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Abstract: The sampling effect of the imaging acquisition device is an integration of the input signal
within the pixel, resulting in an additional error in the pixel value. Additionally, a sampler with
asymmetric intra-pixel quantum efficiency leads to position errors in high-precision astrometry. This
paper proposes a model for the integral sampling process. An algorithm that solves the sampling
effect, as well as the position error with high accuracy, is also provided. This algorithm provides
an accuracy increase of 106 for Gaussian images with a uniform integral sampler. The accuracy
limit of the Gaussian image comes from the truncation error. Also, this algorithm provides about
4 times accuracy improvement by eliminating the systematic error caused by the integral sampler
with asymmetric intra-pixel quantum efficiency.

Keywords: image acquisition model; integral sampler; image recovery; high-precision astrometry;
intra-pixel quantum efficiency

1. Introduction

The pursuit of high-precision astrometry is rising three major concerns about modern
astronomy, which are the high-precision instruments, the algorithms for astronomical data
processing, and the weak signals. Currently, interferometers are the most precise instrument
in both optical and radio astronomy. Scholler et al. [1] provided a comprehensive model for
the imaging process in stellar interferometers. The algorithms for studying astronomical
data are also advancing high-precision astronomy. Ghaderpour [2] developed a least-
squares wavelet method for VLBI baseline length analyses. To extract data from the large
amount of data provided by various survey missions, Mena et al. [3] put forward a
representation using variational auto-encoders for Kepler light curves. Most importantly,
signals from faint objects are currently gaining more concentration in the realm of high-
precision astrometry. The detection of these objects helps answer some vital questions like
learning the nature of dark matter and the cosmos, finding habitable exoplanets, and the
state of matter in extreme environments. As Malbet [4] has pointed out, to perform such
observations, certain technology challenges must be overcome, including the intra-pixel
effects. These works would inspire the development of high-precision astronomy.

The intra-pixel sensitivity variation of the CCD/CMOS chips is the main cause of the
intra-pixel effect. To this end, this paper provides a model for describing the sampling
process of CCD/CMOS chips, which solves the sampling effect with intra-pixel efficiency
variation effectively. The sampling process of most current image sensors is an integration
process. This process would cause a deviation between the recorded signal and the input
signal, which results in an accuracy loss. The deviation, which would be referred to as the
sampling effect, caused by the sampling process is referred to in some studies as part of
the total modulation transfer function (MTF) of an image acquisition process and causes
the additional blur to the observed images by Fliegel [5], Boreman [6], and Feltz and
Karim [7,8].
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Despite its initial studies in computer vision, the sampling effect with an asymmetric
intra-pixel quantum efficiency (QE) is receiving more concentration recently in astronomical
instruments like Kepler, TESS, and JWST (see Lystrup et al. [9], Krishnamurthy et al. [10],
Hardy et al. [11] and Hardy et al. [12]). For space telescopes like HST and JWST, the
measurement of their CCDs’ intra-pixel sensitivity (IPS) is vital to the position accuracy
of their guidance sensor cameras and their infrared detectors (see Robberto et al. [13],
Hardy et al. [11] and Hardy et al. [12]). Recent studies in pursuit of high-precision astrom-
etry by Toyozumi and Ashley [14] and Mahato et al. [15] suggest the IPS could cause subtle
deviation in the position accuracy. Therefore, the demand for high-precision astrometry
urges detailed studies of the integral samplers with intra-pixel sensitivity variation (IPSV).

Currently, there are two major measurement methods of the IPS, one is the interference
pattern method based on Fourier Transform (see Ketchazo et al. [16], Willemin et al. [17],
and Takacs et al. [18]) and another is the beam spot scanning method (see Toyozumi and
Ashley [14], Li et al. [19], and Mahato et al. [20]). These measurements show directly
that the IPS varies in different sensors, causing certain defects in both image acquisition
accuracy and position accuracy.

To improve the accuracy of image acquisition, researchers proposed several compen-
sation algorithms for the total MTF [21–23]. Li et al. [21] proposed a self-compensation
method for dynamically inverting the MTF based on multiple natural sub-resolution fea-
tures, which increases the image quality for remote sensing cameras. These studies provide
a perspective to solve the integral sampler’s sampling effect within the frame of the MTF.
Still, the demand for high-precision astronomical image analysis urges a recovery algorithm
for the integral sample signal for a better understanding of the original signals.

This paper studies the integral sampling effect from a basic image sensor model and
gives the direct connection between the impulse sample and the integral sample by the
Fourier analysis method. This paper proves that the sampling effect causes an accuracy loss
in signal amplitude. For images with appropriate sampling frequency and spatial feature,
we put forward a matrix equation for calculating the accurate impulse sample from the
integral sample, which decreases the relative error between the recorded signal and the
impulse sample by 106. Furthermore, we study the systematic position error caused by the
asymmetric intra-pixel sensitivity variation and improve the position accuracy by applying
the correction algorithm for the sampling effect.

2. Models for Image Sensors and Sampling Process

The sampling theory and the mathematics for the sampling process are discussed
profoundly in recent studies (see Fliegel [5], Boreman [6], Feltz and Karim [7], Vitek and
Hozman [24], Park et al. [25]). Based on the current theory, we now introduce a geometric
model for an ideal image sensor array. As is shown in Figure 1, a single pixel has a size of
2L× 2L, and its photon-sensitive area has a size of 2(L− d)× 2(L− d) located at its center.
And the image sensor array is a duplication of a single pixel.

Sensor Array
D=2L

d d

sample 
point

Figure 1. Geometric model for the sensor unit array. The grey area is the photon-sensitive area of the
pixel. The cross points mark the centers of the pixels.
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2.1. Models for Integral Sampling Process

We introduce a model for describing the photon flux distribution on an imaginary
plane that coincides with the pixels. We define the optical center of the imaging system
as the origin of the coordinate system (u, v) on this imaginary plane. Since every single
pixel accumulates all the incident photons within its photon-sensitive area, the readout
signal Ĩmn should be proportional to the integral of incident flux I(u, v) within the shutter
time, which gives the equation for an ideal integral sampling process as Feltz and Karim
mentioned [7],

Ĩmn =
∫∫

emn
I(u, v)dudv, (1)

where Ĩmn is the integral flux on the pixel at the mth row and nth column, I(u, v) is the
photon flux distribution before they reach the sensor, emn is the shape of the single pixel.
We assume the incident flux is time-independent and dismiss the influence of shutter time
on the sampler for convenience. Note that this equation has an equivalent convolution
form since the pixel’s shape function usually is asymmetric.

We further abstract an integral model before the sensor unit samples the signal. Recall
that a typical impulse sampling process is Xmn = X(u = mT, v = nT) with T representing
the sampling interval for a given signal X(u, v). We now consider the Ĩmn as the impulse
sample of a certain continuous signal Ĩ(u, v). The definition of Ĩ(u, v) is given directly as,

Ĩ(u, v) =
∫∫

euv
I(s, t)dsdt, (2)

where euv is an imaginary pixel whose center is located at (u, v). It has an identical shape
as the actual pixel emn. Figure 2 illustrates a one-dimensional sampling effect.

Figure 2. An brief illustration for the sampling effect. Consider a one-dimensional photon density
distribution along the x-axis whose profile is noted as p(x) in (a). Suppose we sample the profile with
an integral sampling array marked with the blue blocks in (b). The nth sample Xn differs from the
nth impulse sample X′n by a slight deviation since Xn is the red area below the profile (shown in (c))
while X′n stands for the exact value of p(x) at the nth sampling point (shown in (d)). Xn and X′n are
usually unequal for an arbitrary photon density distribution.
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The Shannon Sampling Theorem [26] gives the relation between the impulse signal
and its corresponding continuous signal. This can be easily applied to I(u, v) and as,

I(u, v) = ∑
mn

Imnsinc(
u−mD

D
)sinc(

v− nD
D

) (3)

where D is the distance between 2 neighboring sample points. sinc(x) = sin(πx)/(πx).
I(u, v) is the flux distribution before being recorded by the sampler array, and Imn is the
impulse sample of I(u, v). In the geometric model for the sensor unit, D = 2L is the length
of a single pixel.

Combine Equations (2) and (3) gives the direct connection between the integral sample
Ĩmn and the flux distribution I(u, v), such that,

Ĩmn =
∫∫

emn
I(u, v)dudv

=
∫∫

emn
∑
ij

Iijsinc(
v− iD

D
)sinc(

u− jD
D

)dudv

= ∑
ij

Iij

∫∫
emn

sinc(
v− iD

D
)sinc(

u− jD
D

)dsdt,

(4)

where the summation and the integration are exchangeable because the integration in
Equation (2) is finite within a single pixel. Note that the integration can be calculated
directly with any known pixel shape, thus we can define a shape tensor to represent the
result of the integration, such that,

Sijmn =
∫∫

emn
sinc(

u− jD
D

)sinc(
v− iD

D
)dudv, (5)

Then Equation (4) can be simplified and we can write its discrete version directly by
substituting (u, v) by its sample points (i, j), such that,

Ĩmn = ∑
ij

IijSijmn. (6)

This equation describes the direct relationship between the impulse sample signal
Imn and the integral sample signal Ĩmn. The integral sample is different from the impulse
sample by a shape tensor Sijmn, which is determined by the relative geometric parameters
of the pixels.

2.2. Practical Method for Integral Sampling Correction

We provide a practical method for solving the sampling process with a simple geomet-
ric pixel structure. Consider a rectangular pixel with a given gap around it. As is shown in
Equation (1), the pixel area is (mD− (L− d), mD+(L− d))× (nD− (L− d), nD+(L− d)).
The shape tensor of this rectangle is,

SR
ijmn =

∫ mD+(L−d)

mD−(L−d)

∫ nD+(L−d)

nD−(L−d)
sinc(

u− jD
D

)sinc(
v− iD

D
)dudv, (7)

which is fully determined by the given geometric parameters of the sensor array. We should
notice that SR

ijmn can be divided into the product of two identical symmetric transferring
matrix R with

Rmi =
∫ mD+(L−d)

mD−(L−d)
sinc(

v− iD
D

)dv, (8)

and
SR

ijmn = RmiRnj. (9)
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Then Equation (6) is simply Ĩmn = ∑ij IijRmiRnj, or a matrix equation,

Ĩ = RT · I · R. (10)

Suppose the transferring matrix R is invertible. Then we can calculate the impulse
sample Iij from the integral sample Ĩmn, such that,

I = R−1 · Ĩ · R−1. (11)

2.3. Models for Intra-Pixel Sensitivity and Its Correction Algorithm

The intra-pixel sensitivity is the variation of the QE inside a single pixel. It causes
errors in the photon counts and the position accuracy of point sources. A traditional
method to fix the intra-pixel QE is to measure the sub-pixel QE and fix the single-pixel
QE by dividing its average. However, the influence of the QE deviation on the astrometry
remains. With the model and the correction algorithm for the integral sampler, we found
a subtle difference between an ideal integral sampler array with uniform QE and with
asymmetric QE.

We first build the mathematical model of an asymmetric QE integral sampler array.
The imaging process involved with the asymmetric QE is to modify the response inside
a single pixel subject to its QE. Suppose that the QE function for the pixel located at the
mth column and the nth row is Qmn(u, v). Recall the ideal integral sampling equation
(Equation (2)), and put the QE function inside. We get the equation for an integral sampling
process with arbitrary intra-pixel sensitivity,

Ĩmn =
∫∫

emn
Qmn(u, v)I(u, v)dudv, (12)

where emn defines the integral boundary for the pixel located at the mth column and the
nth row.

We follow the assumptions that the incident ideal signal I(u, v) is a band-limited
signal and the sampling array meets the Nyquist-Shannon Sampling Theorem. In that case,
we substitute I(u, v) with its Shannon interpolation, such that,

Ĩmn =
∫∫

emn
Qmn(u, v)(∑

ij
Iijsinc(u− j)sinc(v− i))dudv, (13)

where we neglect the gap between pixels and set their length to 1.
However, we cannot define the transferring matrix R as Equation (8) because the un-

known QE function may not be separable. Although the precise feature of the QE function
remains unknown, it is convenient for us to simulate a CCD array with an asymmetric and
separable QE function, such as,

Qmn(u, v) = exp(− (u + ud − umn)2 + (v + vd − vmn)2

2σ2
q

), (14)

where ud and vd define the relative center position of a Gaussian function inside the pixel
with respect to the pixel’s center (umn, vmn) and σq describes the profile of the Gaussian
QE function. This function can be separated into the product of two individual Gaussian,
such that,

Qmn(u, v) = exp(− (u + ud − umn)2

2σ2
q

) · exp(− (v + vd − vmn)2

2σ2
q

). (15)

Then we can define the transferring matrix R and R′ by swapping the integral and the
summation, such that,
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Rjn =
∫

en
exp(− (u + ud − umn)2

2σ2
q

)sinc(u− j)du, (16)

and

R′im =
∫

em
exp− (v + vd − vmn)2

2σ2
q

sinc(v− i)dv, (17)

where em and en denote the corresponding integral boundary.
Therefore, we can conclude a simplified relation between the images recorded by the

ideal impulse sampler and the integral sampler with asymmetric QE, such that,

Ĩmn = ∑
ij

RT
im IijR′jn, (18)

or in a matrix equation,
Ĩ = RT · I · R′, (19)

where Ĩ denotes the image recorded by the integral sampler with asymmetric QE, and I
denotes the image recorded by an ideal impulse sampler. If both R and R′ are invertible
matrices, we can calculate I by reversing the matrix equation, such that,

I = (RT)−1 · Ĩ · R′−1. (20)

Note that this matrix equation is only applicable when the QE function Qmn(u, v) is
separable. For a complicated Qmn(u, v), we need to calculate the tensor expanded by the
integration,

RRijmn =
∫∫

emn
Qmn(u, v)sinc(u− j)sinc(v− i)dudv, (21)

and this problem can also be solved.

2.4. Spatial Frequency Constraints

The application of the Shannon Sampling Theorem into the correction method for the
sampling effect gives inherent constraints on the spatial frequency of Ĩmn. The theorem only
treats a band-limited signal with its highest spatial frequency fc smaller than half of the
sampling rate of the system fN (see Boreman and Glenn [27]). The Nyquist sampling rate fN
of the imaging system is determined by the imaging device and the image sensor, which is
fN = 1/D. For a imaging device with a Gaussian PSF with p(u, v) = 1/(2πσ2) exp(−(u2 +
v2)/σ2)), the spectrum of the PSF is its Fourier Transform P(U, V), which is still a Gaussian
distribution with P(U, V) = exp(−2π2σ2(U2 + V2)). For |U| > 5/(2πσ) and |V| >
5/(2πσ), we can consider P(U, V) ∼ 0. This gives the bandwidth of the Gaussian PSF with
fc = 5/(2πσ). The Nyquist Sampling Theorem requires,

fc <
fN
2

, (22)

which is equivalent to
σ

D
>

5
π

, (23)

note that σ/D is the equivalent standard deviation for a dimensionless imaging system.
To design an imaging system that meets the Nyquist Sampling Theorem, (23) is an

essential constraint.

3. Simulations and Applications

To verify the influence of the integral sample and the correction algorithm, we generate
a series of simulations and test the correction method on them. The simulation procedure
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includes the following steps. First, we set a shift-invariant imaging system with a given
point spread function. Then we generate the 2-D object, which is a 2-D flux distribution on
the object plane. After the imaging system images the 2-D object, we sample the signal by
impulse sample method and integral sample method and apply the correction algorithm to
the integral sample signal to acquire a signal recovered from the sampling process.

3.1. Reconstructions for Ideal Integral Sampler

We simulate an imaging system that has a Gaussian point spread function (PSF). The
sensor unit has a dimensionless size of 1× 1(which means D = 1 and d = 0), and the PSF of
the system is p(u, v) = exp(−(u2 + v2)/(2σ2)) with σ = 3. The ideal image on the object
plane consists of two separate Gaussian PSF, such that,

I(u, v) = exp(− (u−u0)
2+(v−v0)

2

2σ2 ) + 0.1 · exp(− (u−u0−us)2+(v−v0−vs)2

2σ2 ), (24)

where u0 = v0 = 26, us = vs = 5 in pixel coordinate. We simulate the imaging process of
this system with the given object plane and sample the images by the integral sampler and
impulse sampler separately.

Figure 3 shows the sampled image and the recovered image from the integral sampler.
This simulation indicates that the sampling effect from substituting the impulse sampler
with an integral sampler can cause significant relative error up to 1% at the center of the
incident flux. By applying the recovery algorithm to the integral sample image, we recover
an accurate flux distribution of the two-point sources after the imaging device and reduce
the relative error to 10−8, which is 106 better than the integral sample image.

Figure 3. Simulations for two-point sources collected by an imaging system with a Gaussian PSF
shown in the pixel coordinate. The point sources are at (21, 21) and (26, 26) in pixel coordinate on
the object plane. (a) is the impulse sample signal. (b) is the integral sample signal. (c) shows the
recovered impulse signal from (b). (d) is the error image of (a,b). (e) is the error image of (a,d). (f) is
the R matrix for this system.

Also, the error image itself shows a fringe pattern at its corner, which is spatially
connected to the point source at (26, 26) in the image’s coordinate system. This pattern is
a Gibbs phenomenon caused by the discontinuous components from the point source at
(26, 26), and it contributes the most to the error component in the recovery method.
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3.2. Reconstructions for the Integral Sampler with Asymmetric QE

We also simulate the integral sampler with asymmetric QE and prove the correction
method in Section 2.3 can improve the position accuracy measurement for a single PSF. The
imaging system also has a Gaussian PSF as

I(u, v) =
1

2πσ2 exp(
(u− u0)

2 + (v− v0)
2

2σ2 ), (25)

where σ = 2. The sensor array is 13× 13 and every pixel has a normalized size with 1× 1.
The QE distribution in one pixel is,

Qmn(u, v) = exp(− (u + ud − umn)2 + (v + vd − vmn)2

2σ2
q

), (26)

where σq = 1 and the center of the Gaussian QE function is at (umn− ud, vmn− vd). Figure 4
shows the Gaussian PSF and the response to a uniform illumination by the asymmetric QE
array. The intra-pixel sensitivity pattern has a clear offset to the top-left corner in every
pixel. We would refer to this array as the asymmetric integral array in the following text.

(a) (b)

Figure 4. Basic setup for the simulation. (a) is the PSF of the system. (b) is the response to uniform
illumination by the asymmetric QE array, which represents the intra-pixel sensitivity distribution for
the simulated asymmetric integral sampler array.

To illustrate the influence of the asymmetric integral array on position accuracy, we
sample the PSF with both a uniform integral sampler array and the asymmetric integral
array. Figure 5 is the images from the uniform integral sampler array and the asymmetric
integral array. From Figure 5c, we can observe slight deformation from the ideal PSF.
Besides, since the QE in every pixel is not normalized, the pixel value is smaller than the
actual flux integration, which should be fixed by the average QE.

Then we calculate the barycenter of both PSF and compare the results to the ideal
centroid on the image plane. If the Gaussian PSF is symmetric, the barycenter of the PSF
should be its center. The barycenter calculated by each image is listed in Table 1. From
Table 1, we find that the uniform integral sampler has a 7.69× 10−4 relative error to the
ideal PSF center, while the asymmetric integral sampler has a 3.24× 10−3 relative error.
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(a) (b) (c)

Figure 5. Simulations on the sampling process with (a) uniform integral sampler and (b) asymmetric
integral sampler. (c) is the direct illumination on the asymmetric integral sampler.

Table 1. Influence of the asymmetric integral sampler on the position accuracy.

Barycenter X (Pixel) Y (Pixel) Relative Error

Ideal 6.5000 6.5000
Uniform Integral Sampler 6.5050 6.5050 7.69× 10−4

Asymmetric Integral Sampler 6.5211 6.5211 3.24× 10−3

To fix the relative error caused by the asymmetric integral sampler, we applied the
correction method mentioned in Section 2.3. By calculating the transferring matrix R and R′,
we managed to recover an image recorded by the uniform integral sampler. We compare the
image from the asymmetric integral sampler and its recovered image to the original image
from a uniform integral sampler and find that the image from the asymmetric integral
sampler has obvious deviation in the image plane. Figure 6 shows the direct influence of
the asymmetric integral sampler on the position accuracy. In Figure 6b, we observe two
separate Gaussian peaks, which means the obvious deviation caused by the asymmetric
integral sampler. However, in Figure 6c, we observe a symmetric error pattern similar to
those in Figure 3e, which is caused by the truncation error of Shannon’s interpolation.

(a) (b) (c)

Figure 6. A comparison among the uniform QE image, asymmetric QE image, and recovered QE
image. (a) Recovered uniform QE Image. (b) Error between uniform and Asymmetric QE Images.
(c) Error between Recovered and uniform QE Images.

We also calculate the barycenter of the recovered uniform QE image (Figure 6a) and
compare those results to the ideal centroid. In Table 2, we can find that the barycenter cal-
culated by the recovered uniform QE image is rather closer to the ideal centroid compared
to that calculated by the asymmetric QE image. Besides, the relative error also reduces to
7.85× 10−4.
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Table 2. Barycenter of the Image by the Recovered Uniform Integral Sampler.

Barycenter X (Pixel) Y (Pixel) Relative Error

Ideal Centroid 6.5000 6.5000
Recovered Uniform Integral Sampler 6.5051 6.5051 7.85× 10−4

Since the actual imaging process is a cumulative and statistical process dealing with
the ensemble of individual incident photons, we also simulate the influence of the asym-
metric integral sampler’s response on randomly distributed photons. Suppose there is
a point source that emits 105 photons during the integration time. Every photon has a
random position (xp, yp) on the image plane. The random position (xp, yp) follow a normal
distribution respectively, which is

xp ∼ N(xr, σs), yp ∼ N(yr, σs), (27)

where (xr, yr) is the ideal position of the point source on the image plane and σs = 2. Once
we collect all the photons on the image on the image plane, we could claim that we observe
the point source. Since the imaging instruments might have slight jittering during the
observations, the ideal position of the point source might change randomly in different
observations. We assume the ideal position of the point source on the image plane follows
a uniform distribution respectively, which is

xr ∼ U(−0.5, 0.5), yr ∼ U(−0.5, 0.5). (28)

The imaging process is rather straightforward in the tone of collecting individual
photons. For every (xr, yr), we record the position of every photon and calculate its
response on the integral sampler with the QE function. Then we accumulate the total
response to generate an observed image. In contrast to the asymmetric integral sampler, we
also make observations with a uniform integral sampler whose QE function is a simple 1.
We run the correction algorithm on these observed images and calculate the barycenter of
both observed images and their fixed ones. We compare them to the ideal position of the
point source to decide whether the systematic error is significant. We collect 100 groups of
(xr, yr) with their corresponding photon statistical results and calculate their barycenters.
The results are listed in Figure 7, and Tables 3 and 4.

Figure 7 shows there is a clear deviation from observation by the asymmetric integral
sampler in both dimensions. In Table 4, we can find that the asymmetric integral sampler
reports 0.017 pixel deviation in the x dimension and 0.015 pixel in the y dimension. Both
are about 10 times bigger than those deviations calculated by uniform and fixed integral
sampler, which is both 0.001 and −0.001 respectively in both dimensions. Meanwhile, the
standard error in both tables (Tables 3 and 4 are relatively close, which indicates they are
mainly caused by the distribution of the ideal position of the point source. Therefore, the
significant difference in the position calculated by the asymmetric integral sampler from
the ideal point position is a systematic error caused by the intra-pixel sensitivity variation,
which is specifically related to the asymmetric QE functions we applied here.

Table 3. Results of mean position measurement by uniform, asymmetric, and fixed integral samplers.

Position (Pixel) X std (X) Y std (Y)

Ideal position 29.474 0.290 29.514 0.281
Uniform integral sampler 29.475 0.288 29.513 0.281
Asymmetric integral sampler 29.491 0.289 29.529 0.281
Fixed integral sampler 29.475 0.289 29.513 0.281
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Table 4. Errors of mean position measurement by uniform, asymmetric, and fixed integral samplers.

Position (Pixel) X std (X) Y std (Y)

Uniform error 0.001 0.006 −0.001 0.007
Asymmetric error 0.017 0.006 0.015 0.007
Fixed error 0.001 0.006 −0.001 0.007

Figure 7. Statistical results on position accuracy by random source positions with randomly dis-
tributed photons.

4. Discussion

Two key factors determine the improvement of an integral sample signal. One is the
spatial frequency response of the imaging system. A PSF that fully meets the Nyquist
Sampling Theorem would provide the most accurate result when calculating the shape
matrix R. The design of high accuracy imaging system should consider the connection
between the imaging device and the image sensor as is discussed in Section 2.4. Figure 8
shows the relation between the relative error and the system’s σ.

Figure 8 also indicates that the demand for high-accuracy imaging systems should
focus on producing image sensors with smaller sizes instead of generating imaging devices
with smaller PSF. As Section 2.4 discussed, an appropriate σ which is about 2 times the
pixel’s length is more appropriate for designing a high-accuracy image acquisition system
than a small σ.

The other important factor is the simple fact that the discrete Fourier transform in
the algorithm requires the signals to be periodic and continuous at their border. The
discontinuous components contribute to the main error in our recovery algorithm, which
can be directly spotted from the Gibbs phenomenon in Figures 3 and 6c. To reduce the
error induced by the discontinuous components, it might be feasible to apply an additional
Gaussian low-pass filter on the integral sampled signal.

The systematic position error caused by the asymmetric integral sampler is vital
in high-precision astrometry. For an asymmetric QE function, 0.2 pixel deviation from
one pixel’s geometric center would be enough to cause an obvious drift in the image’s
barycenter. Since the ideal integral sampler with uniform QE distribution is far too difficult
to achieve, recovering an image with a uniform integral sampler from the asymmetric
integral sampler provides an easier yet more accurate method for further studies in high-
precision astrometry. However, the problems of sampling require more detailed studies
into the full working procedure of a sampler. Despite the intra-pixel sensitivity variation,
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adding other essential factors such as gains and charge transfer inefficiency to the whole
sampling model would be the focus of the next studies.

Figure 8. Error analysis about the PSF size and the sampling rate. The maximum relative error
decreases rapidly to 10−15 as the PSF’s size increases.

5. Conclusions

This paper discussed the mathematical model for an integral sampler with uniform
quantum efficiency and asymmetric quantum efficiency. The relative error caused by the
sampling effect relates strongly to the size of the sensor’s unit compared to the PSF’s size.
We provided a thorough correction algorithm for imaging systems with a proper PSF for
solving the sampling effect. By testing the algorithm on actual images in a simulated
imaging system, we validated the algorithm’s accuracy, which is partially influenced by the
accuracy of the simulated integral sampler and Shannon’s interpolation. We also simulated
the systematic error in position accuracy caused by the asymmetric integral sampler. This
error can be perfectly solved by the correction method for the sampling effect if the QE
function is separable. Furthermore, we put forward the essential demand of designing high-
accuracy imaging systems. Instead of decreasing the PSF’s size, decreasing the imaging
sensor’s size is more critical in improving the system’s overall accuracy.

However, this model only simulated and solved a simplified part of the complex IPS
problem since the geometric model of the pixel is quite basic. For most current CCD and
CMOS chips, the shape of their pixel can be much more complicated, varying from squares
to hexagons. Also, the sensitivity variation is a synthesis effect influenced by not only
the integral sampler but also the A/D converters which needs further detailed studies.
Furthermore, the real integration process is far more complicated than the simple equation
in (2) because of the instrumental jittering, which may introduce additional noise into the
integration.

In general, the model for the sampling process covers the simplified sampling effect
with the unified and asymmetric integral sampler respectively and provides the correspond-
ing correction algorithms for recovering high-accuracy results. This correction algorithm
has the potential of improving the accuracy of position and flux detection for imaging
systems with an integral sampler with intra-pixel sensitivity variation.
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