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Abstract: We study a perturbation theory for embedding gravity equations in a background for
which corrections to the embedding function are linear with respect to corrections to the flat metric.
The remaining arbitrariness after solving the linearized field equations is fixed by an assumption that
the solution is static in the second order. A nonlinear differential equation is obtained, which allows
for finding the gravitational potential for a spherically symmetric case if a background embedding is
given. An explicit form of a spherically symmetric background parameterized by one function of
radius is proposed. It is shown that this function can be chosen in such a way that the gravitational
potential is in a good agreement with the observed distribution of dark matter in a galactic halo.
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1. Introduction

Embedding gravity (also called embedding theory) [1] is a modified theory of gravity
based on the idea of our spacetime as a 4D surface in a 10D flat space. From a geometric
point of view, this approach renders the theory of gravity similar to string theory. In this
case, the space–time metric is considered to be induced and has the form

gµν = (∂µya)(∂νyb)ηab, (1)

where ηab is a flat metric of the ambient space, and ya(xµ) is an embedding function defining
the shape of the surface. Here and further µ, ν, . . . = 0, . . . , 3 and a, b, . . . = 0, . . . , 9. After
the pioneering work of [1], the ideas of the embedding approach were repeatedly used in
the works of various authors to describe gravity, including the problem of its quantization;
see, for example, [2–11].

The embedding gravity equations of motion, called Regge–Teitelboim equations,
are more general in comparison with Einstein’s equations Gµν = κ Tµν and have the
following form:

(Gµν −κ Tµν)ba
µν = 0, (2)

where ba
µν is a second fundamental form of a 4D surface defined by an embedding function

ya(xµ). All “Einsteinian” (i.e., satisfying Einstein’s equations) solutions satisfy the Regge–
Teitelboim equations, but they do not exhaust the full set of solutions. There may be
additional solutions for which Gµν 6= κ Tµν; nevertheless, (2) is satisfied. Initially, this was
seen as a disadvantage of the approach, since embedding gravity was understood as some
reformulation of GR, potentially more convenient for quantization due to the presence of a
flat ambient space. Therefore, it was proposed to additionally introduce Einstein constraints
into the theory, rendering it truly equivalent to GR [1,12]. However, the presence of extra
solutions in the theory can be considered to be an advantage.

If we assume that just the Regge–Teitelboim equations describe the gravitational
interaction, from the point of view of describing observations in terms of the usual GR,
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extra solutions manifest themselves as an additional contribution to the right side of
Einstein’s equations. It can be interpreted as the presence of some additional fictitious
embedding matter that has nothing to do with ordinary matter. This contribution depends
solely on the gravitational variables (which, in embedding theory, are ya(xµ)), and its
appearance is connected only with an attempt to reformulate a new theory in the old
language. Since the direct detection of dark matter does not currently yield results [13,14],
it is of interest to try to treat the embedding matter of the embedding theory as dark matter
(and possibly as dark energy). Then, the effects associated with dark matter and energy are
purely gravitational. In this way, observational problems that have no explanation within
the framework of GR can be solved. The Regge–Teitelboim Equation (2) can be rewritten as
a pair of equations

Gµν = κ(Tµν + τµν), (3)

τµνba
µν = 0, (4)

i.e., in the form of a set of Einstein’s equations with the contribution of an energy–momentum
tensor τµν of fictitious embedding matter and its equations of motion. This was first in-
dicated in [15]. There are also modified theories of gravity which are alternative to the
embedding gravity, equations of motion of which can be written in the form of Einstein’s
equations supplemented by other equations. The most famous is mimetic gravity [16,17].

In order to obtain the properties of the embedding matter generated by embedding
gravity (and thereby to understand whether they are similar to the properties of dark
matter), it is necessary to investigate solutions of Equation (2). In general, due to their
nonlinearity, this is too difficult a mathematical problem. So, we limit ourselves to the
most physically interesting case of weak gravity, when metric gµν is close to flat metric ηµν.
In this case, the problem arises in choosing a background value ȳa(xµ) of the embedding
function that would correspond to the flat metric. The simplest choice in the form of ȳa(xµ),
which defines a 4D plane in the ambient space, is unsuitable since, in such a background,
Regge–Teitelboim Equations (2) are not linearized [2]. To linearize the equations, it is
necessary to choose “unfolded” embedding [18] as the background, which means that the
second fundamental form of the surface is nondegenerate in some sense.

In this paper, we use the unfolded embedding of the Minkowski metric, which is the
product of a timelike line yI = const (we use indices I, K, . . . = 1, . . . , 9; i, k, . . . = 1, 2, 3) on
9D unfolded embedding ȳI(xi) of the euclidean 3D metric, i.e.,

ȳa =

(
x0

ȳI(xi)), ∂i ȳI∂k ȳI = δik. (5)

With such a choice of background embedding, a nonrelativistic motion of embedding
matter is possible [19].

The purpose of this work is to study Regge-Teitelboim Equation (2), linearized in the
background of (5). We look for a solution that corresponds to a galaxy that rotates so slowly
that the effect of the rotation can be neglected, i.e., the distribution of ordinary matter is
static and spherically symmetric on average. At the same time, we assume that metric (1) is
also static (and spherically symmetric), which corresponds to the time independence of
value τµν describing embedding matter. The resulting solution determines the dependence
of the gravitational potential on the distance to the center of the galaxy, and it can be
compared with observations of the rotation curves of galaxies.

In Sections 2 and 3, we obtain linearized equations and find their solution. In Section 4,
the influence of the assumption of the exact static nature of the solution on its behavior in a
linear approximation is investigated. In Section 5, we study how the problem is simplified
in the case of spherical symmetry. We propose an explicit form of a spherically symmetric
background embedding in Section 6. In Section 7, we study the possibility of choosing this
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embedding in such a way that the corresponding gravitational potential is in agreement
with the observed rotation curves of galaxies.

2. Linearization of Regge–Teitelboim Equations

Let us recall some formulas of embedding theory. All convolutions by Latin indices are
carried out using the flat metric of ambient space ηab. The induced metric is expressed in
terms of the embedding function by Formula (1). We use space–time signature (−,+,+,+).
The signature is changed by changing the sign of ηab, and the induced metric changes the
sign as a consequence. The second fundamental form of a 4D surface is expressed in terms
of the covariant derivative Dµ of the embedding function, consistent with the metric or
through projector Π⊥a

b on a subspace transverse to the surface (see, for example, [12]):

ba
µν = Dµ∂νya = Π⊥

a
b∂µ∂νyb. (6)

We mark with a line the values corresponding to background embedding function ȳa

(5); for example, b̄a
µν is the second fundamental form of the background surface. We raise

and lower the 4D indices of values with a line using the background metric. Since it is flat,
the background connection is zero, and the covariant derivative in (6) is reduced to the
usual one. The second derivatives of ȳ0 and the derivatives by x0 of ȳI are zero; hence, the
nonzero components of b̄a

µν are:
b̄I

ij = ∂i∂jȳI . (7)

Through index I, this value is transverse to the 3D surface in 9D space described by
embedding function ȳI(xi). Thus, index I at each point effectively runs through 6 values,
exactly like multi-index {ij}. Therefore, b̄I

ij can be represented as a 6× 6 matrix. Since this
matrix is nonsingular for “unfolded” embeddings (see details in [18]), you can introduce
symmetric by l, m and transverse by I value ᾱlm

I , which is inverse to b̄I
ij in the matrix sense:

ᾱlm
I b̄I

ij =
1
2

(
δl

i δ
m
j + δl

jδ
m
i

)
. (8)

We look for solutions of the equations in the form of Systems (3) and (4) as a perturba-
tion theory series in degrees of the gravitational constant κ in the background (5):

ya = ȳa +κ
(1)
y a +κ2(2)y a + . . . . (9)

We write similar expansions in a series of κ for any other quantities, including τµν

and the energy–momentum tensor of ordinary matter Tµν. Substituting expansions into
Systems (3) and (4), in the first nonvanishing order, we obtain

(1)

Gµν = T̄µν + τ̄µν, (10)

τ̄ik b̄I
ik = 0. (11)

Due to the nonsingularity of the (7) mentioned above, the last equation corresponds
to Condition

τ̄ik = 0. (12)

Of the 10 linearized Einstein Equations (10), only six (for µ = i, ν = k) are equations for the

first correction
(1)
y a to the embedding function and hence for the first correction

(1)
g µν to the

metric, as follows from (1). The remaining four equations define the components of τ̄0µ;
therefore, they do not restrict the embedding function.
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Only the transverse contributions to the background surface in
(1)
y a change the shape

of the surface, so that only six components of
(1)
y a make physical sense. The others four

components correspond to the longitudinal deformations of the surface, which are equiva-

lent to diffeomorphisms. Therefore, in order to uniquely find all 10 components of
(1)
y a, it is

necessary to impose some coordinate conditions.

3. Solving of the Linearized Equations

Assume that at least in the zero order the distribution of ordinary matter is static,
i.e., ∂0T̄µν = 0. We look for solutions of linearized Equation (10) that correspond to the

static addition to the metric, i.e., ∂0
(1)
g µν = 0. This corresponds to the fact that, in the main

order, the distribution of embedding matter is also static, i.e., ∂0τ̄µν = 0.
Instead of solving only 6 out of 10 Equations (10) (which can be performed and

gives the same result), it is convenient to solve all 10 equations, treating the quantities of
τ̄0µ as independent variables describing embedding matter. Then, the linearized Regge–
Teitelboim equations are simply reduced to linearized Einstein Equation (10). We assume
that ordinary matter is dustlike (as can be performed for the matter in galaxies) and is at
rest in zero order; then,

T̄µν = ρ̄(xi)δ0
µδ0

ν . (13)

Equation (10) can be considered to be an equation not directly for
(1)
y a, but as an equation

for the correction to metric
(1)
g µν, from which

(1)
y a is then found by solving embedding

Equation (1).

The equations for
(1)
g µν take a simple form:

∆
(1)
g 00 = −(ρ̄(xi) + τ̄00), ∆

(1)
g jk = −(ρ̄(xi) + τ̄00)δjk, (14)

∆
(1)
g 0k = −2τ̄0k (15)

(where ∆ is the Laplacian operator) if we choose harmonic coordinates and assume that
(1)
g µν

does not depend on time. In addition, we assume that
(1)
g µν is decreasing at spatial infinity.

The conditions for the harmonic coordinates are reduced to only one additional equation:

∂k
(1)
g 0k = 0. (16)

Introducing gravitational potential ϕ(xi) (we did not include the gravitational constant κ
in it for convenience) as a solution of Poisson equation

∆ϕ(xi) =
1
2
(ρ̄(xi) + τ̄00) (17)

and taking into account that the solutions are decreasing at spatial infinity, we obtain

(1)
g 00 = −2ϕ(xi),

(1)
g jk = −2ϕ(xi)δjk. (18)

Now, we find correction
(1)
y a to the embedding function that corresponds to an arbitrary

correction
(1)
g µν to the metric. From Formula (1), in the first order by κ, we have:

(1)
g µν = (∂µȳa)(∂ν

(1)
y a) + (∂νȳa)(∂µ

(1)
y a). (19)
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Let us introduce a parameterization for the correction to the embedding function as the
sum of a tangent and orthogonal to the background components:

(1)
y a =

(1)
y γ
‖∂γȳa +

(1)
y a
⊥. (20)

The structure of Background Embedding (5) leads to relation
(1)
y 0 =

(1)
y 0
‖. Substituting

Representation (20) in (19) yields a system of differential equations for
(1)
y γ
‖ and

(1)
y a
⊥:

ηγν∂µ
(1)
y γ
‖ + ηγµ∂ν

(1)
y γ
‖ − 2

(1)
y I
⊥ b̄I

µν =
(1)
g µν. (21)

Writing out its components, we obtain a system of equations:

− 2∂0
(1)
y 0 =

(1)
g 00,

−∂k
(1)
y 0 + ∂0

(1)
y k
‖ =

(1)
g 0k,

∂i
(1)
y j
‖ + ∂j

(1)
y i
‖ − 2

(1)
y I
⊥ b̄I

ij =
(1)
g ij. (22)

This can be solved by integrating the equations over time and taking into account the static
(1)
g µν. Denoting the integration constants as ỹa(xi), we write the answer as follows:

(1)
y 0 = −1

2
(1)
g 00x0 + ỹ0(xi) = ϕ(xi)x0 + ỹ0(xi),

(1)
y k
‖ =

∫ (
(1)
g 0k + ∂k

(1)
y 0
)

dx0 + ỹk(xi),

(1)
y I
⊥ =

1
2

ᾱ
kj
I

(
−

(1)
g kj + 2 ∂k

(1)
y j
‖

)
= ᾱ

kj
I

(
ϕ(xi)δkj + ∂k

(1)
y j
‖

)
, (23)

where (18) was also used.
Substituting these expressions into (20), we lastly obtain

(1)
y a = δa

0

(
ϕ(xi)x0 + ỹ0(xi)

)
+

+δa
I

((∫ (
(1)
g 0k + ∂k

(1)
y 0
)

dx0 + ỹk(xi)

)
∂k ȳI + ᾱ

kj
I

(
ϕ(xi)δkj + ∂k

(1)
y j
‖

))
. (24)

This expression gives the solution of the linearized Regge–Teitelboim equations. It is
parameterized by the gravitational potential ϕ(xi) that, via Equation (17), is associated
with the zero-order τ̄00 of the density of embedding matter, and via the components of

metric
(1)
g 0k that, via Equation (15), are related to the zero-order τ̄0k of the flux density of

this matter. Due to (15) and (16), the components of τ̄0k obey condition ∂kτ̄0k = 0 (it has the
meaning of the embedding matter conservation condition in the case under consideration),
so only two of these three components can be considered as independent.

It is interesting to compare this result with the one obtained in [19] in the framework of
the nonrelativistic approximation. For this purpose, let us write down the time derivative
of Solution (24):

∂0
(1)
y 0 = ϕ(xi),

∂0
(1)
y I =

(
(1)
g 0k + ∂k

(1)
y 0
)

∂k ȳI + ᾱ
ij
I ∂i

(
(1)
g 0j + ∂j

(1)
y 0
)

. (25)

The second equation reproduces Equation (62) from [19], taking into account the assumption
(1)
g 0j = 0 there. However, the first equation differs from Equation (61) of [19] through the
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absence of a quadratic contribution. Of course, this is not surprising, since the solution of
(24) is obtained in the linear approximation and hence with the rejection of the quadratic
contributions. However, when analyzing the nonrelativistic limit in [19], it was taken into
account that for the large intervals of time x0 (when time x0 is replaced by nonrelativistic
time t = x0/c, where c is the speed of light) quadratic corrections can give a comparable
contribution to the linear ones.

4. Accounting for Equations in the Next Order

The solution obtained above in the first order of perturbation theory depends on the
choice of the distribution of embedding matter in zero order characterized by τ̄0µ. Let us
find restrictions on this distribution, assuming that both τµν characterizing embedding
matter and the energy–momentum tensor of ordinary matter Tµν are static not only in the
zero approximation, but also exactly. In particular, it follows that the metric is also exactly
static. When considering a galaxy, this means that the configuration of both ordinary and
embedding matter at some point passed into a stationary state. We investigate just this
particular case.

Let us write down Equation (4) in the next order in κ, compared to already studied
Equation (11), and use it:

(1)
τ jk b̄a

jk + τ̄00
(1)

b a
00 + 2τ̄0k

(1)

b a
0k = 0. (26)

Due to (6) and the properties of Background Embedding (5), we have
(1)

b a
0µ = Π̄⊥a

b∂0∂µ
(1)
y b.

This allows for us to express
(1)
τ jk from (26) in the form:

(1)
τ jk = −

(
τ̄00∂0∂0

(1)
y I + 2τ̄i0∂i∂0

(1)
y I
)

ᾱ
jk
I . (27)

Therefore, the assumed time independence of τµν leads to additional restrictions on the
quantities in the right-hand side. The time derivative of Equation (27) with (25) and

condition ∂0
(1)
τ jk = 0 provide the equation

τ̄i0
((

δ
j
i δ

k
l + δ

j
l δ

k
i

)
∂l ϕ + 2 ∂i

(
ᾱlm

I ∂l∂m ϕ
)

ᾱ
jk
I

)
= 0. (28)

Then, we can also write down Equation (3) in the next order, and it provides the next

correction
(2)
g µν to the metric. However, it is possible to write down a consequence of this

equation in which the determined correction does not enter. This is the corresponding
order of equation Dµτµν = 0, reflecting the conservation (with covariant corrections) of
embedding matter. In the lowest order, this equation has the form ∂µτ̄µν = 0 and is satisfied
given (12), (15) and (16). In the next order, it looks like

∂µ
(1)
τ µν +

(1)

Γ µ
µγτ̄γν +

(1)

Γ ν
µγτ̄µγ = 0. (29)

Taking ν = k in this equation, and using Equation (27) and the assumed time independence

of τµν in all orders, from condition ∂0
(1)
τ 0k = 0 we obtain an equation:

∂j

((
τ̄00∂0∂0

(1)
y I + 2τ̄i0∂i∂0

(1)
y I
)

ᾱ
jk
I

)
−

−τ̄0kηµα(∂αȳa)∂µ∂0
(1)
y a − τ̄00(∂k ȳa)∂0∂0

(1)
y a − 2τ̄ j0(∂k ȳa)∂j∂0

(1)
y a = 0, (30)

where (12) and an expression for connectivity are used (see, for example, [12])

Γν
µγ = gνα(∂αya)∂µ∂γya, (31)
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from which it can be found that

(1)

Γ ν
µ0 = ηνα(∂αȳa)∂µ∂0

(1)
y a. (32)

Using Formulas (25) in (30), we obtain an equation that, together with (28), restricts the
choice of the background embedding ȳa and τ̄0µ, which parameterize the solution of the
linear approximation found in the previous section. From the remaining Equation (29) at

ν = 0, variable
(1)
τ k0 is not excluded, so this equation does not provide a new restrictions on

the above quantities.
The background embedding of the form (5) is parameterized by three functions, since

nine components of ȳI(xi) are imposed by six conditions that the metric of the surface
described by this function is flat Euclidean. At first sight, the resulting number of equations
for the background and τ̄0µ seems too large—six Equation (28) and three Equation (30) for
six unknowns (as noted after (24)), only two of the three components τ̄0k are independent).
However, it is easy to see that a solution nevertheless exists, since the six Equations (28)
can be satisfied by choosing three quantities τ̄0k as

τ̄0k = 0. (33)

We study the solutions corresponding just to such a choice. Physically, it means that, in the
zero approximation, embedding matter is at rest. Using Background (5) leads to the fact
that time independence τ̄µν actually leads to (33) (otherwise, there are fewer unknowns
than equations), i.e., to Embedding Matter at rest in the zero approximation. In the analysis
of the nonrelativistic limit in [19], such a background was found when discussing the
nonrelativistic character of motion of embedding matter. Taking into account (15) and
assuming decreasing corrections to the metric at 3D infinity, it follows from (33) that
(1)
g 0k = 0.

Given that τ̄0k = 0, the remaining Equations (30) are simplified. Using (25), we can
now rewrite them as

∂j

(
(2∆ϕ− ρ̄)ᾱ

jk
I ᾱlm

I ∂l∂m ϕ
)
− (2∆ϕ− ρ̄)∂k ϕ = 0, (34)

where τ̄00 was expressed from (17).
These are three equations for four quantities, namely, three that parameterize the

background embedding function ȳI(xi) and one describing the density of embedding
matter τ̄00. Thus, linearized Regge–Teitelboim equations, supplemented by the condition of
exact statics of solutions, leave an arbitrariness in the choice of one function of coordinates
xi. The physical meaning of this arbitrariness lies in the presence of arbitrariness in the
general case when specifying the distribution of embedding matter at the initial moment
of time.

5. The Case of Spherical Symmetry

Let us consider the situation when ordinary matter is distributed in a spherically
symmetric way. Then, the solution can also be sought in the class of spherically symmetric
functions. In this case, both gravitational potential ϕ and the distribution density of
ordinary matter ρ̄ depend only on the radial coordinate r =

√
xixi.

The question of how to formulate a condition of any kind of symmetry for an embed-
ding function is rather nontrivial; see, for example, [20]. Since the background embedding
function ȳI(xi) enters Equation (34) only as a quantity

Alm,jk = ᾱlm
I ᾱ

jk
I , (35)
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it is possible to directly impose symmetry constraints on this. Taking into account all index
permutation symmetries, in the case of spherical symmetry, quantity A can be written in
the form

Alm,jk = f1(r)δlmδjk +
1
2

f2(r)
(

δl jδmk + δlkδmj
)
+

1
2r2 f3(r)

(
δlmxjxk + δjkxl xm

)
+

+
1

4r2 f4(r)
(

δl jxmxk + δlkxmxj + δjmxkxl + δmkxjxl
)
+

1
r4 f5(r)xl xmxjxk. (36)

Here, functions f1 . . . f5 are characteristics of the particular background embedding used. If
we substitute this representation into (34), a common multiplier xk appears, and the three
equations turn into one scalar equation. Introducing notations for different combinations
of functions f1 . . . f5, the resulting equation can be written in the following form:((

ϕ′′ +
2
r

ϕ′ − 1
2

ρ̄

)(
ϕ′′F1 +

1
r

ϕ′F2

))′
+

2
r

(
ϕ′′ +

2
r

ϕ′ − 1
2

ρ̄

)(
ϕ′′F3 +

1
r

ϕ′F4

)
= 0, (37)

where

F1 = f1 + f2 + f3 + f4 + f5, (38)

F2 = 2 f1 + f3, (39)

F3 = f2 +
1
2

f3 + f4 + f5, (40)

F4 = − f2 + f3 −
r2

2
. (41)

Equation (37) allows for us to determine gravitational potential ϕ(r) if the distribution
of ordinary matter ρ̄(r) and the background embedding function defining f1 . . . f5 are
known. Since (37) is a nonlinear differential equation, in the general case, its solution can
only be sought numerically. First of all, it is necessary to find all the functions f1 . . . f5
included in the equation using the given embedding function, which requires first finding
the value of ᾱlm

I .
Finding it directly with Formula (8) is a nontrivial task for specific embeddings. Let us

find a simpler way that allows for us to find functions f1 . . . f5 included in the expansion of
(36) without explicit knowledge of ᾱlm

I . When writing this expansion, we took into account
three types of symmetry by permutations of indices following from the definition of (35):
inside the first pair, inside the second, and when replacing the first pair with the second.
As a consequence, we have five independent coefficients f1 . . . f5. However, in fact, there
are fewer independent variables parameterizing A. To show this, we define quantity B:

Bjk,is = b̄I
jk b̄I

is = (∂j∂k ȳI)∂i∂sȳI . (42)

It is easy to see that this quantity is symmetric through the permutation of any two indices
due to the orthogonality of the first and second derivatives of ȳI :

Bjk,is = (∂j∂k ȳI)∂i∂sȳI = −(∂i∂j∂k ȳI)∂sȳI = (∂i∂k ȳI)∂j∂sȳI = Bik,js. (43)

Hence, in the spherically symmetric case, it can be parameterized not by five but only by
three radial functions:

Bjk,is =
1
3

g1(r)
(

δjkδis + δjsδik + δjiδsk
)
+

1
6r2 g2(r)

(
δjkxixs + δjixkxs+

+δjsxixk + δikxjxs + δisxjxk + δskxjxi
)
+

1
r4 g3(r) xjxkxixs. (44)
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There is a connection between A and B that follows from (8):

Alm,jkBjk,is =
1
2

(
δl

i δ
m
s + δl

sδm
i

)
. (45)

It can be used to express five functions f1 . . . f5 through three functions g1 . . . g3:

f1 =
−24g2

1 + (−24g2 − 36g3)g1 + 3g2
2

4(20g2
1 + (20g2 + 24g3)g1 − g2

2)g1
,

f2 =
3

2g1
,

f3 =
(12g2 + 36g3)g1 − 3g2

2
2(20g2

1 + (20g2 + 24g3)g1 − g2
2)g1

, (46)

f4 =
−3g2

g1(2g1 + g2)
,

f5 =
−360g2

1g3 + (138g2
2 + 108g2g3)g1 − 3g3

2
4(20g2

1 + (20g2 + 24g3)g1 − g2
2)g1(2g1 + g2)

.

As a result, to find the functions f1 . . . f5 corresponding to a specific background embedding,
we first need to calculate the second fundamental form b̄I

ij = ∂i∂jȳI . Then, we have to
determine quantity Bjk,is according to (42). Comparing the result with the (44) expansion,
we can find functions g1 . . . g3, and then find functions f1 . . . f5 by (46).

6. Explicit Unfolded Spherically Symmetric Embedding

Let us present an embedding ȳI(xi) of the flat Euclidean 3D metric into 9D Euclidean
space that would be spherically symmetric in the sense discussed in [20] and would also be
unfolded in terms of [18]. The latter means that, for such a surface, the second fundamental
form (7) is nonsingular as a 6× 6 matrix; see the text after (7).

We consider basis λA
ij in the space of symmetric traceless matrices, numbered by index

A, which runs through values 4, . . . , 8. We subject this basis to the orthonormality condition
in the space of such matrices:

λA
ij λA

lm =
1
2

(
δilδjm + δimδjl

)
− 1

3
δijδlm, λA

ij λB
ij = δAB. (47)

We take the embedding function ȳI(xi) with components

ȳk(xi) = f (r)xk,

ȳA(xi) = g(r)λA
lmxl xm,

ȳ9(xi) = h(r), (48)

it is parameterized by three radial functions. One can check that this embedding function
describes a surface with spherical symmetry. This means that there is such a representation
(generally speaking, reducible) of the group of 3D rotations under the action of which in
the space ȳI the surface transforms to itself (see [20] for details). The three independent
functions f , g, h are related to its irreducible parts, and the reducible representation as a
whole can be described as “3+5+1”.

Let us select, among all the embeddings of type (48), those that correspond to a flat
metric. Calculating for (48) the components of the induced metric, we obtain the equations

f 2 + 2r2g2 = 1,

(r f )′2 +
2
3

(
r2g
)′2

+ h′2 = 1. (49)
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Expressing from these equations functions g and h through f we obtain the desired spheri-
cally symmetric embedding of the flat Euclidean 3D metric into 9D Euclidean space. It is
parameterized by choosing one function of radius f (r). The fact that such an embedding is
unfolded by a non-special choice of this function can be checked directly by computing the
second fundamental form ∂i∂jȳI (7) and making sure that it is nonsingular.

Calculating this quantity and Expression (42) constructed from it lead to the following
expressions for the coefficients g1 . . . g3 of its expansion (44):

g1 = 6g2, (50)

g2 = 6
(

f ′2 + 2r2g′2 + 4rgg′
)

, (51)

g3 = r2
(

h′

r

)′2
+ r2 f ′′2 + 2r f ′ f ′′ − 3 f ′2 +

2
3

r4g′′2 + 4r3g′g′′ + 4r2gg′′ − 2r2g′2 − 4rgg′, (52)

where the functions g and h must be expressed through a single arbitrary function f (r)
according to (49).

7. Inverse Problem

Equation (37) obtained above in Section 5 allows for searching for the gravitational
potential ϕ(r) if the distribution of ordinary matter ρ̄(r) and the background embedding
function ȳI(xi) are known. It is easy to see that, among the solutions of this equation, there
is an Einsteinian solution for which

ϕ′′ +
2
r

ϕ′ − 1
2

ρ̄ = 0. (53)

However, there are other solutions too. In the galactic halo region where the contribution of
ρ̄ can be neglected, we have a Newtonian behavior of the gravitational potential ϕ ∼ 1/r for
the Einsteinian solution. Such a behavior does not agree well with the data of the rotation
curves of galaxies. To find other solutions in this area, it is sufficient to know background
embedding ȳI(xi).

The background embedding constructed in the previous section has ambiguity in the
choice of one function f (r). There is no highlighted natural way to choose this function.
As a consequence, there is also no possibility to uniquely find the gravitational potential
ϕ(r) as a result of solving Equation (37), since changing f (r) also changes ϕ(r). Therefore,
we focus on investigating the inverse problem by posing the question: can we find such
a background embedding ȳI(xi) (i.e., such a function f (r)) so that the solution of Equa-
tion (37) corresponds to the gravitational potential in good agreement with galactic halo
observations?

As a good fitting of observational data, we take the Burkert profile [21] of the dark
matter density; see, for example, review [22]:

ρB(r) =
ρ0r3

0
(r + r0)(r2 + r2

0)
, (54)

where r0 is the core radius, ρ0 is the density at the center of the galaxy. In order to find a
behavior of the gravitational potential that agrees well with the observations, one needs to
solve the equation

ϕ′′ +
2
r

ϕ′ =
1
2
(ρ̄ + ρB). (55)

The solution of this equation in the galactic halo has the form:

ϕ(r) =
M
r
+

ρ0

2

((
1 +

r0

r

)(
arctan

r
r0
− ln

(
1 +

r
r0

))
+

1
2

(
1− r0

r

)
ln

(
1 +

r2

r2
0

))
, (56)
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where M is the mass of ordinary matter in the galaxy. To avoid introducing this quantity as
an additional parameter, we further assume that the proportional contribution to M to the
gravitational potential in the halo region can be neglected compared with the contribution
of dark matter. The trivial substitution of Function (56) with M = 0 into Equation (37)
leads to a very complicated (so we do not show it here) third-order nonlinear differential
equation for the unknown function f (r) parameterizing the background embedding. This
equation fails to be solved analytically. We numerically solved the Cauchy problem for
Equation obtained, choosing different values of the initial data at the value of the radius
r = r0/2, which is usually about the visual size of the galaxy. We solve Equation (37)
with a zero contribution of ordinary matter, so it is applicable only in the region of the
galactic halo.

Figure 1. Numerically constructed solutions with different initial data: (a) f = 0, f ′ = 0.025,
f ′′ = −0.1; (b) f = 0.1, f ′ = 0.02, f ′′ = −0.1.

A typical view of the obtained solutions is shown in Figure 1. The existence of such
solutions shows the possibility to choose parameterizing embedding (48) function f (r) in a
special way. For this choice, equations of motion in the framework of linearization of the
embedding theory in this background lead to the same gravitational potential as the dark
matter with Burkert profile (54) in the framework of ordinary GR. With a significant change
in the chosen values of the initial data, the algorithm used for the numerical solution of the
nonlinear differential equation no longer made it possible to extend the solution into the
region r & 0.95r0. This can be explained by the fact that in the differential equation being
solved, the coefficient at the major derivative (which itself is a compound quantity that
also depends on the minor derivatives) may become too small, which prevents the correct
behavior of the algorithm.

8. Conclusions

We considered the problem of constructing a perturbation theory for Regge-Teitelboim
Equation (2) for some background. The background was chosen to be (5), which corre-
sponded to a 4D surface that is a direct product of the timelike straight line on the 9D
unfolded embedding of the euclidean 3D metric. This formulation of the problem is a spe-
cial case of the weak gravitational field approximation in the embedding theory, in which
the corrections to the embedding function are linear to the corrections to the metric; see
(23). The analysis is simplified if the Regge–Teitelboim equations are rewritten as a set of
Einstein Equation (3) with the contribution of fictitious embedding matter and Equation (4)
describing the behavior of this matter.

First, the Einstein equations were linearized in the usual way and solved using har-
monic coordinates. The result depended on the energy-momentum tensor of embedding
matter specified arbitrarily in the lower order. Further, we restricted ourselves to the class
of solutions for which both ordinary matter and embedding matter are in a stationary
state, which corresponded to the description of an already fully formed galaxy. Taking
this condition into account in the second order of perturbation theory leads to additional
restrictions on the solutions found in the linear one. As a result, Equation (37) arises in the
case of spherical symmetry, which allows for finding the gravitational potential ϕ(r) if the
background embedding is given. The nonlinear form of this equation is explained by the
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fact that it arises as a result of accounting for the static character of the metric in the second
(following the linear) order.

It is possible to find a class of spherically symmetric surfaces (48) and (49) that have
all necessary properties for their use as a background embedding. These embeddings are
parameterized by a single function f (r). This function could be chosen, so that the solution
of Equation (37) led to a gravitational potential that corresponded well (if we neglected
deviations from spherical symmetry for real galaxies) to the observed distribution of dark
matter in the galactic halo.

In our analysis we used the following assumptions. We assumed that ordinary matter
has, on average, static spherically symmetric distribution. As a consequence, the energy–
momentum tensor of ordinary matter Tµν has exactly spherically symmetric and static
character (we use this fact in the first two orders of perturbation theory: for T̄µν and
(1)

T µν). We further assumed that the metric had an exactly spherically symmetric and static

character, and we used this for corrections to the metric
(1)
g µν and

(2)
g µν. Given the restrictions

on Tµν, imposing such an assumptions on the metric is the same as imposing them on
the energy-momentum tensor of embedding matter in the first two orders: for τ̄µν and
(1)
τ µν. As a background embedding function ȳa(xµ) that corresponded to the flat metric ηµν,
we took the Product (5) of a timelike line on 9D unfolded and the spherically-symmetric
embedding (48) of the euclidean 3D metric. The assumptions were internally consistent,
but for real galaxies, they are satisfied only approximately. The strongest ones are the
deviations from the spherical symmetry.

We discussed the behavior of the gravitational potential ϕ(r) only in the galactic halo.
In order to study the behavior of ϕ(r) inside the galaxy where the influence of ordinary
matter cannot be neglected, one must additionally find an explicit form of its distribution,
which is beyond the scope of this paper. At the same time, deviations of embedding gravity
predictions from GR arise at scales where energy–momentum tensor τµν of embedding
matter becomes significant compared to the energy–momentum tensor Tµν of ordinary
matter. We assumed that, at the scale of the galaxy, these two quantities were comparable,
but at smaller distances, the influence of the embedding matter could be neglected, and the
laws of GR would start to be satisfied with good accuracy.

Author Contributions: Conceptualization, S.K. and S.P.; investigation, S.K., M.I., S.M. and S.P.;
writing, S.K., M.I., S.M. and S.P. All authors have read and agreed to the published version of
the manuscript.

Funding: The work of S.S. Kuptsov was supported by Leonhard Euler International Mathematical
Institute grant no. 075-15-2019-1620. The work of S.A. Paston was supported by RFBR grant no. 20-
01-00081.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Regge, T.; Teitelboim, C. General relativity à la string: A progress report. In Proceedings of the First Marcel Grossmann Meeting,

Trieste, Italy, 7–12 July 1975; pp. 77–88.
2. Deser, S.; Pirani, F.A.E.; Robinson, D.C. New embedding model of general relativity. Phys. Rev. D 1976, 14, 3301–3303. [CrossRef]
3. Tapia, V. Gravitation a la string. Class. Quant. Grav. 1989, 6, L49. [CrossRef]
4. Maia, M.D. On the integrability conditions for extended objects. Class. Quant. Grav. 1989, 6, 173–183. [CrossRef]
5. Franke, V.A.; Tapia, V. The ADM Lagrangian in extrinsic gravity. Nuovo Cimento B 1992, 107, 611. [CrossRef]
6. Estabrook, F.B.; Robinson, R.S.; Wahlquist, H.R. Constraint-free theories of gravitation. Class. Quant. Grav. 1999, 16, 911–918.

[CrossRef]
7. Karasik, D.; Davidson, A. Geodetic Brane Gravity. Phys. Rev. D 2003, 67, 064012. [CrossRef]
8. Cordero, R.; Molgado, A.; Rojas, E. Ostrogradski approach for the Regge-Teitelboim type cosmology. Phys. Rev. D 2009, 79, 024024.

[CrossRef]
9. Paston, S.A. Gravity as a field theory in flat space-time. Theor. Math. Phys. 2011, 169, 1611–1619. [CrossRef]

http://doi.org/10.1103/PhysRevD.14.3301
http://dx.doi.org/10.1088/0264-9381/6/3/003
http://dx.doi.org/10.1088/0264-9381/6/2/011
http://dx.doi.org/10.1007/BF02723170
http://dx.doi.org/10.1088/0264-9381/16/3/019
http://dx.doi.org/10.1103/PhysRevD.67.064012
http://dx.doi.org/10.1103/PhysRevD.79.024024
http://dx.doi.org/10.1007/s11232-011-0138-3


Universe 2022, 8, 635 13 of 13

10. Faddeev, L.D. New dynamical variables in Einstein’s theory of gravity. Theor. Math. Phys. 2011, 166, 279–290. [CrossRef]
11. Paston, S.A.; Sheykin, A.A. From the Embedding Theory to General Relativity in a result of inflation. Int. J. Mod. Phys. D 2012,

21, 1250043. [CrossRef]
12. Paston, S.A.; Franke, V.A. Canonical formulation of the embedded theory of gravity equivalent to Einstein’s general relativity.

Theor. Math. Phys. 2007, 153, 1582–1596. [CrossRef]
13. Undagoitia, T.M.; Rauch, L. Dark matter direct-detection experiments. J. Phys. G Nucl. Part. Phys. 2015, 43, 013001. [CrossRef]
14. Gaskins, J.M. A review of indirect searches for particle dark matter. Contemp. Phys. 2016, 57, 496–525. [CrossRef]
15. Pavsic, M. On The Quantization Of Gravity By Embedding Space-Time In A Higher Dimensional Space. Class. Quant. Grav. 1985,

2, 869. [CrossRef]
16. Chamseddine, A.H.; Mukhanov, V. Mimetic dark matter. J. High Energy Phys. 2013, 2013, 135. [CrossRef]
17. Golovnev, A. On the recently proposed mimetic Dark Matter. Phys. Lett. B 2014, 728, 39–40. [CrossRef]
18. Paston, S.A.; Zaitseva, T.I. Nontrivial isometric embeddings for flat spaces. Universe 2021, 7, 477. [CrossRef]
19. Paston, S.A. Non-relativistic limit of embedding gravity as General Relativity with dark matter. Universe 2020, 6, 163. [CrossRef]
20. Paston, S.A.; Sheykin, A.A. Embeddings for Schwarzschild metric: Classification and new results. Class. Quant. Grav. 2012,

29, 095022. [CrossRef]
21. Burkert, A. The Structure of Dark Matter Halos in Dwarf Galaxies. Astrophys. J. 1995, 447, L25. [CrossRef]
22. Di Paolo, C.; Salucci, P. Fundamental properties of the dark and the luminous matter from Low Surface Brightness discs. arXiv

2020, arXiv:2005.03520.

http://dx.doi.org/10.1007/s11232-011-0023-0
http://dx.doi.org/10.1142/S0218271812500435
http://dx.doi.org/10.1007/s11232-007-0134-9
http://dx.doi.org/10.1088/0954-3899/43/1/013001
http://dx.doi.org/10.1080/00107514.2016.1175160
http://dx.doi.org/10.1088/0264-9381/2/6/012
http://dx.doi.org/10.1007/JHEP11(2013)135
http://dx.doi.org/10.1016/j.physletb.2013.11.026
http://dx.doi.org/10.3390/universe7120477
http://dx.doi.org/10.3390/universe6100163
http://dx.doi.org/10.1088/0264-9381/29/9/095022
http://dx.doi.org/10.1086/309560

	Introduction
	Linearization of Regge–Teitelboim Equations
	Solving of the Linearized Equations
	Accounting for Equations in the Next Order
	The Case of Spherical Symmetry
	Explicit Unfolded Spherically Symmetric Embedding
	Inverse Problem
	Conclusions
	References

