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Abstract: We explore wormhole geometry in spiral galaxies under the third order Lovelock gravity.
Using the cubic spline interpolation technique, we find the rotational velocity of test particles in the
halo region of our spiral galaxy from observed values of radial distances and rotational velocities.
Taking this value of the rotational velocity, we are able to show that it is possible to present a
mathematical model regarding viable existence of wormholes in the galactic halo region of the Milky
Way under the Lovelock gravity. A very important result that we obtain from the present investigation
is that galactic wormhole in the halo region can exist with normal matter as well as exotic matter.
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1. Introduction

The seed of a hypothetical geometric object connecting two asymptotically flat space-
time regions was featured in the works of Weyl [1], and Einstein and Rosen [2]. Much later,
it was termed as Wormhole (WH) [3] and the existence of such Einstein–Rosen bridge in
the form of traversable wormhole was first ever firmly proposed by Morris and Thorne [4].
They assumed a stress–energy tensor for these wormholes that violates the standard energy
conditions. Since matter that violates null energy condition is exotic matter, traversable
wormhole solutions need to assume the existence of exotic matter. An important condi-
tion for wormholes is that they have no event horizon. There exists extensive literature
exploring aspects of traversable wormholes (See [5,6] for review).

Studying WH in modified and higher dimensional gravity theories is also an active field
of research since long time. Shang and Xu [7] confirmed the existence of WH solution in
general in Lovelock gravity. Bhawal and Kar [8] found the static WH solution in second order
Lovelock gravity, i.e., Einstein–Gauss–Bonnet gravity. Bandypadhyay and Chakraborty [9]
constructed spherically symmetric thin shell WH in Einstein–Yang–Mills–Gauss–Bonnet
gravity. They showed that for certain choices of parameters involved ordinary matter is
sufficient for the formation of thin shell WH. Lobo and Oliviera [10] explored possible WH
solutions in the context of f (R) modified theories of gravity. Considering violation of Weak
Energy Condition (WEC) they obtained the possible range of values for the coupling parameter
ω. Dehghani and Dayyani [11] obtained n-diemnsional Lorentzian WH solutions of third
order Lovelock gravity. They found that the WH throat radius has a lower limit that depends
on the Lovelock coefficients, the dimensionality of the spacetime and the shape function.
They also derived the region in which the throat could be constituted from the normal matter.
Böhmer et al. [12] explored the possibility of static spherically symmetric traversable WH
solutions in modified teleparallel gravity.
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On the other hand, Mehdizadeh and Riazi [13] proposed dynamic WH solutions in
the framework of Lovelock gravity with compact extra dimensions. Harko et al. [14]
investigated the WH solutions in which the matter constituting the wormhole throat
satisfied all the energy conditions in the context of modified gravity theories. In particular
they explored f (R) gravity, the curvature–matter coupling and the f (R,Lm) generalization.
In their article Mehdizadeh, Zangeneh and Lobo [15] obtained thin shell WH solutions
in third order Lovelock gravity using cut and paste technique. They explored different
situations depending on choices of second and third order Lovelock gravity coefficients.
Zangeneh et al. [16] explored the possibilities for traversable WHs in third order Lovelock
gravity with a cosmological constant term in an n-dimensional spacetime M4 × Kn−4

where Kn−4 is a constant curvature space. Mehedizadeh and Lobo [17] studied wormhole
geometries in third order Lovelock gravity with specifically chosen redshift function and
equation of state. There are plethora of articles exploring various aspects of WH geometry
in different higher dimensional and modified gravity theories [18–28].

In the recent past, Rahaman et al. [29] considering the Navarro–Frenk–White (NFW) [30,31]
density profile confirmed the possible existence of WH spacetime in the outer regions of
galactic halo from general relativistic framework. Similar observation was also reported
by Kuhfittig [32]. In another seminal paper, Rahaman et al. [33] used the Universal
Rotation Curve (URC) [34] dark matter model in the galactic halo region to obtain anal-
ogous results for the central parts of the halo. The authors generalized the result to
predict possible existence of wormholes in most of the spiral galaxies. In yet other papers,
Rahaman et al. [35,36] taking NFW density profile as well as the URC and wormhole such
as line element as input calculated the tangential velocities vφ of the test particles in the
galactic halo. They reported a satisfactory matching of the theoretical and observational
plot in the range 9 kpc ≤ r ≤ 100 kpc.

In the present paper, we extend the works of Rahaman et al. [29,33,35,36] to construct
galactic wormhole model in the context of Lovelock gravity. Under this motivation our plan
is as follows: In the Section 2 we discuss the basic principles of Lovelock gravity theories.
In Section 3, formulation of the problem is provided, while the results and discussions are
presented in Section 4. Finally, in Section 5, we conclude with specific comments on the
results of the study and future prospects.

2. Brief Outline of Lovelock Gravity Theory

The action in the framework of third-order Lovelock gravity, is given by

I =
∫

dnx
√
−g
(
L1 + α′2L2 + α′3L3

)
(1)

where we assumed 8πGn = 1, Gn being the n-dimensional gravitational constant. Here
α′2 and α′3 are the second (Gauss–Bonnet) and third order Lovelock coefficients, g is the
determinant of the metric, L1 = R is the Einstein–Hilbert Lagrangian, the term L2 is the
Gauss–Bonnet Lagrangian given by

L2 = Rijkl Rijkl − 4RijRij + R2, (2)

and the third order Lovelock Lagrangian L3 is defined as

L3 = 2Rijkl RklmnRmn
ij + 8Rij

kmRkl
jnRmn

il

+24Rijkl RkljmRm
i + 3RRijkl Rklij + 24Rijkl RkiRl j

+16RijRjkRk
i − 12RRijRij + R3. (3)

In Lovelock theory, for an n-dimensional space, only terms with order less than
[
(n+1)

2

]
contribute to the field equations. Here, we used the notation that

[ n
2
]

will give biggest
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integer less than n
2 . Since we are considering third order Lovelock gravity, its effects will be

apparent for n ≥ 7.
Thus, varying the action (1) with respect to the metric we obtain the field equations up

to third order as follows:
GE

ij + α′2G(2)
ij + α′3G(3)

ij = Tij, (4)

where Tij is the energy–momentum tensor, GE
ij is the Einstein tensor whereas G(2)

ij and G(3)
ij

are given by

G(2)
ij = 2(−RiklnRlnk

j − 2RimjkRmk − 2RikRk
j + RRij)

−1
2
L2gij ,

G(3)
ij = −3(4Rnmkl RklpmRp

jni − 8Rnm
pkRkn

niR
p

jml

+2R nkl
j RklpmRpm

ni − Rnmkl RklnmRji

+8Rn
jkmRkl

niR
m

l + 8Rk
jnl R

nm
kiR

l
m

+4R nkl
j RklimRm

n − 4R nkl
j RklnmRm

i

+4Rnmkl RklniRjm + 2RR lnm
j Rnmli

+8Rn
jimRm

kRk
n − 8Rk

jnmRn
kRm

i

−8Rnm
ki R

k
nRjm − 4RRn

jimRm
n + 4RnmRmnRji

−8Rn
jRnmRm

i + 4RRjmRm
i

−R2Rji)−
1
2
L3gij.

3. Basic Equations and Their Solutions

The n-dimensional traversable wormhole metric is given by

ds2 = −e2φ(r)dt2 +

(
1− b(r)

r

)−1

dr2 + r2dΩ2
n−2, (5)

using units in which c = G = 1. Here φ(r) is the red-shift function which must be
everywhere finite to prevent the event horizon, b(r) is the shape function and dΩ2

n−2 is the
metric on the surface of a (n− 2)-sphere. The shape function of the wormhole essentially
satisfies the condition b(rth) = rth at r = rth where rth is the throat of the wormhole.
This condition is commonly known as the flare-out condition which gives at the throat
b′(rth) < 1 while b(r) < r near the throat.

The energy–momentum tensor is given by

Tµ
ν = diag[−ρ(r), pr(r), pt(r), pt(r), . . . ]. (6)

where ρ(r) is the energy density, pr(r) is the radial pressure and pt(r) gives the trans-
verse pressure.

The Einstein equations for the above mentioned metric are as follows [17]

ρ(r) =
(n− 2)

2r2

[
−B2(r)

(b− rb′)
r

]
+

(n− 2)b
2r3

[
(n− 3) + (n− 5)

α2b
r3 + (n− 7)

α3b2

r6

]
, (7)

pr(r) =
(n− 2)

r
[
B1(r)B2(r)φ′

]



Universe 2022, 8, 581 4 of 16

− (n− 2)b
2r3

[
(n− 3) + (n− 5)

α2b
r3 + (n− 7)

α3b2

r6

]
, (8)

pt(r) = B1(r)B2(r)
[

φ′′ + φ′2 +
(b− rb′)φ′

2r(r− b)

]
−2φ′

r4 B1(r)
(
b− b′r

)(
α2 + 3α3

b
r3

)
+B1(r)B3(r)

[
(n− 3) + (n− 5)

2α2b
r3 + (n− 7)

3α3b2

r6

]
− b

2r3 (n− 3)(n− 4) + (n− 5)(n− 6)
α2b2

2r6

+ (n− 7)(n− 8)
α3b3

2r9 , (9)

where α2 = (n − 3)(n − 4)α′2, α3 = (n − 3)(n − 4)(n − 5)(n − 6)α′3, B1(r) =
(

1− b
r

)
,

B2(r) =
(

1 + 2α2b
r3 + 3α3b2

r6

)
and B3(r) =

(
φ′

r + (b−rb′)
2r2(r−b)

)
. In the above equations, the prime

denotes the derivative with respect to r.
From the stable circular geodesic motion in the equatorial plane, the tangential com-

ponent of the rotational velocity of the neutral hydrogen clouds in the galactic halo region
can be found out from the gravitational potential corresponding to the flat rotation curves
in the halo region as [29,33,35,36]

(vt)2 = rφ′(r). (10)

Logically, it is plausible that if an observer is sitting in the plane, θ3 = constant,
θ4 = constant, . . . , θn = constant, then the observer recognizes all characteristics as a (3 + 1)
dimensional picture. In this sense, one can use all the relevant data which are approximately
the same for both space-times [37].

Moreover, it is generally believed that interactions other than gravity are confined
to 3 + 1 brane. However, gravity can propagate in all extra dimensions (n ≥ 4) [38,39].
These “gravity-only” dimensions (GODs) may be compactified [40,41]. In the present study
of wormholes, we used observational data of tangential velocities of neutral hydrogen
cloud. These velocities are determined by the effective gravitational potential in the galactic
halo. It must be influenced by the existence of higher dimensions, n ≥ 4. Therefore,
there must not be any problem in using the aforementioned data in the present study.
Similar observational data was being used in many other important studies of higher
dimensions [42,43].

We would also like to add here that in the literature [44–47] some works are available
where the authors try to find out a higher dimensional connection with microphysics
and/or macroastrophysics. Especially, Barnafoldi et al. [46] displayed the detection of
electro-magnetic and particle radiation from the direction of CygnusX3, which raise the
question of the existence of special long-lived, neutral particles. After investigation of the
origin of these particles they concluded that the source object may contain compactified
extra dimension and these particles are messengers of this state.

Taking into consideration of all the aforementioned points, we use the data in Table 1
in the context of third order Lovelock gravity. From the best fit with the observational data,
we obtain the following expression for vt as

vt =
i=5

∑
i=0

ciri, (11)

where ci, i = 0 . . . 5 are constants having values c5 = 0.0000011, c4 = −0.0003, c3 = 0.031,
c2 = −1.4, c1 = 28 and c0 = 64.
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Table 1. The radial distance from galactic centre r in kpc and velocity vt in km/s of objects in the
galactic halo region with total virial mass 3× 1012 M� [35,36,48,49].

R (kpc) vt (km/s) R (kpc) vt (km/s) R (kpc) vt (km/s)

0.1 10.053 34.1 234.623 68.1 234.293
1.1 74.467 35.1 234.225 69.1 234.317
2.1 118.223 36.1 233.891 70.1 234.334
3.1 151.113 37.1 233.390 71.1 234.345
4.1 176.445 38.1 233.213 72.1 234.349
5.1 196.099 39.1 233.079 73.1 234.347
6.1 211.331 40.1 232.982 74.1 234.339
7.1 223.057 41.1 232.918 75.1 234.324
8.1 231.975 42.1 232.883 76.1 234.303
9.1 238.634 43.1 232.873 77.1 234.303

10.1 243.475 44.1 232.884 78.1 234.276
11.1 246.857 45.1 232.913 79.1 234.243
12.1 249.072 46.1 232.957 80.1 234.205
13.1 250.362 47.1 233.013 81.1 234.160
14.1 250.927 48.1 233.078 82.1 234.109
15.1 250.930 49.1 233.151 83.1 234.054
16.1 250.509 50.1 233.230 84.1 233.993
17.1 249.774 51.1 233.313 85.1 233.927
18.1 248.817 52.1 233.397 86.1 233.856
19.1 247.712 53.1 233.483 87.1 233.779
20.1 246.519 54.1 233.568 88.1 233.698
21.1 245.285 55.1 233.652 89.1 233.612
22.1 244.048 56.1 233.733 90.1 233.522
23.1 242.836 57.1 233.811 91.1 233.427
24.1 241.671 58.1 233.733 92.1 233.328
25.1 240.568 59.1 233.811 93.1 233.225
26.1 239.539 60.1 233.886 94.1 233.118
27.1 238.589 61.1 233.956 95.1 233.007
28.1 237.724 62.1 234.021 96.1 232.892
29.1 236.943 63.1 234.081 97.1 232.774
30.1 236.245 64.1 234.136 98.1 232.652
31.1 235.628 65.1 234.184 99.1 232.527
32.1 235.089 66.1 234.227 0 0
33.1 234.623 67.1 234.263 0 0

4. Results and Discussion

Here, we shall calculate the expression of redshift function φ(r) by using the expression
for vt given in (11). With the help of Equations (10) and (11), we obtain

φ′(r) = c2
5r9 + 2c4c5r8 +

(
c2

4 + 2c3c5

)
r7 + 2(c3c4 + c2c5)r6

+
(

c2
3 + 2c2c4 + 2c1c5

)
r5 + 2(c2c3 + c1c4 + c0c5)r4+(

c2
2 + 2c1c3 + 2c0c4

)
r3 + 2(c1c2 + c0c3)r2

+
(

c2
1 + 2c0c2

)
r +

c2
0
r
+ 2c0c1, (12)

φ(r) =
1

10
c2

5r10 +
2
9

c4c5r9 +
1
8

(
c2

4 + 2c3c5

)
r8

+
2
7
(c3c4 + c2c5)r7 +

1
6

(
c2

3 + 2c2c4 + 2c1c5

)
r6

+
2
5
(c2c3 + c1c4 + c0c5)r5 +

1
4

(
c2

2 + 2c1c3 + 2c0c4

)
r4
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+
2
3
(c1c2 + c0c3)r3 +

1
2

(
c2

1 + 2c0c2

)
r2

+ 2c0c1r + c2
0 log(r), (13)

φ′′(r) = 9c2
5r8 + 16c4c5r7 + 7

(
c2

4 + 2c3c5

)
r6

+12(c3c4 + c2c5)r5 + 5
(

c2
3 + 2c2c4 + 2c1c5

)
r4

+8(c2c3 + c1c4 + c0c5)r3 + 3
(

c2
2 + 2c1c3 + 2c0c4

)
r2

−
c2

0
r2 + 4(c1c2 + c0c3)r + c2

1 + 2c0c2. (14)

Now, we can substitute Equations (12)–(14) in Equations (7)–(9). We obtain very nonlin-
ear equations of the function b(r). In the next two sections, therefore, we take some specific
forms of the shape function and study the nature of the spacetime under consideration.
The 4-dimensional present spacetime structure is believed to be the self-compactified form
of manifold with multidimensional spacetime. It is observed that cosmic string as well as
superstring theories and hence M-theory reproduce higher dimensional general relativity
at low energy so that scientists have been argued that theories of unification tend to require
extra spatial dimensions to be consistent with the physically viable models [50–55]. Several
authors have shown that some features of higher dimensional black holes differ significantly
from four dimensional black holes which is due to the fact that higher dimensional analysis
provides a much wider avenue to black hole solutions in comparison to 4-dimensional
counterparts [56–59]. In the present investigation of wormholes, we considered third order
Lovelock gravity. Therefore, we took n ≥ 7. Cases for n = 8, 9, 10, 11 are studied. In these
studies, all extra dimensions are taken to be compactified.

4.1. Case I: Physical Features for the Shape Function b(r) = r
( r0

r
)k

For general physical reasons, the shape function b(r) must obey the following condi-
tions to ensure a traversability of wormholes [26,60]:

(i) Throat condition: at the throat (i.e., r = r0), the shape function should satisfy the

condition b(r0) = r0, and for r > r0 one should obtain 1− b(r)
r > 0.

(ii) Flaring out condition: this condition dictates that b′(r0) < 1.

(iii) Asymptotically flatness condition: for this condition we should have b(r)
r → o as

r → ∞.

Under the above mentioned three conditions, we consider the shape function as
follows:

b(r) = r
( r0

r

)k
, (15)

where r0 is throat radius and k is arbitrary parameter. From the flare out condition of the
wormhole, it may be found out that k > 0. We assume k = 2 in the present case as a
representative value. With this choice of the shape function, let us look into the physical
features of various quantities of interest:

(1) Now, the expression of the redshift function calculated from the consideration of the
galactic flat rotation curves (See Figure 1) as given in Equation (12) remains finite
everywhere. This clearly implies that there would be no event horizon which is an
important criterion for the existence of wormholes.

(2) Plot on the left panel of Figure 2 show that the present shape function satisfies the

condition b(r)
r < 1 for r > rth. This indicates that the flare out condition of the

wormhole b′(rth) < 1 is satisfied.
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(3) In terms of principal pressures the Null Energy Condition (NEC) is given by following
inequations:

ρ + pr ≥ 0, (16)

ρ + pt ≥ 0, (17)

whereas Weak Energy Condition (WEC) is given by following inequations:

ρ ≥ 0, (18)

ρ + pr ≥ 0, (19)

ρ + pt ≥ 0. (20)

Thorne [4] observed that the traversable wormholes violate the Null Energy Condition
(NEC) near the throat. In Figure 3, ρ + pt is plotted for four possible choices of α2
and α3, i.e., (α2 > 0, α3 > 0), (α2 > 0, α3 < 0), (α2 < 0, α3 > 0) and (α2 < 0, α3 < 0).
The plots clearly show that ρ + pt > 0 for 0 ≤ r ≤ 50 kpc and n does not influence
the nature of the plots. Thus, the NEC is satisfied in the galactic halo region. In
Figure 4 similar plots are noted for ρ + pr. No violation of the NEC is noted here
also. Moreover, since ρ > 0 in the galactic halo region, the matter threading the
wormhole satisfies the WEC (Figure 5). Studies investigating traversable wormhole in
the galactic halo region under general theory of relativity, reported violation of the
NEC near the throat indicating the existence of exotic matter [29,32,33,35,36]. In the
context of Lovelock gravity; however, there are exceptions. Dehghani and Dayyani [11]
reported wormhole solutions in third order Lovelock gravity satisfying the WEC. They
further showed that positivity of the density and p + ρ depends on the Lovelock
coefficients. Mehdizadeh and Riazi [13] studied wormhole solution under Lovelock
gravity supported by normal matter. There are numerous other studies concluding the
existence of normal matter near the throat of the wormhole in second or third order
Lovelock gravity [17,61].

(4) Figure 5 shows the variation of density function with distance in the galactic halo
region. The plots show very highly dense region near the centre of the galaxy and its
value very quickly decreases to a small value with increasing distance. The variation
is nearly inverse square in the outer region of the galactic halo. However, the density
function remains positive in the galactic halo region. These features of the density
profile are in accordance with the predictions by many earlier studies of the galactic
halos [62–65].

0 10 20 30 40 50 60 70 80 90 100
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3
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2
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4
 + 0.031*x

3
 − 1.4*x
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 + 0.081*x
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Figure 1. Polynomials fitted against the observed data set of rotational curve in galactic halo region
(Table 1). The horizontal axis represents distance in kpc and the vertical axis represents the rotational
velocity in galactic halo in km/s.
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Figure 2. Case I: Plot to study (1− b(r)
r ) and b(r) for different choices of r0.

Figure 3. Case I: Plot to study ρ + pt for n = 8, n = 9, n = 10, n = 11. It is verified that plots are the
same for all sets of values of the constants α, r0 and K.
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Figure 4. Case I: Plot to study ρ + pr for n = 8, n = 9, n = 10, n = 11. It is verified that plots are the
same for all sets of values of the constants α, r0 and K.

Figure 5. Case I: Plot to study ρ for n = 8, n = 9, n = 10, n = 11. It is verified that plots are the same
for all sets of values of the constants α, r0 and K.

4.2. Case II: Physical Features for the Shape Function b(r) = r0

(
r
r0

)k

Keeping the previously mentioned conditions in mnd, let us consider another form of
the shape function which is as follows:

b(r) = r0

(
r
r0

)k
, (21)
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where r0 and k are arbitrary parameters as mentioned in the earlier case. Here, the flare out
condition of the wormhole implies that k < 1.

The present form of the shape function is an increasing function of the radial coordinate
r (See Figure 6). In this sense, it is opposite in nature to the shape function in Case I (See
Figure 2). Now the physical features that can be noted from Figures 6–9 are as follows:

(1) The throat of the wormhole may be taken to be at r = r0. The plot of (1− b(r)
r ) against

the radial coordinate r (Figure 6) clearly shows that b(r)
r < 1 for r > r0. Moreover,

b(r0) = r0 where in the plot under consideration r0 = 1.72. These results essentially
point out that the flare out condition is satisfied near the throat. It has already been
pointed out that there is no horizon in the spacetime.

(2) The density function (vide Figure 7) again shows a inverse square fall with radial
coordinate in the galactic halo region and ρ > 0.

(3) Contrary to the previous case, in the present Case II, the Figures 8 and 9 show that
ρ + pr ≤ 0 and ρ + pt ≤ 0 near the throat indicating the existence of exotic matter
that violates the NEC. The plots ρ + pt remains the same for n = 8, 9, 10, 11. Plots are
unaffected by different choices of α2 and α3. The plots of ρ + pr remains similar in
nature for n = 8, 9, 10, 11 irrespective of the choices of α2 and α3. Thus, we note here
a very interesting result that a galactic wormhole in the halo region can exist with
normal matter as well as exotic matter under the framework of Lovelock gravity.

Figure 6. Case II: Plot to study (1− b(r)
r ) and b(r) for k = 0.2, 0.4, 0.6, 0.8.
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Figure 7. Case II: Plot to study ρ for n = 8, n = 9, n = 10, n = 11. It is verified that plots are the same
for all sets of values of the constants α, r0 and K.

Figure 8. Case II: Plot to study ρ + pt for n = 8, n = 9, n = 10, n = 11. It is verified that plots are the
same for all sets of values of the constants α, r0 and K.
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Figure 9. Case II: Plot to study ρ + pr for n = 8, n = 9, n = 10, n = 11. It is verified that plots are the
same for all sets of values of the constants α, r0 and K.

5. Concluding Remarks

In this paper, our motivation was to extend the works of Rahaman et al. [29,33,35,36]
to construct WH model in the galactic halo region on the platform of Lovelock gravity. To
do, so we specifically employed the third order Lovelock gravity. By using the cubic spline
interpolation technique (see the Appendix A), the rotational velocity of test particles has
been found out in the halo region of our galaxy from the observed values of the radial
distances and rotational velocities. Considering this value of the rotational velocity, we
present possible existence of WH in galactic halo region under the Lovelock gravity.

In favour of this successful execution we are now putting forward some of the salient
features based on the results obtained from the proposed model as follows:

(i) The redshift function calculated from the consideration of the flat rotation curve of the
galaxy (Figure 1) remains finite everywhere which clearly implies that there would be
no event horizon and thus provide an important criterion for the existence of WH.

(ii) It is interesting to note that plots on the left panel of Figure 2 (Case I) exhibit presence

of the shape function which satisfies the condition b(r)
r < 1 for the constraint r > rth

and thus indicates that the flare out condition of the WH b′(rth) < 1 is fulfilled. For
the other form of the shape function (Case II), we observe an increasing function of
the radial coordinate r (Figure 6) and hence the feature is opposite in nature to the
shape function of Case I (i.e., Figure 2). If we consider the throat of the wormhole to
be at r = r0 then the plots of (b(r)− r) against the radial coordinate r demonstrate
that b(r)

r < 1 for r > r0 which is in confirmation of fulfilling of the flare out condition
near the throat.

(iii) Figures 5 and 7 show very highly dense region near the centre of the galaxy and its
value very quickly decreases to a small value with increasing distance which is in
accordance with the earlier predictions [62–65].

(iv) Figures 3 and 4 show that the NEC is satisfied in the galactic halo region which
is in contradiction to the result under general relativity [29,32,33,35,36]. This may
be considered as exception for Lovelock gravity [11,13,17,61]. On the other hand,
Figures 8 and 9 show that the NEC is violated in the galactic halo region which is in
accordance with the result under general relativity [29,32,33,35,36]. Thus, we note a
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very important result in the present investigation that galactic wormhole in the halo
region can exist with normal matter as well as exotic matter.

However, the present results intrinsically raise the following awkward issues: (i) is
exotic matter really indispensable for constructing traversable WH, and (ii) if not, as
suggestions evolve from the modified theories of gravities that galactic dynamics of massive
test particles can be explained without introducing any exotic dark energy [66–72], then
before coming to a conclusive decision, further studies are needed to perform. These issues
may be addressed in a future project under Lovelock gravity as well as other modified
gravities in a series of exclusive investigations. This endeavor may shed light on the debate
as to whether exotic matter (as GR advocates) is indispensable for constructing a traversable
wormhole or alternative gravity theories (especially Lovelock gravity under the present
treatment) are suffice to predict WH.

Another point to comment on here is related to evidence of WH in reality, which at
present seems belongs to futuristic observational projects only. However, recent detection
of black holes [73–76] obviously provides glimpse of hope and aspiration regarding ob-
servational signatures for WH also. As a special note, we would like to present here the
work of Piotrovich et al. [77] where they have proposed a test for WH, considering an AGN
at the centre of a gaclactic core as one mouth of a WH, to perform a comparative study
between the γ ray spectrum originating from the jets of a supermassive black hole and that
from a WH acting as mouth of an AGN. Therefore, under this proposal, they conclude that
an observation of such radiation would serve as evidence of the existence of wormholes.
A very recent work on the possibility of generalized wormhole formation in the galactic
halo due to dark matter using the observational data within the matter coupling gravity
formalism also can serve a purpose in this detection issue [78].
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Appendix A. Cubic Spline Interpolation Method

Cubic Spline Interpolation Method is used to interpose a specific type of piecewise
polynomial called spline. Spline interpolation follows the procedure of fitting a curve inside
the trend of observational data minimizing the error within a given set of data point. This
technique interpolate with minimized error when lower degree polynomial is fitted and the
same can be made huge when we use higher degree polynomial. The cubic spline method
is constructed with piecewise 3rd order polynomial which have to pass the observational
data set called control points avoiding the Runge’s phenomenon where oscillation occurs
between points. There are advantages of cubic spline interpolation here. Firstly, it improves
fitting of a curve by increasing the degree of fitted polynomial. Moreover, with respect to a
linear interpolation cubic spline interpolation produces a rather sharp result if the data sets
are not well spaced. In the present article, the cubic spline method is constructed based
on the 5th degree polynomial, which pass through the observed data set. We used the
MATLAB directly to implement the cubic spline interpolation based on the observation.
In Figure 1, blue dotted line is for given set of data points for rotational velocity curve (vt)
and different splines are arranged to fit against the observed data in the mentioned figure.
The fifth degree polynomial is found to be the best fit.
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