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Abstract: In our previous study, (Eur Phys J Plus 135:362, 2020 & Eur Phys J Plus 135:637, 2020),
we have discussed the possible existence of the dark-matter-admixed pulsars, located in dwarf as
well as in massive spiral galaxies (based on Singular Isothermal Sphere dark-matter density profile)
and in the Milky Way galaxy (based on Universal Rotational Curve dark-matter density profile). In
this article, we use the Navarro–Frenk–White (NFW) dark-matter density profile to get analogous
results for the pulsars in the disk region of the Milky Way galaxy. These findings may be treated as
valuable complements to the previous findings. We conclude from our findings that there is a unique
possibility of the presence of dark-matter-admixed pulsars in all the regions of the galaxies.
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1. Introduction

The unique properties of compact objects have been getting more attention for the
last few decades. White dwarfs, strange stars, and neutron stars fall into the category
of compact objects. These stars become stable as the outward degeneracy pressure from
the Fermi gas balances the inward gravitational force. The Fermi gases in white dwarf
and neutron stars mostly consist of electrons and neutrons, whereas the strange stars
consist of strange quark matter. The gravitational force is the main cause for the neutron
star to be bound. On the other hand, a strange star is more bound than a neutron star
owing to the strong interaction and gravitational force. The source of enormous energy
required for the formation of a strange star comes from the superluminous supernovae [1].
A strange star and a neutron star can be differentiated based on their vanishing surface
energy density [2–6]. According to Lattimer and Prakash [7], the radius and mass of a
neutron star having a particular Equation of State (EoS) depend on its central density. The
solutions of Tolman–Oppenheimer–Volkoff (TOV) equations can lead us to the theoretical
estimation of the mass and radii of spherically symmetric compact stars. They can also be
measured from pulsar timing, surface explosions, thermal emission from cooling stars, and
gravity-wave emissions. Fixing the EoS is quite challenging due to the complex structure
of the star [8–13]. The radius of the compact star is not completely known to us, whereas
the mass can be estimated from its presence in binaries [14–18]. Due to some observational
constraints, we need to theoretically study the stellar structure of the newly discovered
stellar objects [19–44].

In 1933, the concept of dark matter was introduced by Zwicky during the study of the
dynamic properties of the Coma galaxy cluster [45,46]. Rubbin and Ford [47] have come to
the same conclusion about dark matter through the optical studies of galaxies (e.g., M31).
Some discussions on this topic are available in the literature [48,49]. Though the nature and
origin of dark matter are not clear till now, some scientists have provided new concepts
on dark matter that explain its properties [50–58]. Although normal matters have no such
direct interaction with dark matter, stellar objects have some remarkable gravitational effect
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due to dark matter [59–61]. The gravitational effect of fermionic dark matter influences the
physical properties of the strange stars [62–66]. Spergel and Steinhardt have also introduced
the concept of self-interaction of dark matter [67].

Some astrophysicists [60,63,65,66,68–72] have worked on the dark matter neutron star.
Inspired by their work, we have investigated [73] the existence of dark matter in pulsars by
using the singular isothermal sphere (SIS) density profile. We have assumed the pulsars to
be made of ordinary matter admixed with dark matter having a density distribution of

ρd(r) =
K

2πGr2

where K is the velocity dispersion. The dark matter contribution comes from the rotational
curve fitting of the SPARC sample of galaxies [74]. We have shown the possibility of
dark matter with ordinary matter in the pulsars, namely, PSR J1748-2021B in NGC 6440B,
PSR J1911-5958A in NGC 6752, PSR B1802-07 in NGC 6539, and PSR J1750-37A in NGC
6441 galaxies.

We have also investigated the existence of dark-matter-admixed pulsars in the Milky
Way galaxy by using the universal rotation curve (URC) dark-matter density profile [75].
We have used the URC dark-matter density profile as

ρd(r) =
ρ0r3

0
(r + r0)(r2 + r2

0)

where r0 is the core radius and ρ0 is the effective core density. For the Milky Way galaxy

(in a particular case), r0 = 9.11kpc and ρ0 = 5× 10−24
(

r0
8.6kpc

)−1
gm/c.c. [76,77]. The

pulsars that we have studied in the Milky Way are PSR J0740+6620, PSR J1012+5307, PSR
J0751+1807, and PSR J1614-2230.

In the present article, we have considered the Navarro–Frenk–White (NFW) density
profile as it is a well accepted (dark matter) model, particularly in the disk regions of the
galaxy. We have also studied the pulsars, namely, PSR J0045-7319 and PSR J0537-6910,
which are located in the disk region of the Milky Way galaxy. In the NFW density profile,
the dark matter density can be represented as [78]

ρd(r) =
ρs

r
rs
(1 + r

rs
)2 (1)

where rs is the scale radius and ρs is the effective density. Particularly for the Milky Way
galaxy, rs = 20 kpc and ρs = 0.26 GeV/c.c. [79] . This article aims to investigate the possible
existence of dark-matter-admixed pulsars, namely, PSR J0045-7319, PSR J0537-6910, which
are located in the disk region of the Milky Way galaxy.

2. Interior Spacetime

The interior spacetime of the spherically symmetric pulsar [80–92] has been de-
scribed as,

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2dθ2 + r2 sin2 θdφ2 (2)

According to the Heintzmann metric [93]

eν = A2(1 + ar2)3 (3)

e−λ = 1− 3ar2

2

[
1 + C(1 + 4ar2)−

1
2

1 + ar2

]
(4)

where A (dimensionless) , C (dimensionless), and a (length−2) are constants.
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For the interior of the isotropic pulsar, we consider the energy-momentum tensor as

Te f f ν
µ = diag(−ρe f f , pe f f , pe f f , pe f f ), (5)

where ρe f f is the effective energy density and pe f f is the effective isotropic pressure.
Considering the pulsars are made of ordinary matter mixed with dark matter, the

effective density and pressure can be expressed as,

ρe f f = ρ + ρd

pe f f = p− pd.

The pressure appears due to dark matter as pd = mρd , where m is a constant [94].
In the presence of dark matter (1), Einstein’s field equations in the geometric unit

(G = c = 1) take the form

ρ = 1
8π

[
e−λ
(

λ′
r −

1
r2

)
+ 1

r2

]
− ρs

r
rs (1+

r
rs )

2 , (6)

p = 1
8π

[
e−λ
(

ν′
r + 1

r2

)
− 1

r2

]
+ mρs

r
rs (1+

r
rs )

2 . (7)

3. Study of Physical Properties
3.1. Energy Density and Pressure

From the plot of energy density and pressure (see the Figures 1 and 2), we see that at
the center, energy density and pressure are maximum, and both decrease monotonically
towards the boundary. Therefore, the energy density and pressure are well behaved in the
interior of the stellar structure. Here, we have taken the constants a = 0.00138889 km−2,
C = 1.34164, m = 0.025, rs = 20 kpc, and ρs = 0.26 GeV/c.c. in such a way that all
other required conditions must be obeyed, including the pressure, which goes to zero at
the boundary.

0 2 4 6 8 10 12

0.00035

0.00040

0.00045

0.00050

0.00055

r(km)

ρ
(k

m
-
2
)

Figure 1. Energy density (ρ) variation with radial distance (r) for a = 0.00138889 km−2, C = 1.34164,
m = 0.025, rs = 20 kpc, and ρs = 0.26 GeV/c.c.

3.2. Energy Conditions

Figure 3 indicates that all the energy conditions, namely, the null energy condition
(NEC), the weak energy condition (WEC), the strong energy condition (SEC), and the
dominant energy condition (DEC), are satisfied at the interior of the pulsar.

(i) NEC: ρ ≥ 0
(ii) WEC: ρ + p ≥ 0, p ≥ 0
(iii) SEC: ρ + p ≥ 0, ρ + 3p ≥ 0
(iv) DEC: ρ > |p|
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Figure 2. Pressure (p) variation with radial distance (r) for a = 0.00138889 km−2, C = 1.34164,
m = 0.025, rs = 20 kpc, and ρs = 0.26 GeV/c.c.
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Figure 3. Energy condition variation with radial distance at the pulsar interior for a = 0.00138889 km−2,
C = 1.34164, m = 0.025, rs = 20 kpc, and ρs = 0.26 GeV/c.c.

3.3. Matching Conditions

For a stellar body, at the boundary (r = R), the interior metric must be matched with
the exterior Schwarzschild metric,

ds2 = −(1− 2M
r

)dt2 +
dr2

(1− 2M
r )

+ r2(dθ2 + sin2 θdφ2) (8)

Assuming the continuity of metric functions gtt, grr, and dgtt
dr at the boundary (r = R),

we obtain

eν(R) = 1− 2M
R (9)

e−λ(R) = 1− 2M
R (10)

ν′eν(R) = 2M
R2 (11)



Universe 2022, 8, 652 5 of 13

This yields the gravitational mass of the pulsar as,

M =
3aR3

4

[
1 + C(1 + 4aR2)−

1
2

1 + aR2

]
(12)

Solving Equations (9–11) and considering pr=R = 0, we obtain

A =

√
R− 2M
3
√

3

√(
7M(R + rs)2 − R

(
4πmρsRr3

s + 3R2 + 6Rrs + 3r2
s
))3

R(2M− R)3(R + rs)6 (13)

a = − −4πmρsR2r3
s + MR2 + 2MRrs + Mr2

s

R2
(
−4πmρsR2r3

s + 7MR2 + 14MRrs + 7Mr2
s − 3R3 − 6R2rs − 3Rr2

s
) (14)

C =

(
4πmρsR3r3

s − 8M2(R + rs)2 + 3MR(R + rs)2)
R
(

M(R + rs)2 − 4πmρsR2r3
s
) ×√

3R
(
−4πmρsRr3

s + R2 + 2Rrs + r2
s
)
− 3M(R + rs)2

R
(
4πmρsRr3

s + 3R2 + 6Rrs + 3r2
s
)
− 7M(R + rs)2

(15)

3.4. Mass-Radius Relation and Surface Red-Shift

Here, we have calculated the radial dependence gravitational mass function M(r) as,

M(r) = 4π
∫ r

0
ρe f f r̃2dr̃ =

3ar3
[
1 + C(1 + 4ar2)−

1
2

]
4(1 + ar2)

(16)

The mass function M(r) has been plotted in Figure 4. Therefore, the compactness of
the pulsar can be written as,

u(r) =
M(r)

r
=

3ar2
[

1 + C
(
1 + 4ar2)− 1

2

]
4(1 + ar2)

(17)
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M
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⊙
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Figure 4. Radial dependence mass function, M(r) for a = 0.00138889 km−2, C = 1.34164, m = 0.025,
rs = 20 kpc, and ρs = 0.26 GeV/c.c.
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The surface red-shift corresponding to the compactness can be written as,

Zs =
1√

1− 2u
− 1 =

1√
1−

3ar2
(

C√
4ar2+1

+1
)

2(ar2+1)

− 1 (18)

From Figure 5, we see that the compactness u(r) = M(r)
r is an increasing function.

In our model, the maximum value of u(r) is 0.25, which satisfies the Buchdahl limit
[ M(r)

r < 4
9 ] [95]. The gravitational red-shift at the surface comes out as Zs = 0.414214, as

shown in Figure 6, which is lower than the allowed maximum limit (Zs ≤ 0.85) [96].

0 2 4 6 8 10 12

0.00

0.05

0.10

0.15

0.20

0.25

r(km)

u

Figure 5. Radial dependence compactness (u(r)) for a = 0.00138889 km−2, C = 1.34164, m = 0.025,
rs = 20 kpc, and ρs = 0.26 GeV/c.c.
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Figure 6. Radial dependence red-shift (Zs) for a = 0.00138889 km−2, C = 1.34164, m = 0.025,
rs = 20 kpc, and ρs = 0.26 GeV/c.c.
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3.5. TOV Equation

For the isotropic stellar body, the generalized TOV equation is written as,

dpe f f

dr
+

1
2

ν′(ρe f f + pe f f ) = 0 (19)

The stable equilibrium condition has been found (see Figure 7) under gravitational
force, Fg, and hydrostatic force, Fh, of the stellar body by the following equation:

Fh + Fg = 0 (20)

where

Fg = − 1
2 ν′(ρe f f + pe f f ) (21)

Fh = − dpe f f
dr (22)

Fg

Fh

0 2 4 6 8 10 12

-0.00002

-0.00001

0.00000

0.00001

0.00002

r(km)

F
i

Figure 7. Radial dependence of gravitational force (Fg) and hydrostatic force (Fh) for
a = 0.00138889 km−2, C = 1.34164, m = 0.025, rs = 20 kpc, and ρs = 0.26 GeV/c.c.

3.6. Speed of Sound and Adiabatic Index

Here, we have seen that our dark-matter-admixed pulsar model has satisfied (see the
Figure 8) the speed of sound, 0 ≤ v2 = ( dp

dρ ) ≤ 1 condition [97,98].
The infinitesimal radial adiabatic perturbation must be checked if one needs to tune the

model further. This concept was introduced by Chandrasekhar [99]. Later, Bardeen et al.,
Knusten, Harko, and Mak [100–102] used this stability condition for several astrophysical
cases. For the radial stability, the adiabatic index for stellar body should be γ = ρ+p

p
dp
dρ > 4

3 .

We see from Figure 9 that γ > 4
3 throughout the stellar interior. Therefore, we can say that

our dark-matter-admixed pulsar model is also stable under radial perturbation.
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Figure 8. Radial dependence of sound velocity (V2
r ) for a = 0.00138889 km−2, C = 1.34164, m = 0.025,

rs = 20 kpc, and ρs = 0.26 GeV/c.c.
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Figure 9. Radial dependence of Adiabatic Index (γ) for a = 0.00138889 km−2, C = 1.34164, m = 0.025,
rs = 20 kpc, and ρs = 0.26 GeV/c.c.

4. Discussion and Concluding Remarks

Few astrophysicists [60,63,65,66,68–72] have worked on dark-matter-admixed pulsars.
We have investigated the existence of dark-matter-admixed pulsar in the galactic halo
region of the galaxy . In the present article, we are investigating its existence in the disk
region of the Milky Way galaxy.

Previously [73,75], we have considered a two-fluid pulsar model, assuming it to be
made of ordinary matter admixed with dark matter. We have investigated it based on

(i) the singular isothermal sphere (SIS) profile for pulsars in the galactic halo region of
different galaxies [73].

(ii) the universal rotational curve (URC) profile for pulsars in the galactic halo region of
Milky Way galaxy [75].

Here, we have considered the dark matter based on the Navarro–Frenk–White (NFW) [78]
density profile (the acceptable dark matter profile in the disk region of the galaxy) for pulsars
in the disk region of the Milky Way galaxy.
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In this article, as earlier, we have considered the two-fluid dark-matter-admixed pulsar
model, and the interior spacetime is described by the Heintzmann metric. Density and
pressure at the interior of the pulsar are well behaved (Figures 1 and 2). Here, we assume
the value of the constants (a = 0.00138889 km−2, C = 1.34164, m = 0.025, rs = 20 kpc,
and ρs = 0.26 GeV/c.c.) in such a way that all of the physical required conditions must
satisfy. We also note that the value of rs and ρs taken here are applicable for the Milky Way
galaxy, and we have checked our model with the pulsars, namely, PSR J0045-7319 and PSR
J0537-6910, located in the disk region of Milky Way galaxy.

Additionally, our pulsar model obeys all of the energy conditions and the generalized
TOV equation. From the mass function (Equation (16)), all of the desired interior features
of a pulsar can be evaluated, which satisfies the Buchdahl mass-radius relation ( 2M

R < 8
9 )

(Figures 4 and 5). Figure 6 shows that the value of surface gravitational red-shift Zs =
0.414214, which is much less than the maximum allowed value (Zs ≤ 0.85) [96]. From
our mass function graphs Figures 4 and 5, as well as Equations (19–21) and Figure 6, we
have obtained the radii, compactness, and surface red-shift of the pulsars, namely, PSR
J0045-7319 and PSR J0537-6910. The detailed evaluated chart is shown in Tables 1 and 2.

Table 1. Evaluated parameters for pulsar PSR J 0045-7319.

PSR Distanc (kpc) Observed
Mass [103]

Radius from
Model (km)

Compactness
from Model

Red-Shift from
Model

J 0045-7319 57 1.58+0.34
−0.34 10.8436+0.88

−0.98 0.215152+0.027
−0.029 0.324885+0.067

−0.064

Table 2. Evaluated parameters for pulsar PSR J 0537-6910.

PSR Distance (kpc) Equation of
State

Observed
Mass [103]

Radius from
Model (km)

Compactness
from Model

Red-Shift from
Model

J 0537-6910 52.122 BSk 20 1.83+0.04
−0.04 11.5007+0.10

−0.10 0.234957+0.003
−0.003 0.373495+0.0079

−0.0079
J 0537-6910 52.122 BSk 21 2.11+0.04

−0.05 12.1875+0.094
−0.12 0.25564+0.003

−0.003 0.430441+0.0083
−0.01

J 0537-6910 52.122 APR 2.05+0.04
−0.03 12.0441+0.096

−0.072 0.251328+0.003
−0.002 0.417985+0.0083

−0.006

Now, in comparison, if we use the URC dark-matter density profile (ρd =
ρ0r3

0
(r+r0)(r2+r2

0)
)

(by taking metric constants a = 0.003 km−2, C = 0.8, m = 0.1; core radius r0 = 9.11 kpc;

and effective core density, ρ0 = 5× 10−24
(

r0
8.6kpc

)−1
gm/c.c. [75] ) or the SIS dark-matter

density profile (ρd = K
2πGr2 ) (by taking velocity dispersion, K = 10−7 (as for spiral galaxies

K ∼ 10−7 [73]) and metric constants a = 0.002 km−2, C = 1.14, and m = 0.01) instead of
the NFW density profile and applied it to the same pulsars, located in Milky Way galaxy,
we can obtain the comparison chart shown in Tables 3–5 .

Table 3. Comparison between the parameters evaluated for different dark matter profiles (pulsar PSR
J 0045-7319).

Dark Matter Profile Radius from Model (km) Compactness from Model Red-Shift from Model

NFW 10.8436+0.88
−0.98 0.215152+0.027

−0.029 0.324885+0.067
−0.064

URC 9.45519+0.81
−0.90 0.246746+0.029

−0.033 0.405098+0.089
−0.083

SIS 10.0366+0.84
−0.93 0.232452+0.028

−0.031 0.367048+0.078
−0.074
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Table 4. Comparison between the parameters evaluated for different dark matter profiles (pulsar PSR
J 0537-6910).

Equation of State Dark Matter Profile Radius from Model
(km)

Compactness from
Model RedShift from Model

BSk 20 NFW 11.5007+0.10
−0.10 0.234957+0.003

−0.003 0.373495+0.0079
−0.0079

BSk 20 URC 10.0604+0.09
−0.09 0.268595+0.003

−0.003 0.469936+0.0107
−0.0106

BSk 20 SIS 10.6601+0.096
−0.097 0.253485+0.003

−0.003 0.4241740.009
−0.009

BSk 21 NFW 12.1875+0.094
−0.12 0.25564+0.003

−0.003 0.430441+0.0083
−0.01

BSk 21 URC 10.698+0.088
−0.11 0.2912340.003

−0.004 0.547587+0.012
−0.014

BSk 21 SIS 11.3142+0.090
−0.11 0.275374+0.003

−0.004 0.491953+0.0101
−0.0124

APR NFW 12.0441+0.096
−0.072 0.251328+0.003

−0.002 0.417985+0.0083
−0.006

APR URC 10.5645+0.089
−0.067 0.286529+0.003

−0.002 0.530439+0.0114
−0.008

APR SIS 11.1774+0.091
−0.069 0.270817+0.003

−0.002 0.477046+0.0099
−0.007

Table 5. The values of the metric parameters and dark matter parameters used in different star
modellings.

Dark
Matter
Profile

a (in
km−2) C m K rs (in kpc) ρs (in GeV

c.c. ) r0 (in kpc) ρ0 (in gm
c.c. )

NFW 0.00138889 1.34164 0.025 ∗ 20 0.26 ∗ ∗
URC 0.003 0.8 0.1 ∗ ∗ ∗ 9.11 5× 10−24

SIS 0.002 1.14 0.01 10−7 ∗ ∗ ∗ ∗

If we compare Tables 3 and 4, we see that pulsars radii are at a minimum in URC
profile, whereas they are at a maximum in NFW profile (due to change in mass function
graph). As a result of that compactness, surface red-shift is highest in the URC profile
and lowest in the NFW profile (since compactness and red-shift are directly dependent
on the radius of the star). Moreover, it is to be mentioned that for using the URC profile
or the NFW profile, the core radius/scale radius and the effective core density/effective
density of Milky Way galaxy are known to us. However, for other galaxies, these essential
parameters are not known. Therefore, we cannot investigate the pulsars located in other
galaxies by using the URC/NFW profile. However, in the SIS model, we will be able to
study the pulsars located in different galaxies since the K (velocity dispersion) value of
dwarf galaxies, and the spiral galaxies, are available to us (they can be calculated from the
fitting of the rotation curves of the SPARC sample of galaxies [74]) . However, the Navarro–
Frenk–White(NFW) density profile is a well-accepted dark matter model, particularly for
the disk regions of the galaxy [78].

Therefore, our results confirm the possible existence of dark-matter-admixed pulsars
(by using the NFW density profile) located in the disk region of the Milky Way galaxy.
Earlier, we obtained similar results for the pulsars based on the URC (universal rotation
curve) density profile, located in the Milky Way galaxy [75], and the SIS (singular isothermal
sphere) density profile, located in the dwarf and massive spiral galaxies [73]. Hence, we
hope that dark-matter-admixed pulsars are present in all the regions of the galaxies.
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10. Özel, F.; Psaitis, D. Reconstructing the neutron-star equation of state from astrophysical measurements. Phys. Rev. D 2009, 80,

103003.
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