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Abstract: The lack of space inversion symmetry endows non-centrosymmetric superconducting mate-
rials with various interesting parity-breaking phenomena, including the anomalous Josephson effect.
Our paper considers a Josephson junction of two non-centrosymmetric superconductors connected
by a uniaxial ferromagnet. We show that this “Chiral Magnetic Josephson junction” (CMJ junction)
exhibits a direct analog of the Chiral Magnetic Effect, which has already been observed in Weyl and
Dirac semimetals. We suggest that the CMJ can serve as an element of a qubit with a Hamiltonian
tunable by the ferromagnet’s magnetization. The CMJ junction avoids using an offset magnetic flux in
inductively shunted qubits, thus enabling a simpler and more robust architecture. Furthermore, when
the uniaxial ferromagnet’s easy axis is directed across the junction, the resulting “chiral magnetic
qubit” provides robust protection from the noise caused by magnetization fluctuations.

Keywords: qubit; Josephson junction; topological semimetal; chiral magnetic effect

1. Introduction

The discovery of superconductors lacking spatial inversion symmetry [1–5] has opened
the possibility of studying the spontaneous breaking of continuous symmetry in a parity-
violating material. In particular, the superconducting order parameter in these
non-centrosymmetric superconductors (NCSs) is a parity-odd quantity [4,5], enabling several
interesting magnetoelectric phenomena due to the mixing of singlet and triplet superconduct-
ing parameters, correlations between supercurrents and spin polarization, the appearance
of helical states, and the peculiar structure of Abrikosov vortices (see [6,7] for a review).
Notably, in these superconducting materials, vortices can show an inversion of the magnetic
field away from the vortex core [8,9] and new compact states that are the superconducting
counterparts of the Chandrasekhar–Kendall states in highly conducting plasmas [10].

Parity breaking in NCSs also results in an unconventional Josephson effect, where the
junction features a phase-shifted current relation [11,12]:

J(ϕ, ϕg) = Jc sin(ϕ− ϕg). (1)

Here, ϕ is the superconducting phase difference across the junction, Jc is the critical
Josephson current, and ϕg is the parity-breaking phase offset. Nonzero bias ϕg 6= 0 results
in a nonvanishing current across the junction, even when the phase difference ϕ is zero.
Since the current is a parity-odd quantity, this signals a parity violation.

Phase-biased junctions (often called “ϕ0-junctions”) have been suggested to appear in
a wide range of systems, including non-centrosymmetric [11,13,14] and multilayered [15]
ferromagnetic links between conventional superconductors, topological insulators [16,17],
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nanowires [18,19], quantum point contacts [20], quantum dots [21–23], and Weyl semimet-
als [24,25]. The first experimental realization of Josephson ϕ0-junctions has been reported
in superconductor–quantum dot structures, where the phase offset ϕg is controlled via
electrostatic gating [26].

In this article, we introduce the Josephson junction made of two NCSs weakly linked
by a uniaxial ferromagnet with an easy axis normal to the interface, i.e., parallel to the
electric current (see Figure 1). Unlike in previous proposals [11,27,28], the ferromagnetic
exchange field h here is directed normally to the NCS/F/NCS interfaces. Parity breaking
in NCS couples the magnetization h to the supercurrent j, resulting in a term j · h in the
Ginzburg–Landau free-energy functional describing crystal structures with O point group
symmetry. As derived below, this results in a nonzero current even in the absence of phase
gradients across the junction. This current, directed along the magnetic field, stems from
the breaking of parity in a non-equilibrium state and is thus a direct analog of the Chiral
Magnetic Effect [29] predicted for systems of chiral fermions and observed in Dirac and Weyl
semimetals [30–33]. This analogy motivates our terminology “Chiral Magnetic Josephson
junction” (CMJ junction) to describe the NCS/F/NCS junction displayed in Figure 1. Below,
we demonstrate that the current across the CMJ junction is still given by the expression (1),
where the magnitude of the bias ϕg can be tuned by the ferromagnet’s magnetization.

Figure 1. The Chiral Magnetic Josephson junction: two non-centrosymmetric superconductors (NCSs)
are weakly linked by a uniaxial ferromagnet (F). The exchange field h of the ferromagnet, oriented
across the link, induces an inversion symmetry-breaking component of the supercurrent (represented
by the spiral) in the junction.

We propose to use the CMJ junction as a constituent of a superconducting qubit.
The junction’s energy associated with the current (1) is

E(ϕ, ϕg) = EJ [1− cos(ϕ− ϕg)], (2)

where EJ is the Josephson energy. The total energy of the qubit EQ is the sum of the
junction’s energy (2) and a term quadratic in the phase difference ϕ. For example, in the
case of an inductively shunted junction [34], this quadratic term results from the inductive
energy EL:

EQ(ϕ, ϕg) = EJ [1− cos(ϕ− ϕg)] + EL ϕ2. (3)
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Here, the offset ϕg plays the role of an offset flux and can be used to control the form of
the qubit Hamiltonian. Using the magnetization of the ferromagnetic link should simplify
the qubit architecture by avoiding the use of an offset flux and the corresponding source.

Noise in the offset flux is an essential component of qubit decoherence [35,36]. As demon-
strated below, the noise in the offset phase ϕg results from the fluctuations of the component of
the magnetization normal to the interface. In the proposed setup, this direction corresponds to
the easy axis of the uniaxial ferromagnet. Thus, only longitudinal magnetization fluctuations
contribute to the noise, but these are suppressed by the ratio of the qubit temperature to the
Curie temperature of the ferromagnet, which is about 10−5 − 10−4. Moreover, the current
in the CMJ junction is parallel to magnetization and thus is “force-free”, i.e., not subjected
to a Lorentz force. This dramatically reduces the coupling between the current and the
magnetization that contributes to the noise.

The offset phase ϕg of the CMJ junction can be estimated within the Ginzburg–Landau
(GL) framework. The superconducting state in non-centrosymmetric superconductors is
commonly believed to be a mixture of singlet and triplet pseudo-spin states [6,7] due to
the spin–orbital coupling in the presence of the broken inversion symmetry [37]. Using
h̄ = c = 1, the Ginzburg–Landau free energy describing the superconducting state of
non-centrosymmetric material reads as [7,38]:

f = a|ψ|2 + γ|Dψ|2 + b
2
|ψ|4 + K

2
j · h. (4)

The single-component superconducting order parameter ψ = |ψ|eiϕ is coupled to the
vector potential A of the magnetic field h = ∇× A via the gauge derivative D = −i∇− 2eA,
while the coefficients b, γ and a = α(T − Tc) are standard phenomenological GL parameters.
The parity-odd nature of the non-centrosymmetric superconductor is reflected by the last
term (Lifshitz invariant) of the free energy (4), which describes the direct coupling of the
magnetic field h to the usual, parity-odd component of the supercurrent density:

j ≡ jodd = 2eγ[ψ∗Dψ + ψ(Dψ)∗]. (5)

Note that the exchange field h of the ferromagnet plays the role of the background mag-
netic field B. The parity-odd last term in (4) yields an additional parity-even contribution
to the total supercurrent J:

J = jodd + jeven, jeven = 4e2γK|ψ|2h. (6)

The GL functional (4) describes NCS materials with O point symmetry, such as
Li2Pt3B [5,39] and Mo3Al2C [40,41], and the coupling constant K determines the mag-
nitude of the superconducting magnetoelectric effects following the broken inversion
symmetry. Our derivation applies to non-centrosymmetric superconductors with other
crystallographic groups with a generic Lifshitz invariant Kαβhα jβ. In this case, when the
x-axis is directed across the normal link, the diagonal element Kxx should be nonzero.
Notice that Lifshitz invariants of the type n · h× j do not have such a diagonal element and
thus cannot satisfy this requirement 1.

As illustrated in Figure 1, we consider a pair of identical non-centrosymmetric super-
conductors separated by a uniaxial ferromagnetic weak link whose internal exchange field
h ≡ hxex points across the link. We neglect the term quartic in the condensate and disregard
inhomogeneities of both the condensate ψ and the exchange field h in the transverse yz-
plane. The minimization of the GL free energy (4) with respect to the superconducting order
parameter in the background of the ferromagnetic exchange field h then yields the equation

aψ− γ
∂2ψ

∂x2 − 2ieγKhx
∂ψ

∂x
= 0 (7)
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that describes the tunneling of the Cooper pairs across the weak link. For the time being,
we assume the absence of an external electromagnetic field at the link, A = 0. Due to
proximity effects, the tunneling of the Cooper pairs between the non-centrosymmetric su-
perconductors through the centrosymmetric weak link will not respect the parity inversion
x → −x, as can be seen from Equation (7).

The general solution of Equation (7) for the superconducting gap inside the weak link
reads as:

ψ(x) = C+eq+x + C−eq−x, (8)

where the wavevectors

q± = ±
√

a
γ
− (ehxK)2 − iehxK (9)

should have a nonzero real part so that the weak link is in a normal state, thus requiring
a > ac = γ(ehxK)2. The coefficients C± in Equation (8) are determined by the bound-
ary conditions at the interfaces of the weak ferromagnetic link with the superconductors at
x = ± L/2. It is customary to make a simplification using rigid boundary conditions [11,42],
which assume the absence of a barrier at the interfaces and imply continuity of the supercon-
ducting order parameter:

ψ(x = ±L/2) = |∆|e±iϕ/2; (10)

here, |∆| is the absolute value of the order parameter at the superconducting leads.
Using the relation Equations (8)–(10) together with the definition of the total current (6)

yields the phase-shifted current relation:

J = J0 sin
(

ϕ− ϕg
)
, J0 =

4eγ|∆|2
√

a
γ − (ehxK)2

sinh L
√

a
γ − (ehxK)2

, (11)

which exhibits the offset of the phase difference given by

ϕg = ehxKL. (12)

This offset, corresponding to the parity-breaking phenomenon, is proportional to the
strength of the magnetic interaction K in the Ginzburg–Landau free energy (4). In other
words, the presence of the nonzero phase bias ϕg 6= 0 signals the breaking of the parity-
inversion symmetry between leftward and rightward tunneling of the Cooper pairs and
leads to a nonzero current in the “steady state” of the junction even if the phase difference
between the superconducting leads is zero, ϕ = 0.

In a long junction, L
√

a/γ− (ehxK)2 � 1, the current (11) is an exponentially small
quantity due to suppression of the Cooper-pair tunneling between widely separated super-
conducting leads. The limit of a short junction in the presence of parity breaking should be
taken with care. In the thermodynamic equilibrium ϕ = ϕg(L), the current through the
junction is always zero. However, in the steady state with zero phase difference ϕ = 0, the
electric current does not vanish and is given by the parity-even term (6):

J(ϕ = 0, L→ 0) = 4e2γK|∆|2h. (13)

This current plays a crucial role in the dynamics of the chiral magnetic qubit. As men-
tioned earlier, the current (13) shares a striking similarity with the Chiral Magnetic Ef-
fect [29], with h and K, respectively, playing the roles of the external magnetic field and the
source of the parity breaking.

Some features of the phenomenon that we discuss also appear in usual centrosym-
metric s-wave superconductors separated by the Josephson junction made of an NCS-type
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ferromagnet with tangentially-oriented field h. Even though the underlying dynamics are
quite different, the latter system is described by an equation similar to (7) [11]. However, in
our case, the currents that flow along the magnetic field are force-free and, thus, are not
subjected to the noise resulting from the transverse fluctuations of magnetization.

Similar types of Josephson junctions with the ferromagnetic exchange field h oriented
transversally between two non-centrosymmetric superconductors with the C4v point group
(corresponding to interactions of the type n · h× j) have been proposed in [27,28]. The
Josephson current in a non-ferromagnetic junction between two non-centrosymmetric
superconductors does not exhibit the offset in the phase [43]. A finite phase offset for
the Josephson current of chiral charge appears, however, for the junction between two
Weyl superconductors separated by a Weyl semimetal and for a magnetic field oriented
transversally [44].

Notice that an ordinary Josephson junction driven by an external AC electric current
possesses an I–V curve with a ladder structure characterized by regions with constant
voltage. These regions, known as Shapiro steps, are precisely specified by parameters of the
Josephson junction, allowing for accurate frequency–voltage conversion in the experimental
setting [45]. For noncentrosymmetric superconductors, the positions of the Shapiro steps
should be shifted due to the magnetoelectric effect, which contributes to the voltage drop
in the presence of the ferromagnetic exchange field h. The phenomenon is similar to
the Josephson junctions involving the topological insulator as the weak link sandwiched
between two type-2 superconductors. In such a device, the magnetoelectric effect is caused
by axion coupling E · B in the topological insulator that breaks the time-reversal symmetry
of the system and affects Shapiro steps [46].

We estimate the phase bias (12) numerically as follows:

ϕg ' 1.5× 10−3 h(T) L(nm)K(nm). (14)

The length of the ferromagnetic Josephson junction is typically of the order of tens of
nanometers (L ∼ 30 nm in [47]). The exchange field h should not exceed the upper critical
field Hc2, which, for several NCS superconductors, may reach significant values, Hc2 ∼ 10 T.
Fields of this order and higher are known to be created by usual ferromagnets [48]. Note
that even for magnetic fields larger than Hc1, the vortex formation can be avoided by
choosing a weak link with a sufficiently small cross-section such that the total magnetic flux
entering the superconductor is smaller than the flux quantum Φ0. The main uncertainty in
our estimate comes from the poorly known parity-odd coupling K. Its value was estimated
to be K ' (10−3 . . . 10−2)λ [49,50], where λ ' (0.1 . . . 1) µm is the penetration depth.
Despite this uncertainty, the phase bias may be tuned to take values of order ϕg ∼ π. For a
given NCS superconductor, the phase bias can be manipulated by the magnetization of the
weak link.

The chiral magnetic Josephson junction sketched in Figure 1 can be inductively
shunted, for example, by a series of conventional Josephson junctions, to form a “chi-
ral magnetic qubit" (see Figure 2). Such circuits include, in addition, two mixed Josephson
junctions between the conventional and NCS superconductors. These mixed junctions do
not generate the electric current across them at zero phase difference ϕ = 0 [51].
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Figure 2. (a) Fluxonium-type qubit based on conventional Josephson junction inductively shunted
by a series of Josephson junctions. The qubit is biased by an external magnetic flux ϕext ≡ 2πΦ/Φ0,
where Φ0 is the elementary flux quantum. The gate phase offset for a conventional Josephson junction
is absent, ϕg = 0. (b) Chiral magnetic qubits based on the Chiral Magnetic Josephson (CMJ) junction
are inductively shunted by a series of Josephson junctions. The CMJ junction possesses an internal
phase offset ϕg 6= 0 eliminating the need for an external magnetic flux ϕext.

The Coulomb interactions between the Cooper pairs are described by the kinetic term
in the Hamiltonian of the qubit:

Ĥ = 4ECn̂2 + EJ [1− cos(ϕ− ϕg)] + EL ϕ2, (15)

where n̂ = −ih̄∂ϕ is the Cooper-pair number operator, and the last two terms describe the
Josephson tunneling and the induction (3). The Hamiltonian (15) is generic for a family of
inductively shunted qubits, including the fluxonium [52,53], one-junction flux qubits, and
flux-biased phase qubits [54].

As illustrated in Figure 2a, fluxonium qubits relate the phase offset to the externally
applied flux Φ as ϕg = 2πΦ/Φ0, where Φ0 = h/(2e) is the flux quantum. These are
further characterized by a specific set of model parameters, such as the small inductive
energy (EL/EJ ' 0.045) and a moderate charging energy (EC/EJ . 1), which give a unique
combination of long coherence time and large anharmonicity of the energy levels [55].
Transmon qubits, on the other hand, are characterized by Coulomb charging energy much
smaller than the Josephson tunneling energy, EC � EJ , thus reducing noise caused by the
offset charge fluctuations [56].

A nonzero phase bias ϕg 6= 0 imposes a large anharmonicity on the energy-level
structure [34] determined by the Schrödinger equation:

Ĥψn(ϕ) = εnψn(ϕ). (16)

The regime ϕg = π/2 provides maximum level-splitting and the absence of nearly de-
generate level pairs [34]. Figure 3 displays the structure of the energy levels corresponding
to this Hamiltonian. The transitions between the first excited state and the ground state,
|1〉 → |0〉, can be substantially suppressed by the barrier separating them. This barrier
is almost absent in the typical fluxonium regime (EL = 0.045EJ and EC = EJ), as the first
excited energy level ε1 practically coincides with the height of the barrier, Figure 3a. This
conclusion is valid to good accuracy for a wide range of values of the phase offset ϕg.

Decreasing the Coulomb energy towards the transmon regime leads to the appearance
of the prohibitive barrier for transitions |1〉 → |0〉 between the different wells, Figure 3b.
As displayed in Figure 3c, further decreases in the Coulomb energy reduce the energy
difference between |1〉 and |0〉 states. The lifetime of the first excited level may be enhanced
by lowering the inductive energy EL. Figure 3d shows that at EL = 0.01EJ , the barrier
is sufficiently high to ensure quasi-classical protection of the first excited level. Related
discussions of the energy levels can be found in [55,57] for fluxonium-type qubits.
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Figure 3. The potential energy (3) of the chiral magnetic qubit with the chiral magnetic Josephson
junction possessing the phase offset ϕg = π/2 for various Coulomb charging energies EC and
inductive energies EL: (a) EC = 0.045EJ , EL = EJ ; (b) EC = 0.045EJ , EL = 0.2EJ ; (c) EC = 0.045EJ ,
EL = 0.1EJ ; and (d) EC = 0.01EJ , EL = EJ . Lowest eigenstates |n〉 with n = 0, 1, . . . are shown along
with the numerically computed energy levels εn and the corresponding wavefunctions ψn(ϕ).

The conventional way to induce the phase ϕg in fluxonium qubits is to apply a
background magnetic flux Φ. The noise δΦ/Φ0 in magnetic flux is typically of the order
of 10−3 − 10−2; overcoming this noise is a central problem in quantum computer design.
In our case, the noise in ϕg is due to the noise in magnetization. Indeed, Equation (12)
yields the noise relation (

δϕg

ϕg

)
= eKL

(
δhx

hx

)
. (17)

To reduce the noise in magnetization, we propose to use a highly anisotropic uniaxial
ferromagnet, e.g., of magnetoplumbite type. In the case of a uniaxial ferromagnet, the 3D
rotational symmetry is explicitly broken by the crystalline lattice’s symmetry. The only
surviving symmetry is 2D rotations around the easy symmetry axis of the ferromagnet in
the basal plane perpendicular to this axis. In this case, magnetization fluctuations are given
by the simplified form of the Landau–Lifshitz–Gilbert equation with no gyroscopic term.
They correspond to the rotation of magnetization around the easy axis (which here points
along the x axis) with fluctuating components of magnetization hy and hz but with a fixed
hx, which is an integral of motion. Since the phase offset ϕg (12) depends only on hx, the
transverse fluctuations of magnetization do not induce noise in this quantity.

Unlike the transverse ones, the longitudinal fluctuations of magnetization (i.e., fluctu-
ations of the magnitude of h) induce noise in the offset phase ϕg. However, longitudinal
magnetization fluctuations are expected to be suppressed compared to the transverse ones
by a factor of c T/TC, where T is temperature, TC is Curie temperature of the ferromag-
net, and c is a constant of order one. Indeed, the transverse fluctuations correspond to
gapless Goldstone modes with kinetic energy ∼ T, while the longitudinal one is massive
with energy ∼ TC. Analysis [58,59] of the Landau–Lifshitz–Bloch equation (including
both transverse and longitudinal fluctuations of magnetization) indicates that the constant
c ' 2/3. Therefore, at temperatures of the superconducting qubits, which are on the order
of tens of milli-Kelvin, with Curie temperatures on the order of 1000 K, we expect the
suppression of longitudinal fluctuations by a factor of ∼ 10−4 − 10−5. This allows us to
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expect a suppression in the noise resulting from the offset flux of the CMJ junction as
compared to external flux noise by a significant factor of 10−2.

The domain structure in uniaxial ferromagnets is known to depend crucially on the
anisotropy [60]. In weakly anisotropic ferromagnets (Landau–Lifshitz type), there is branch-
ing of domains close to the surface, and the magnetic flux does not leave the ferromagnet.
This is not a desirable domain configuration, as the magnetic field has to penetrate the su-
perconductor. On the other hand, in strongly anisotropic ferromagnets (Kittel type), such
as magnetoplumbite, the domains do not branch, and thus the magnetic flux does escape
the ferromagnet. The superconducting interface may affect the domain structure of a thin
ferromagnetic film [61]; this question requires further investigation.

To summarize, we introduced a Josephson junction consisting of two non-centrosymmetric
superconductors connected by a uniaxial ferromagnet, and we demonstrated that it exhibits
a direct analog of the Chiral Magnetic Effect. We proposed this Chiral Magnetic Josephson
junction (CMJ junction) for use as an element of a qubit with parameters tunable by the
ferromagnet’s magnetization. The resulting Chiral Magnetic Qubit is protected from noise
caused by fluctuations in magnetization and does not require an external magnetic flux,
allowing for a simpler and more robust architecture. The main uncertainty stems from the
poorly known parity—the odd response of non-centrosymmetric superconductors—and we
believe that these materials and the properties of their interfaces deserve further study.
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The following abbreviations are used in this manuscript:

CMJ Chiral Magnetic Josephson
CME Chiral Magnetic Effect

Note
1 Possible candidates for the NCS superconductors should thus have a crystalline structure with either the point group O (Li2Pt3B,

Mo3Al2C), T point group (e.g. LaRhSi, LaIrSi), or C4 (La5B2C6), C2 (UIr), etc. On the other hand, the point groups Cnν with
n = 2, 3, 4, 6 (possessed, for example, by the compounds MoS2, MoN, GaN, CePt3Si, CeRhSi3, amd CeIrSi3 [7]) correspond to the
Lifshitz invariants of the type n · h× j that do not fit our proposal.
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