
Citation: Shchechilin, N.N.;

Zemlyakov, N.A.; Chugunov, A.I.;

Gusakov M.E. Pasta Phases in

Neutron Star Mantle: Extended

Thomas–Fermi vs. Compressible

Liquid Drop Approaches. Universe

2022, 8, 582. https://doi.org/

10.3390/universe8110582

Academic Editor: Daniela D.

Doneva

Received: 7 October 2022

Accepted: 2 November 2022

Published: 4 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

universe

Article

Pasta Phases in Neutron Star Mantle: Extended Thomas–Fermi vs.
Compressible Liquid Drop Approaches
Nikolai N. Shchechilin 1,* , Nikita A. Zemlyakov 2,3, Andrey I. Chugunov 2 and Mikhail E. Gusakov 2

1 Institut d’Astronomie et d’Astrophysique, CP-226, Université Libre de Bruxelles, 1050 Brussels, Belgium
2 Ioffe Institute, Politekhnicheskaya str. 26, 194021 St. Petersburg, Russia
3 Institute of Physics and Mechanics, Peter the Great St. Petersburg Polytechnic University,

Politekhnicheskaya str. 29, 195251 St. Petersburg, Russia
* Correspondence: nikolai.shchechilin@ulb.be

Abstract: Nuclear pasta phases in the neutron stars mantle can affect the mechanical and transport
properties of superdense matter, thus playing an important role in the dynamics and evolution of
neutron stars. In this paper, we compare results obtained by the Extended Thomas–Fermi (ETF)
method with the compressible liquid drop model (CLDM), based on the thermodynamically con-
sistent description of the surface properties calculated for the two-phase plane interface and the
same energy-density functional (for numerical illustration, we applied the Skyrme-type functional
SLy4). Our ETF calculations found that pasta phases in cylindrical form cover a significant crustal
region (both normal and inverse phases, aka spaghetti and bucatini are presented). Meanwhile,
within the applied CLDM framework, which includes the thermodynamically required effect of
neutron adsorption on the cluster’s surface but neglects curvature corrections, only the spaghetti
phase was found to be energetically favorable in the small density range prior to crust–core transition.
On the other hand, the recent CLDM of Dinh Thi et al., 2021, which, on the contrary, accounts for
curvature term but neglects neutron adsorption, predicts pasta phase onset in better agreement with
the ETF. This fact highlights the importance of the curvature effects and allows counting on the
potential validity of the CLDMs as a convenient, transparent and accurate tool for investigation of
the pasta-phase properties.

Keywords: neutron stars; equation of state; dense matter structure; nuclei surface energy

1. Introduction

Neutron stars (NS) are extremely compact astrophysical objects. In their central regions,
the density exceeds nuclear density by a factor of few and decreases by many orders of
magnitude while approaching the stellar surface. In such a tremendous density range, three
structural parts of NS are usually identified: the outer crust, the inner crust and the core.
In the outer crust, the nuclear matter is bound into nearly spherical nuclei, surrounded by
relativistic electron gas. In the inner crust, a sea of quasi-free neutrons is added to the outer
crust components; while nuclei (nuclear clusters) become more and more neutron-rich,
being immersed into this sea. Finally, the core of NS consists of homogeneous nuclear
matter. The problem of the transition between the clustered nuclear matter of the crust and
the homogeneous matter of the core is non-trivial (e.g., [1]). Additional complexity (see [2])
is associated with so-called mantle layers, which contain exotic pasta-like nuclear shapes
(cylindrical, plate, etc.), which are expected to be located in the innermost part of the crust.

If the pasta layers exist, they can manifest themselves in various ways. In particular,
they determine the micro-physical structure of matter, which is crucial for transport [3–7]
and mechanical [8–11] properties. As a result, the mantle can affect glitches [12], NS cool-
ing [13], rotation and magnetic field evolution [14], crustal oscillations [15], etc. However,
direct observational constraints for the mantle are still uncertain (see, e.g., [16–18]).
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In a seminal work [19], pasta phases were predicted within a simplified version of the
compressible liquid drop model (CLDM). Since then, different theoretical frameworks have
been applied to analyze pasta phases. Besides the CLDM [20–24], more sophisticated and
numerically expansive methods were employed, such as semi-classical molecular dynamic
simulations (see [25] for review), the (Extended) Thomas–Fermi (ETF) calculations [26–31]
and quantum Hartree–Fock (HF) approaches [32–34]. Some of them found not only tra-
ditional pasta shapes—spheres, cylinders (or so-called spaghetti), plates (lasagna) and
their inverse versions (bubbles or Swiss cheese and tubes or bucatini), but also more com-
plex structures, such as waffles [35], parking-garages [36], other types of domains and
defects [37] and so on [34]. Nevertheless, the results of theoretical calculations of pasta
phases suffer from a lack of experimental data and remain rather model-dependent. This
also stems from the fact that calculations imply different energy-density functionals that
are fitted on the one hand to reproduce the atomic masses and properties of ordinary
nuclei, and on the other hand, to agree with multiple microscopic calculations of the dense
symmetric or pure neutron matter and astrophysical constraints. Hence, pasta phases occur
in the region where we should appeal to interpolation between the most reliable nuclear
physics constraints.

Statistical methods are often applied to explore the sensitivity of pasta-phase predic-
tions to various nuclear matter parameters. For this purpose, CLDM is perfectly suited,
as it is proven to be a reasonable [38], high-speed and physically transparent approach [39].
Moreover, the CLDM provides the possibility for convenient investigation of the pasta-
phase properties [8]. In the recent works based on the CLDM approach [40–42], the authors
obtained correlations between bulk and surface matter parameters and pasta occurrence by
Bayesian analysis. They concluded that the mantle region covers, on average, about 15% of
the crust by radius and 50% by mass.

Here we address the accuracy of CLDM by comparison with ETF calculations
within the same Skyrme-type energy-density functional. Specifically, we apply the
ETF approach (Section 2.1), based on [29], to determine the presence and order of the
pasta-phases. We also employ CLDM in form suggested in [39,43], where the surface
energy term is determined for a plain two-phase interface for the same functional. It is
worth stressing that the surface energy is described in a thermodynamically consistent
way by taking into account the neutron adsorption (neutron skin, Section 2.2); however,
the curvature corrections are neglected (so we call it CLDMnc below). Finally, we
compare our results with calculations by Dinh Thi et al. [40] (DCFG21 further), which
were based on another version of CLDM which includes curvature effects but does not
account for neutron adsorption—not explicitly at least (Section 3). We found better
agreement in the size of the area occupied by pasta phases between the CLDM and ETF
if the curvature corrections were included, confirming the importance of the curvature
term for transition to the pasta phases, as initially suggested in [44] for transition to the
so-called bubble phase (inverted spheres). However, the sets of pasta phases differ in all
considered models. Our main conclusions are outlined in Section 4.

2. Basic Formalism

For simplicity, we work with widely applied approximation, which assumes matter
to be in the zero-temperature ground state [45] (it is generally believed that it is the state
which is reached during gradual cooling from the extremely hot, T & 1011 K, proto-NS
to the temperatures of observed NSs, which can be considered as negligibly small; see,
however, [34,46,47]). We also neglect the effects of finite magnetic field B, which become
important only for B & 1017 G [48,49]. In this approximation, to find an appropriate nuclear
matter configuration at a given net baryon number density n, the energy density E should
be minimized. Here we consider the charge-neutral Wigner–Seitz cells of three shapes with
different dimensions D (sphere (D = 3), cylinder (D = 2), and plate (D = 1)) and determine
the most energetically favored one. The cells consist of microscopically inhomogeneous
nuclear matter with a total nucleon number A, including the proton number Z. For D = 2,
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A and Z are taken per unit length; for D = 1 they are taken per unit area. For normal
(non-inverted) phases and D = 2, 3, the nuclear cluster is located in the center of the cell
and the local baryon number density decreases while approaching from the center to the
boundary of the cell. For inverted phases, the situation is the opposite: the denser regions
are located near the cell boundary.

2.1. Extended Thomas–Fermi Calculations

Let us start with a short description of the general ETF formalism. We follow [29],
where ETF was applied for the nuclear pasta calculations. Within ETF, it is convenient to
minimize the energy per baryon e = E/n, which can be written as:

eETF = enuc + eC + ee −YpQβ. (1)

Here, the first term, enuc, describes the nuclear interaction; the second, eC, is Coulomb
energy; the third, ee, represents electron contribution. The neutron mass is omitted, and the
mass difference between neutron and electron plus proton, Qβ, is taken into account in the
last term, where Yp = Z/A.

The dominant term is nuclear energy density. To quantify it, we incorporate energy-
density functional SLy4 [50] based on the Skyrme-type effective interactions [51,52],
which is widely used in NS physics and provides us with the opportunity to compare our
work with other studies presented in the literature. The Skyrme functional enuc depends
on the neutron (n) and proton (p) number densities ρq, the kinetic energy densities τq and
spin–orbit densities ~Jq, where q = n, p. The ETF approach implies the Wigner–Kirkwood
expansion of the canonical density matrix in statistical equilibrium in powers of the
Plank constant h̄ and allows one to express τq,~Jq via the baryon number densities and its
gradients (see [53] for details).

Despite the fact that ETF is a semi-classical method, it demonstrates good agreement
with a more detailed HF approach [54] and even with HF-Bogoliubov calculations if one
includes the pairing and shell effects on top of ETF using the Strutinsky integral correction
approach [55]. However, here we neglect the latter for simplicity and adequate comparison
with CLDM, which lacks pairing and shell effects by design.

Generally, within the ETF approach, the Euler–Lagrange equations should be solved to
minimize energy and obtain equilibrium number density profiles. However, following [56],
we apply a simplified procedure which is based on the analytical nucleon profiles:

ρq(r) = ρBq +
ρΛq

1 + exp

[(
Cq − R
r− R

)2
− 1

]
exp

(
r− Cq

aq

) . (2)

Here ρBq, ρΛq correspond to the background and cluster densities, Cq, aq sets the
cluster size and surface diffuseness and R determines the cell radius. r represents the radial
coordinate for spheres and cylinders, whereas for plates, it is the coordinate perpendicular
to the plane. Note, in the case of inverse geometries (bucatini and swiss cheese), ρΛq,
which characterizes the central density, is negative, and Cq relates to the size of the bubble.
An important property of this parametrization is nulling all the derivatives at the cell
boundary. It allows one to reduce the full fourth-order ETF expansion to the gradient and
Laplacian terms by integration by parts [53]. Nuclear energy then takes the form:

enuc =
1
A

∫
E(ρq(r),∇ρq(r),4ρq(r))dDr. (3)

The Coulomb energy can be derived from the Laplace equation [29]. The electron
energy is well-known [57].

Since all quantities in (1) are specified, we can proceed to numerical minimization of
eETF by adjusting parameters {ρBq, ρΛq, Cq, aq} and imposing the fixed n condition.
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2.2. Compressible Liquid Drop Model

In this section, we discuss the model constructed in [39,43]. In contrast to ETF,
the CLDM approach does not consider a smooth distribution of nucleons inside the cell
explicitly. Instead, the cell is modeled by an imaginary (reference) system which con-
sists of three components: (i) a nuclear cluster with constant nucleon number density
(npi, nni); (ii) the remaining part of the cell, filled by dripped particles with constant density
(npd, nnd); and (iii) the surface of the cluster. As a result, the nuclear energy is decomposed
into the bulk energy contributions associated with the cluster, Ebulk

i , and dripped particles,
Ebulk

d , and the surface term, Esurf. Thus, the energy per baryon can be written as:

eCLDM =
1
n

(
uEbulk

i + (1− u)Ebulk
d + E surf

)
+ ee + eC −YpQβ. (4)

Here u denotes the volume fraction of the cluster. The electron energy ee is the same
as for ETF, and the Coulomb energy eC is calculated analytically. Here, as usual, we neglect
the diffusiveness of the proton distribution profile while calculating eC (see, e.g., [45] for
explicit formulae; for the inverse shapes, it is sufficient to substitute u with 1− u in the
Coulomb and surface terms [38,45]).

The surface energy describes corrections required to reproduce the energy of the cell
with maximal accuracy. It requires additional consideration and can be introduced by at
least two approaches.

The first one is based on consideration of a two-phase system in plane geometry,
while neglecting Coulomb effects [22,58]. In this case, one can apply quite a similar
approach to the one discussed in the previous section. However, the simple two-phase
coexistence conditions allow us to reduce the number of free parameters for nucleon profile
optimization. The formalism of references [22,58] naturally leads to a thermodynamically
consistent description, which includes adsorption of neutrons and (generally) protons on
the interface surface. It should be stressed that the amount of adsorbed particles and surface
energy per unit area depend on the reference system (i.e., position of Rref), which is not
uniquely determined. For the inner crust, it is useful to use the so-called proton reference
Rp, where no protons are adsorbed to the surface because it simplifies the calculation of
the Coulomb energy. In this way, only neutrons are adsorbed on the cluster surface; they
represent neutron skin. As a result, the surface energy can be written as [38]:

Esurf =
uD
Rp

(σs + νsµn), (5)

where σs represents the surface tension, νs is the surface number density of the adsorbed
neutrons and µn is neutron chemical potential.

We calculate surface tension using the fourth-order Wigner–Kirkwood expansion and
the approach of [22,58,59] for SLy4 effective interaction and parametrize σs as function
of µn, as it is applied in our CLDMnc [39,43]. It is worth noting that references [22,58]
suggest a perturbative approach to include corrections associated with finite curvature of
the surface, but here we neglect them. The fully thermodynamically consistent description
of the latter deserves additional work, which we plan to publish elsewhere.

An alternative approach to calculating surface energy consists of the fitting of the
CLDM directly to experimentally-known atomic masses (e.g., [41]) or to the calculated
energies of the very neutron-rich nuclei in the crust (for example, [46,60] used ETF energies,
and [42] fit it to the results of HF calculations). In astrophysical literature, typically, this fit is
performed using a simple analytical formula, as suggested in [61]; the neutron adsorption
is often neglected (not included explicitly). According to this formula, the behavior of
surface tension at very-high-isospin asymmetry is described by the parameter p. It is
poorly constrained if surface energy parameters are fitted to experimentally known nuclei,
and it is instructive to adjust p by the requirement to reproduce the crust–core transition
density [62,63]. However, it should be noted that by construction, CLDM lacks the shell and
pairing effects, having smooth dependence on the parameters. Furthermore, the Coulomb
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term is typically presented by a simple analytical formula which neglects the diffusiveness
of the proton distribution (see, however, [64]), and the neutron adsorption is often neglected.
Therefore, the surface energy, fitted within this approach, includes a complicated mixture
of different physical effects, being essentially a reliable quantity to describe energy density
in the crust, but one should be careful with straightforward interpretations of CLDM
parameters (e.g., cluster radius). Besides that, direct use of experimental data potentially
can lead to biases: the surface parameters would not exactly correspond to the applied
energy-density functional; i.e., they can differ from the results of consistent calculations,
performed as described in the first approach.

To illustrate the above claims, we present the dependence of surface tension on
the neutron excess (δ = (nni − npi)/ni) in Figure 1 for both approaches. Dashed lines
demonstrate σs applied in CLDMnc, which were calculated for plane interface with
Sly4 potential and 4-th order ETF approaches. 1 The dash–dot line represents σs of
DCFG21, which was obtained by fitting of their CLDM to the experimental Atomic Mass
Evaluation 2016 [65]. One should notice not only the difference in the behavior of two
functions, calculated by different approaches, but the fact that explicit accounting for
the neutron skin, whose typical thickness is about 0.8 fm for the considered density
range [22,59], leads to a substantial modification in the surface energy per unit area
(σs + νsµn, shown by the solid line in Figure 1). Therefore, it is clear that the quantities of
the two CLDM might deviate significantly. Below we will discuss the predictions of our
CLDMnc and CLDM of DCFG21 for the pasta phases.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
δ

0.0

0.1

0.2

0.3

0.4
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0.7

0.8

0.9

1.0

1.1

1.2

σ
s

(M
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fm
−

2
)

σs

σs + νsµn

σs (DCFG21)

Figure 1. Surface tension of nuclear matter σs versus neutron excess δ. The blue dashed line describes
σs, and the navy solid line represents surface energy per unit area, calculated thermodynamically
consistently, i.e., taking into account the neutron skin. σs from [40] is added for comparison (red
dash–dot line).

Finally, after all terms are specified, we can apply CLDM, i.e., calculate eCLDM for a
given n by minimizing (4) with respect to internal CLDM parameters nni, npi, nno, npo, u, Rp.
This procedure is reduced to a system of algebraic equations (see, e.g., [39]), as all the deriva-
tives can be calculated analytically. It significantly speeds up calculations, making CLDM
very convenient in practical applications.

3. Results

As described in Section 2.1, by applying the ETF approach, we adjusted the proton
and neutron distribution profiles to minimize energy at a fixed nucleon number density
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n. We performed calculations while assuming different shapes of the Wigner–Seits
cell. The results, using the fourth-order Wigner–Kirkwood expansion, are presented in
Figure 2. To improve visibility, the energies are shown after subtraction of the energy
for the spheres, e0, calculated for the same n. We found the spaghetti-like pasta phase
becomes the most energetically favorable at n ≈ 0.056 fm−3. At became n ≈ 0.075 fm−3

equilibrium configuration switched to the inverse cylindrical form, so-called bucatini,
and at ncc ≈ 0.077 fm−3 the NS core should start—the energy of uniform nuclear matter
is lower than any of considered non-uniform phases. However, it should be noted
that when considering phase transitions using energy minimization at a fixed baryon
number density one may encounter pressure jumps between phases. By estimating
the pressure in the framework of [66], we determined that it remains almost constant
across the sphere–spaghetti and bucatini–core phase transitions. Nevertheless, we found
that the pressure drops by ≈5% at n ≈0.075 fm−3, which corresponds to the spaghetti–
bucatini interface. Thus, it is crucial to apply Maxwell construction to describe this phase
transition correctly. This resulted in a density jump from ≈0.074 fm−3 in the spaghetti
phase to ≈0.076 fm−3 in the bucatini phase. Therefore, the bucatini region was reduced
to n ≈(0.076–0.077) fm−3. Other pasta shapes, such as lasagna and Swiss cheese, have
slightly higher energies; thus, they should be absent in zero-temperature ground state
mantle, as was modeled by the ETF approach with the SLy4 nuclear functional.2

0.050 0.055 0.060 0.065 0.070 0.075 0.080

n (fm−3)

−3

−2

−1

0

1

2

3

e
–

e o
(k

eV
)

ETF(4)

spaghetti

lasagna

bucatini

swiss cheese

uniform

Figure 2. Difference in energy per nucleon between pasta phases and spheres versus baryon number
density for ETF calculations. Thin violet and thick blue dashed lines represent spaghetti and bucatini,
respectively; the yellow dash–dot line denotes lasagna; red dots map Swiss cheese; finally, the pink
solid line is for uniform matter.

The other thing to notice is that the energy difference between various pasta phases
is very small. Near the crust–core transition, these differences can be smaller than 1 keV
per baryon. Similar behavior was also seen in other papers [27,29]. We should warn
the reader that the precision of the ETF approach (see, e.g., [54]) can be not enough to
determine the phase correctly. This is because ETF is a semi-classical approach, and the
quantum corrections are not fully incorporated. The latter might play an important
role in the nuclear pasta predictions (see, e.g., [30]). Moreover, the real nuclear matter
structure is beyond the Wigner–Seits approximation (e.g., [67]), and it can be important
at ∼1 keV precision [68].
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We also computed pasta phases within CLDMnc [39,43]. We demonstrate our
results in Figure 3 in the same manner as for ETF calculations.3 One can clearly see
that the predictions of two methods differ substantially. Firstly, a much smaller region
n ≈ (0.074–0.076) fm−3 is covered by the spaghetti phase, and other phases appear to
be energetically unfavorable. After applying the Maxwell construction to describe the
phase transition to the core, we conclude that the density region of the spaghetti phase
shrinks to n ≈ (0.074–0.075) fm−3. (The density jump at the transition from spheres to
the spaghetti is negligible). Secondly, the energy differences between pasta phases are
much larger (note that the scale is not the same as in Figure 2) and the slopes of the
various curves at the given density are steeper.

0.050 0.055 0.060 0.065 0.070 0.075 0.080

n (fm−3)

−1

0

1

2

3

4

5

6

7

e
–

e o
(k

eV
)

CLDMnc

spaghetti

lasagna

uniform

bucatini

swiss cheese

Figure 3. The same as Figure 2 but for CLDMnc.

In Figure 4, we show the energy per nucleon for spheres in the ETF calculations
and within the CLDMnc approach. On the provided scale, two curves can hardly be
distinguished, emphasizing the dominance of the roughly equal bulk energy contribution
and the relative smallness of the effects responsible for the transitions between pasta
phases.

Our ETF calculations predict the crust to be thicker by 1% than within CLDMnc;
it is associated with the location of the crust–core interface at higher pressures for the
ETF model.

For the sake of comparison in Figure 5, we demonstrate the sequences of the pasta
phases in the CLDM and ETF obtained in the literature. We can see that the CLDM
model of DCFG21 predicts a “full traditional set” of the pasta phases in the broad density
range, unlike CLDMnc, being closer to our ETF results and ETF calculations by Martin
and Urban [28] (MU15 in Figure 5). This could stem from the fact that DCFG21 includes
curvature correction, which significantly affects the pasta phase’s onset. Indeed, the
curvature term might increase the total energy for the spheres more than for the spaghetti
or lasagna phases. Thus, inclusion of this term into our CLDMnc likely will lead to the
enlargement of the pasta region (see Figure 3), improving agreement with ETF calculations.

On the other hand, the CLDMs of [22,38] (not shown in Figure 5) take into account
the curvature term and do not find the pasta phases. The difference may be associated
with the method of surface energy calculation. Namely, [22,38] calculated it directly (with
the second-order ETF expansion) for SLy4, whereas DCFG21 determines surface energy
parameters by fitting to the experimental data, and thus, as mentioned in Section 2.2,
the surface energy effectively incorporates several physical effects, extrapolated to high
isospin asymmetry. Generally, it is unclear which of these effects is the most crucial for the
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prediction of the pasta phases. We plan to reveal this by incorporating curvature effects
into our model in future works.

0.050 0.055 0.060 0.065 0.070 0.075 0.080
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Figure 4. Energy per nucleon without neutron mass for spheres as a function of baryon number
density in the ETF model (blue solid line) and in the CLDMnc model (red dashed).

0.045 0.050 0.055 0.060 0.065 0.070 0.075 0.080 0.085

n (fm−3)

CLDMnc

CLDM DCFG21

ETF(2) MU15

ETF(4)

sphere

spaghetti

lasagna

bucatini

swiss cheese

Figure 5. Sequence of pasta phases in the mantle of NS. Pink region represents spheres, violet
denotes spaghetti, yellow indicates lasagna, blue is for bucatini and red is for Swiss cheese. The
fourth-order ETF calculations (ETF(4)) and CLDMnc of this work are presented. The CLDM model
of [41] (DCFG21) and second-order ETF results [ETF(2)] of [28] (MU15) were added for comparison.
For ETF(4) and CLDMnc, we also indicate a density jump between phases according to Maxwell
construction (the hatched region); only jumps visible on the scale of the plot are shown.

The pasta region in MU15 is shifted to a higher density than in our ETF calculations.
Furthermore, MU15 predicts the lasagna phase instead of the bucatini one. There could be
several reasons for this difference. Namely, MU15 utilizes different profile parametrization
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(simple Fermi–Dirac, where derivatives do not vanish at the cell boundary), which in prin-
ciple could be substantial. Another point is that the authors made use of the second-order
Wigner–Kirkwood expansion in their approach, in contrast to the fourth-order one of this
work. The importance of these facts is partly confirmed by the paper [29], the authors
of which used fourth-order ETF terms and found earlier (≈0.050 fm−3 vs. ≈ 0.057 fm−3)
pasta-phase onset than in the MU15 model for the BSk24 nuclear functional.

4. Discussion and Conclusions

In this paper, we compared two methods for the calculation of the pasta phases in
the NS crust. Namely, we employed the fourth-order ETF method and a more simplified
CLDMnc, both based on the Skyrme-type effective interaction SLy4. We considered Wigner–
Seits cells of different dimensions (D = 3 spheres, D = 2 cylinders and D = 1 plates) to
determine the most energetically favorable one at the given baryon number density n.

Within the ETF framework, we found that the pasta phases in the form of spaghetti
and bucatini cover a significant region from n ≈ 0.056 fm−3 to ≈0.077 fm−3. Other pasta
shapes are absent in our treatment of the NS mantle, although the energy difference is too
small to exclude them with high confidence (even if we limit ourselves to SLy4 potential).
Our calculations generally confirm the results of MU15 [28], which also find pasta phases in
the ETF approach within the SLy4 nuclear functional. However, they obtained the lasagna
phase instead of bucatini as the last before the crust–core transition. They also found the
pasta region to occur at higher densities than in our calculations. The key to this (slight)
disagreement might be in the simpler parametrization of the nucleon density profile and in
lower accuracy of the second-order ETF expansion applied in [28].

We also applied the thermodynamically consistent CLDMnc model while taking into
account the neutron adsorption on the cluster surface. We used surface energy calculated
by the fourth-order ETF method for the plane geometry and did not include the curvature
corrections. The reason is that the fully thermodynamically consistent treatment of the
latter deserves additional work, which we plan to publish later. Our CLDMnc implies
the presence of the pasta phases in the form of spaghetti, but in the very small density
range from n ≈ 0.074 fm−3 to ≈0.075 fm−3. This result differs from [22,38], which found
no pasta, although curvature terms were included (however, note, that the surface energy
was obtained only within the second-order ETF expansion). Nevertheless, the CLDMnc
crust–core transition point (ncc ≈ 0.075 fm−3) almost coincides with that of [22], the authors
of which obtained ncc ≈ 0.076 fm−3.

It is interesting that the recently constructed CLDM [40] predicts the wide region of
pasta phases n ≈ (0.051− 0.081) fm−3 for SLy4, and therefore, their results are in better
agreement with our ETF calculations. The explanation might come from their different
treatment of the surface energy term (direct fit of the experimental atomic masses and
extrapolation to high-isospin asymmetry). Moreover, they included the curvature correction
and stress its importance for the prediction of the pasta phases [41].

We are going to incorporate a curvature term in a thermodynamically consistent way
in further works to improve our CLDM. We believe that it should help to construct a robust
and convenient model for exploring the NS crust. We also plan to extend our work to the
other energy-density functionals.
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Notes
1 Numerical results differ a bit from [22,59], where the second-order ETF approach with a modified coefficient of the Weizsacker

term was applied.
2 According to [34], the NS temperatures of few keV can allow for a mixture of different phases.
3 Numerical results do not coincide with [43], which were based on surface tension calculated by the second-order ETF approach

with a modified coefficient of the Weizsacker term.
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