Minkowski metric with signature (−,+,+,+). (In this paper, for tetrad
fields, Greek indices α, β, γ, δ, ... run over the four spacetime inertial coordinate labels; µ, ν,
κ, λ, ... run over the four coordinate labels in general coordinates; Latin indices run from 1
to 3; and repeated indices are summed over.) As stressed before, the LIF at a point is not
unique, and a Lorentz transformation Λ(x) can give another tetrad field

e′ µ
α = e µ

β (Λ−1)
β

α, (3)

and new orthogonal basis

e′α̂ = e′ µ
α ∂µ = eβ̂(Λ

−1)
β

α. (4)

It can be easily checked that the orthonormality of the basis is preserved by the Lorentz
transformation, as required.

Actually, a non-coordinate basis at each spacetime point spans a vector space with
the Minkowski metric ηαβ. In the language of differential geometry, the tetrad fields in
the spacetime constitute a fiber bundle with the Minkowski space a fiber space at each
spacetime point, and the Lorentz group SO(1, 3) is the structure group.

3. Lorentz Connection One-Form

A connection ωµ is required to define a covariant derivative in curved spacetime, such
as the affine connection in the general coordinate, and the connection coefficients with
respect to the non-coordinate bases {eα̂} are defined by

Dµeα̂ = ω
β

µ αeβ̂, (5)

where Dµ is the covariant derivative in LIF. The covariant derivative of a vector V = Vαeα̂

in LIF is DV = DνVαdxν ⊗ eα̂, and according to Equation (5), the components can be
easily derived:

DµVα = ∂µVα + ω
α

µ βVβ. (6)

Now, one can consider the covariant derivative of a vector V = Vµ∂µ in the general coordinate

∇V = ∇νVµdxν ⊗ ∂µ,
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where the components are

∇νVµ = ∂νVµ + Γµ
νλVλ, (7)

with Γµ
νλ = 1

2 gµσ(∂νgλσ + ∂λgσν − ∂σgνλ) the Levi–Civita connection coefficients, and one
can have

∇νVµ = e µ
α DνVα. (8)

Since the vector V can also be expressed as Vµ = e µ
α Vα in LIF, the covariant derivative can

be rewritten as

∇νVµ = ∇ν(e
µ

α Vα) = ∂ν(e
µ

α Vα) + Γµ
νλ(e

λ
α Vα),

= e µ
α

[
∂νVα + (eα

λ∂νe λ
β + e λ

β eα
σΓσ

νλ)V
β
]
, (9)

where eα
µ is the inverse of e µ

α . Therefore, one can find

ω
α

µ β = eα
λ∂µe λ

β + e λ
β eα

σΓσ
µλ, (10)

which are named the Lorentz (or spin) connection coefficients [1,2], and ω
αβ

µ = −ω
βα

µ .
Moreover, the non-coordinate bases {eα̂} satisfy the commutation relation [eα̂, eβ̂] = f γ

αβeγ̂,

with f γ
αβ the coefficients of the anholonomy of tetrads [5], and the spin connection coeffi-

cients can also be expressed as [2,5]

ω
α

µ β =
1
2

(
f α
β γ + f α

γ β − f α
βγ

)
eγ

µ. (11)

Now, one can further define ω = ωµdxµ as a Lie-algebra-valued connection one-form,
and ωµ take values in the Lie algebra so(1, 3) of the Lorentz group in the non-coordinate
basis given by the tetrad. Denote the algebra generators of so(1, 3) by Jαβ, and then

ωµ ≡ −
i
2

ω
αβ

µ Jαβ. (12)

In the non-coordinate basis, Jαβ act as the vector representation of the Lorentz generators

(
Jαβ

)γ

δ
= i

(
ηβδη

γ
α − ηαδη

γ
β

)
, (13)

which shows that ωµ here are 4× 4 matrices with the matrix elements (ωµ)α
β = ω

α
µ β.

Therefore, ω = ωµdxµ is a matrix-valued one-form that can be defined by [2]

ωα
β ≡ ω

α
µ βdxµ. (14)

It is easy to see that ωµ transforms as a vector under a general coordinate transforma-
tion x′µ = x′µ(x),

ω′µ(x′) =
∂xν

∂x′µ
ων(x). (15)

Under an LLT, e′α(x) = eβ̂(Λ
−1)

β
α; however, the Lorentz connection transforms inhomoge-

neously:

ω′µ(x) = Λ(x)ωµ(x)Λ−1(x) + Λ(x)∂µΛ−1(x). (16)
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For details of the tetrad field and Lorentz connection, see appendix J of [1].

4. Lorentz Gauge and Coulomb Gauge for Tetrad Fields

To obtain the gauge condition for a tetrad field, we first briefly review the Lorentz
gauge in electrodynamics. Maxwell’s theory of electromagnetism is described by the U(1)
gauge group, and the connection one-form, physically representing the photon, is

A = Aµdxµ, (17)

where Aµ is the vector potential in electrodynamics. Then, one may naively guess the
Lorentz gauge for a tetrad field is ∂µωµ = 0, corresponding to ∂µAµ = 0 in electrodynamics.
However, this obviously does not work for a tetrad field. For one thing, the base manifold
in Maxwell’s theory is flat spacetime, while the one in a tetrad field is curved spacetime,
and the ordinary derivative should be replaced by the covariant one. Additionally, the
connection ωµ is an element of Lie algebra so(1, 3), and the derivative could be further
amended to be the gauge–covariant derivative in adjoint representation. To see how to
construct the corresponding Lorentz gauge condition, we further see Maxwell’s theory
more mathematically in the following.

With the connection one-form in Equation (17), the field strength for Maxwell’s theory
of electromagnetism can be introduced:

F ≡ dA =
1
2
Fµνdxµ ∧ dxν

= (∂µAν − ∂νAµ)dxµ ⊗ dxν, (18)

and the Bianchi identity

dF = 0 (19)

reduces to two of Maxwell’s equations,

∂× E +
∂B
∂t

= 0, ∂ · B = 0. (20)

For the other two of Maxwell’s equations (with ε0 = µ0 = 1),

∂× B− ∂E
∂t

= j, ∂ · E = ρ, (21)

where ρ and j are the electric charge density and electric current density, respectively. To
obtain the compact expressions corresponding to Equation (19), the adjoint of the exterior
derivative (codifferential operator) in the four-dimensional Lorentzian manifold should
first be introduced, say

d† = ∗d∗, (22)

where ∗ is the Hodge operator [2]. Therefore, d†F = ∂µFµνdxν, and Equation (21) can be
straightforwardly rewritten as

d†F = j, (23)

with the one-form j = −ρdt + j · dx. Furthermore, the Lorentz gauge ∂µAµ = 0 in
electrodynamics can now be expressed as

d†A = 0 (24)
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and mathematically, the corresponding Lorentz gauge condition for the tetrad field is

D†ω = 0, (25)

where D = d + [ω, ] is the gauge–covariant derivative in adjoint representation, and
D† = ∗D∗ is the codifferential operator for the four-dimensional Lorentzian manifold here.
To make Equation (25) more explicit, we first come to the action of D† on a Lie-algebra-
valued one-form↔ = vµdxµ,

D†v = ∗D ∗ (vµdxµ)

= ∗D
(√

g
3!

vµgµλελν2ν3ν4dxν2 ∧ dxν3 ∧ dxν4

)
= ∗ 1

3!
Dν

(√
ggµλvµ

)
ελν2ν3ν4dxν ∧ dxν2 ∧ dxν3 ∧ dxν4

= ∗Dν

(√
ggµνvµ

)
dx0 ∧ dx1 ∧ dx2 ∧ dx3

= Dν

(√
ggµνvµ

)√
gε0123

= − 1
√

g
Dν

(√
ggµνvµ

)
= − 1

√
g

∂ν

(√
ggµνvµ

)
− gµν[ων, vµ]

= −gµν∇µvν − gµν[ωµ, vν] (26)

where g = |det gµν|, εµ1µ2µ3µ4 is the totally anti-symmetric Levi–Civita symbol, and
εµ1µ2µ3µ4 = −g−1εµ1µ2µ3µ4 has been used. Now, according to the derivation in Equation (26),
the Lorentz gauge in Equation (25) becomes

gµν∇µων =
1
√

g
∂µ

(√
ggµνων

)
= 0. (27)

Before one comes to the Coulomb gauge for the tetrad field, we first consider the
corresponding expression to the Lorentz gauge in Equation (24) for the Coulomb gauge.
Symbolically, the exterior derivative can be written as

d ≡ dt ∧ ∂

∂t
+ d, (28)

where d is the spatial exterior derivative [6], and the partial differential operator acts only
on the coefficients. Since

d†A = ∂0A0 + d†A, (29)

with A = Aidxi, d† = ∗d∗, and d†A = ∂iAi, the Coulomb gauge in electrodynamics is

d†A = 0. (30)

According to the relationship between the Lorentz gauge ∂µAµ = 0 (d†A = 0) and
the Coulomb gauge ∂iAi = 0 (d†A = 0) in electrodynamics, the Coulomb gauge for the
tetrad field can be similarly generalized as

D†ω = 0, (31)
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with ω = ωidxi and D = d + [ω, ], and the gauge–covariant derivative in adjoint repre-
sentation can be decomposed as

D = dt ∧
(

∂

∂t
+ [ω0, ]

)
+D. (32)

By some algebra, it is easy to obtain the explicit expression for the Coulomb gauge in
Equation (31):

1
√

g
∂i
(√

ggijωj
)
= 0. (33)

5. Remarks and Discussion

(i) Fermi–Walker transport is usually employed to define LIFs in curved spacetime,
and the LIFs are established by parallel transport of the non-coordinate bases in curved
spacetime [7]. The LIF of an observer in curved spacetime is then generally dependent on
the path along which the non-coordinate bases are transported; for instance, the z-axes of
LIFs at the same spacetime point can be different for observers who come along different
paths. More seriously, a locally defined physical object, such as a localized qubit state, at a
spacetime cannot be defined unambiguously, as the LIFs are dependent on the observer’s
path, and this seems to be “weird”. However, if a gauge condition is carefully chosen and
the gauge freedom of the tetrad fields is fixed, the LIF at each spacetime point can be unique
up to a global gauge transformation. The LIFs are now independent of the observer’s path,
and one has a path-independent way of constructing “global” LIFs. Subsequently, the local
physical object can be unambiguously defined with the “global” LIFs.

(ii) To determine the LIFs in the curved spacetime, the sixteen functions e µ
α (x) of tetrad

field should be fixed. The orthonormality condition in Equation (2) represents ten constrains
on the tetrad field, so there are still six degrees of freedom for the tetrad field, which are,
exactly, the three degrees of pure boosts and three degrees of spatial rotations for the
gauge transformation Λ(x). As the Lorentz connection ωµ(x) is an antisymmetric matrix,
both the Lorentz gauge and the Coulomb gauge in Equations (27) and (33), respectively,
contain exactly six constrains and, roughly speaking, seem to fix the gauge transformation
completely. However, more rigorously, under the gauge transformation in Equation (16), to
preserve the Lorentz gauge condition in Equation (27), it is required that

gµν∇µ(Λ∂νΛ−1) + gµν[ΛωµΛ−1, Λ∂νΛ−1] = 0, (34)

and obviously, the solution for the gauge transformation Λ(x) satisfying the equation above
is not unique, at least for some simple cases. Therefore, the Lorentz gauge for a tetrad field
does not fix the gauge completely in general, and the same result holds for the Coulomb
gauge. Nevertheless, the degrees of freedom unconstrained by the two gauges in a tetrad
field should have different meanings, but it is not easy to completely clarify the differences
due to complication from Abelian to non-Abelian gauge theory, and only brief discussions
about the disparate characteristics of the two gauge conditions are provided next.

(iii) In a static case, the Lorentz gauge ∂µAµ = 0 coincides with the Coulomb gauge
∂iAi = 0 in electrodynamics, but for a tetrad field in gravity, one does not have the same
result. For spacetime with a static metric, the Lorentz gauge in Equation (27) reduces
to gi0∇iω0 − g0µΓν

0µων + gij∇iωj = 0, and it is different from the Coulomb gauge in

Equation (33) by a term gi0∇iω0 − g0µΓν
0µων. Moreover, the Lorentz gauge for a tetrad

field is invariant under a general coordinate transformation in Equation (15), while the
Coulomb gauge is not, and is only invariant under a spatial coordinate transformation.
These show that the two gauge conditions undoubtedly have distinct properties for a
tetrad field as well, and one may wonder which is the preferred option in relevant physics
problems. Illuminated by the gauge theory of electromagnetism and the proposals in
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previous relevant works [3,4,8,9], it is reasonable to choose the Coulomb gauge as the
physical gauge condition. Specifically, the non-coordinate basis {eα̂} obeys

DµDνeα̂ =
[
(∇µων + ωµων)

]β

α
eβ̂. (35)

Denote e = (e0̂, e1̂, e2̂, e3̂), and in the Lorentz gauge,

gµνDµDνe− egµνωµων = 0, (36)

while in the Coulomb gauge, one has

gijDiDje− egijωiωj = 0. (37)

Comparing Equation (37) with Equation (36) shows that for the Coulomb gauge, the non-
coordinate basis {eα̂} is non-dynamic and does not instantaneously propagate in spacetime,
which means the inertial effects from the freedom of the tetrad field are absent, leaving
only gravitational effects on the LIFs. As a result, established by the tetrad field under the
Coulomb gauge, the LIF stands a good chance to have advantages over the other ones, and
this will be our further investigation elsewhere.

(iv) In gauge theory, the decomposition of gauge potential plays an important role
in both theoretical physics and mathematics [10,11], and recently, a gauge decomposition
approach was proposed to find a gauge–covariant description of the gluon spin and orbital
angular momentum in [8], and it was further developed in [9]. It is a familiar practice
to decompose the Lorentz connection into the physical part and the pure-gauge part.
Mathematically, one can have the separation ωµ(x) = ω̂µ(x) + ω̄µ(x), with ω̂µ(x) the
physical part, while ω̄µ(x) is the pure-gauge part, and under the gauge transformation in
Equation (16),

ω̂′µ(x) = Λ(x)ω̂µ(x)Λ−1(x), (38)

ω̄′µ(x) = Λ(x)ω̄µ(x)Λ−1(x) + Λ(x)∂µΛ−1(x). (39)

The equations to define the decomposition can be analogously constructed as

1
√

g
∂i
(√

ggijω̂j
)
+ gij[ω̄i, ω̂j] = 0, (40)

∂µω̄ν − ∂νω̄µ + [ω̄µ, ω̄ν] = 0. (41)

(v) Parallel to Maxwell’s Equations (20) and (21) in electrodynamics, one may wonder
if there are analogical equations for tetrad fields in gravity. We first come to the field
strength of a tetrad field:

R ≡ dω + ω ∧ω =
1
2
Rµνdxµ ∧ dxν, (42)

whereRµν are the Lie-algebra-valued components of the field strength,

Rµν = ∂µων − ∂νωµ + [ωµ, ων], (43)

and we can also have the curvature two-formRα
β = 1

2 Rα
βµνdxµ ∧ dxν. With Equation (42),

the Bianchi identity again gives DR = 0, reducing to

dR+ ω ∧R−R∧ω = 0, (44)
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which is the analogical equation to Equation (20). It is a little more complicated to reach
similar results for Equation (21), and before that, one may homoplastically have

D†R =
(
∇µRµν + [ωµ,Rµν]

)
dxν. (45)

Further, consider Einstein’s equation

Rα
µ = 8πG(Tα

µ −
1
2

Teα
µ), (46)

with Rα
µ = Rαβ

µνe ν
β the Ricci tensor, T = gµνTµν the trace of the energy–momentum tensor

Tµ
ν, and G Newton’s constant of gravitation, and one can obtain

D†R = −4πGdT , (47)

or, more explicitly,

∇µRµν + [ωµ,Rµν] = −4πG∂νT , (48)

with the matrix elements T α
β = Tδα

β. This plays the role of the dynamic equation for
the Lorentz connection ωµ(x) of a tetrad field. The influence of the Lorentz gauge in
Equation (27) and the Coulomb gauge in Equation (33) on the dynamics of the Lorentz
connection ωµ is an interesting and important question, and it deserves systematical
consideration in the future.

6. Conclusions and Summary

The gauge aspect of a tetrad field in gravity is investigated in this work, and the
Lorentz gauge and the Coulomb gauge are proposed and discussed in the non-Abelian
gauge theory of tetrad fields. Though the two gauge conditions are much more complicated
than the corresponding ones in the U(1) gauge theory, some analogous features compared
to electromagnetic fields are revealed in our discussions. The Coulomb gauge is more
likely to be the physical gauge, and it is preferable for fixing the tetrad field. Completion
of the gauge theory of a tetrad field in gravity is a sizable task that requires thorough
consideration. Some related problems are still worth investigating. Applications of the
gauge condition in physics are of particular interest and significance, and the details are for
our further consideration.
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