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Abstract: In some of the physically interesting gauge systems, we show that the application of the
Noether theorem does not lead to the deduction of the Becchi–Rouet–Stora–Tyutin (BRST) and anti-
BRST charges that obey precisely the off-shell nilpotency property despite the fact that these charges
are (i) derived by using the off-shell nilpotent (anti-)BRST symmetry transformations, (ii) found
to be the generators of the above continuous symmetry transformations, and (iii) conserved with
respect to the time-evolution due to the Euler–Lagrange equations of motion derived from the
Lagrangians/Lagrangian densities (that describe the dynamics of these suitably chosen physical
systems). We propose a systematic method for the derivation of the off-shell nilpotent (anti-)BRST
charges from the corresponding non-nilpotent Noether (anti-)BRST charges. To corroborate the sanctity
and preciseness of our proposal, we take into account the examples of (i) the one (0 + 1)-dimensional
(1D) system of a massive spinning (i.e., SUSY) relativistic particle, (ii) the D-dimensional non-Abelian
one-form gauge theory, and (iii) the Abelian two-form and the Stückelberg-modified version of the
massive Abelian three-form gauge theories in any arbitrary D-dimension of spacetime. Our present
endeavor is a brief review where some decisive proposals have been made and a few novel results
have been obtained as far as the nilpotency property is concerned.

Keywords: Noether theorem in BRST approach; continuous (anti-)BRST symmetries; conserved
Noether currents; conserved (anti-)BRST charges; nilpotency property

PACS: 11.15.-q; 12.20.-m; 03.70.+k

1. Introduction

It is an undeniable truth that the symmetries of all kinds (e.g., global, local, discrete,
continuous, spacetime, internal, etc.) have played a decisive role in the realm of theoretical
physics as they have provided a set of deep insights into various working aspects of the
physical systems of interest. The basic principles behind the local gauge symmetries and
diffeomorphism symmetries provide the precise theoretical descriptions of the standard
model of particle physics and theory of gravity (i.e., general theory of relativity and
(super)string theories). The Becchi–Rouet–Stora–Tyutin (BRST) formalism [1–4] is applied
fruitfully to the gauge theories as well as the diffeomorphism invariant theories. Some of the
salient features of BRST formalism are (i) it covariantly quantizes the gauge theories which
are characterized by the existence of the first-class constraints on them in the terminology
of Dirac’s prescription for the classifications of constraints (see, e.g., [5,6] for details), (ii) it
is consistent with the Dirac quantization scheme because the physicality criteria with the
nilpotent and conserved (anti-)BRST charges imply that the physical states, in the total
quantum Hilbert space, are those that are annihilated by the operator form of the first-
class constraints of the gauge theories (see, e.g., [7–9] for details), (iii) it maintains the
unitarity and quantum gauge (i.e., BRST) invariance at any arbitrary order of perturbative
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computations of a given physical process that is allowed by an interacting gauge theory,
and (iv) it has deep connections with some of the key ideas behind differential geometry
and its (anti-)BRST transformations resemble the N = 2 supersymmetry transformations.
There is a decisive difference, however, between the key properties associated with the
(anti-)BRST symmetries and the N = 2 supersymmetries in the sense that the nilpotent
BRST and anti-BRST symmetries are absolutely anticommuting in nature but the nilpotent
N = 2 supersymmetries are not. To sum up, we note that the application of the BRST
formalism is physically very useful and mathematically, its horizon is quite wide.

The purpose of our present endeavor is related with the derivations of the conserved
(anti-)BRST charges by exploiting the theoretical potential of Noether’s theorem and a
thorough study of their nilpotency property. We take into account diverse examples of
physically interesting models of gauge theories and demonstrate that the Noether theorem
does not always lead to the derivation of conserved and nilpotent (anti-)BRST charges1. One
has to apply specific set of theoretical tricks and techniques to obtain the nilpotent versions of
the (anti-)BRST charges from the Noether conserved (anti-)BRST charges which are found to
be non-nilpotent. In simple examples, we show that one equation of motion is good enough
to convert the non-nilpotent Noether conserved (anti-)BRST charges into the conserved and
nilpotent (anti-)BRST charges. For instance, in the case of a 1D massive spinning (i.e., SUSY)
relativistic particle (see, e.g., [10–13] and references therein), the Euler–Lagrange (EL)
equations of motion (EoM) with respect to the “gauge" and “supergauge" variables are
sufficient to convert a non-nilpotent set of (anti-)BRST charges into nilpotent of order
two (cf. Section 2). However, in the case of a D-dimensional non-Abelian 1-form theory,
the Gauss divergence theorem and EL-EoM with respect to the gauge field are needed to
obtain the nilpotent (anti-)BRST charges from the conserved and non-nilpotent Noether
(anti-)BRST charges. We have purposely chosen these simple examples so that it becomes
clear that the celebrated Noether theorem does not lead to the derivation of nilpotent
(anti-)BRST charges where (i) the non-trivial (anti-)BRST invariant Curci–Ferrari (CF)
type restrictions exist, and (ii) a set of coupled (but equivalent) Lagrangians/Lagrangian
densities respects the off-shell nilpotent (anti-)BRST symmetry transformations.

It is worthwhile to mention here that the limiting cases of the above two examples are
the free scalar relativistic particle and D-dimensional Abelian 1-form gauge theory where
there is the existence of a single Lagrangian/Lagrangian density. In these cases, the Noether
conserved (anti-)BRST charges are off-shell nilpotent automatically because the CF-type
restriction is trivial. In fact, it is observed that the trivial CF-type restriction of the scalar
relativistic particle is the limiting case of the non-trivial CF-type restriction of the spinning
relativistic particle and the trivial CF-type restriction of the Abelian 1-form gauge theory is
the limiting case of the non-trivial CF-condition of non-Abelian 1-form gauge theory.

One of the central issue we address in our present investigation is the cases of the
BRST approach to higher p-form (p = 2, 3, . . . ) gauge theories2 where there is always
the existence of (i) a set of coupled (but equivalent) Lagrangian densities and (ii) a set of
(anti-)BRST invariant CF-type restrictions. In such cases, the Noether theorem always leads
to the derivation of conserved (anti-)BRST charges which are found to be non-nilpotent.
In fact, the expressions for these charges are quite complicated, and the EL-EoMs are too
many because of the presence of too many fields in the theory (cf. Section 5 below for
details). We make a systematic proposal which enables us to obtain the off-shell nilpotent
(anti-) BRST charges from the conserved Noether (anti-)BRST charges which are found to
be non-nilpotent. One of the key ingredients of our proposal is the observation that one
has to start with the EL-EoM with respect to the gauge field of the p-form gauge theories
where, most of the time, the Gauss divergence theorem is required to be applied (before
we exploit the potential and power of the EL-EoM with respect to the gauge fields). To be
precise, all the D-dimensional (D ≥ 2) higher p-form gauge theories require the application
of the Gauss divergence theorem before we exploit the potential of EL-EoM with respect to
the gauge field. After this, it is the interplay amongst (i) the application of the EL-EoMs,
(ii) use of the (anti-) BRST transformations, and (iii) the requirement of Gauss’s divergence
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theorem that lead to the derivation of the nilpotent versions of the (anti-)BRST charges
from the conserved Noether (anti-)BRST charges which are found to be non-nilpotent
(cf. Sections 4–6).

The theoretical contents of our present endeavor are organized as follows. In Section 2,
we exploit the theoretical potential and power of Noether’s theorem in the context of a
gauge system of 1D spinning relativistic particles to deduce the explicit expressions for the
conserved (anti-)BRST charges Q(a)b and establish that they are not off-shell nilpotent. We
focus, in Section 3, on the D-dimensional non-Abelian 1-form gauge theory (without any
interaction with matter fields) and demonstrate that the Noether conserved (anti-)BRST
charges, once again, are non-nilpotent to begin with. We pinpoint the specific EL-EoMs
that have to be used to make these (anti-)BRST charges off-shell nilpotent. Section 4 is
devoted to the discussion of Noether’s theorem in the context of D-dimensional (anti-)
BRST invariant Abelian 2-form theory and discuss the nitty-gritty details of the nilpotency
property. The theoretical content of Section 5 is concerned with the (anti-)BRST invariant
coupled (but equivalent) Lagrangian densities of the (anti-)BRST invariant modified massive
Abelian three-form gauge theory, and our discussion is centered around the property of
the off-shell nilpotency of the (anti-)BRST charges. Finally, in Section 6, we make some
concluding remarks and comment on the future prospects of our present investigation.

In our Appendix A, we discuss the Stückelberg-modified D-dimensional massive
Abelian two-form theory and deduce the off-shell nilpotent versions of the (anti-)BRST
charges [Q(1)

(a)b)] from the non-nilpotent Noether conserved (anti-)BRST charges [Q(a)b].
Convention and Notations for the 1D Massive Spinning (SUSY) Relativistic Particle and

D-dimensional Abelian Two-Form as well as Three-Form Theories: We follow the convention of
the left derivatives with respect to all the fermionic variables/fields of our theory in the
computations of the canonical conjugate momenta and the Noether conserved currents.
The flat metric tensor ηµν = diag (+1,−1,−1, . . . ) is chosen for the D-dimensional flat
Minkowskian space so that the dot product between two non-null vectors Pµ and Qµ

is denoted by P · Q = ηµν Pµ Qν = P0 Q0 − Pi Qi where the Greek indices µ, ν, λ, · · · =
0, 1, 2, . . . D− 1 correspond to the time and space directions and the Latin indices i, j, k · · · =
1, 2, . . . D − 1 stand for the space directions only. Throughout the whole body of our
text, the nilpotent (anti-)BRST symmetry transformations carry the symbol s(a)b, and the
corresponding conserved (anti-) BRST charges are denoted by Q(a)b for all kinds of the
Abelian systems that have been chosen for our present discussion. For our discussions
on the D-dimensional non-Abelian gauge theory, we shall adopt a different convention
in Section 3.

2. Preliminary: (Anti-)BRST Charges and Nilpotency for a Massive Spinning
Relativistic Particle

We begin with the following coupled (but equivalent) (anti-)BRST invariant (see,
e.g., [12,13]) Lagrangians that describe the dynamics of a one (0 + 1)-dimensional massive
spinning (i.e., supersymmetric) relativistic particle in the D-dimensional target space, namely:

Lb = L f + b2 + b (ė + 2 β̄ β)− i ˙̄c ċ + β̄2 β2 + 2 i χ (β ˙̄c− β̄ ċ)− 2 e (β̄ β̇ + γ χ)

+ 2 γ (β c̄− β̄ c) + m (β̄ β̇− ˙̄β β + γ χ)− γ̇ ψ5, (1)

Lb̄ = L f + b̄2 − b̄ (ė− 2 β̄ β)− i ˙̄c ċ + β̄2 β2 + 2 i χ (β ˙̄c− β̄ ċ) + 2 e ( ˙̄β β− γ χ)

+ 2 γ (β c̄− β̄ c) + m (β̄ β̇− ˙̄β β + γ χ)− γ̇ ψ5, (2)

where L f is the first-order Lagrangian for our system [10]

L f = pµ ẋµ +
i
2
(ψµ ψ̇µ − ψ5 ψ̇5)−

e
2
(p2 −m2) + i χ (pµ ψµ −m ψ5). (3)
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In the above, the target space canonical conjugate quantities
(
xµ(τ), pµ(τ)

)
are the

bosonic coordinates (xµ) and canonical momenta (pµ), respectively, with the Greek in-
dices µ = 0, 1, 2, . . . , D− 1 corresponding to the D-dimensional flat Minkowskian target
space. The trajectory of the spinning particle is parameterized by τ and the generalized
velocities: ẋµ = (d xµ/d τ), ψ̇µ = (d ψµ/d τ) is defined with respect to it. The pair of
fermionic (ψ2

µ = 0; ψµ ψν + ψν ψµ = 0, ψ2
5 = 0, ψ5 ψµ + ψµ ψ5 = 0, etc.) variables (ψµ, ψ5)

are introduced in the theory to (i) maintain the SUSY gauge symmetry transformations
and (ii) incorporate the mass-shell condition p2 −m2 = 0 where m is the rest mass of the
particle. The variable e (τ) and χ(τ) are the superpartners of each other where e (τ) is the
einbein variable and the fermionic (χ2 = 0) variable χ (τ) is its superpartner and both of
them behave as the “gauge” and “supergauge” variables. We have incorporated a pair of
variables (b, b̄) as the bosonic Nakanishi–Lautrup type auxiliary variables which participate
in defining the CF-type restriction3: b + b̄ + 2 β̄ β = 0 where the bosonic (anti-)ghost vari-
ables (β̄) β are the counterparts of the fermionic (c2 = 0, c̄2 = 0, c c̄ + c̄ c = 0) (anti-)ghost
variables (c̄) c in our supersymmetric (i.e., spinning) system of a 1D diffeomorphism in-
variant theory [10,12,13]. We require an additional auxiliary variable (γ) that is fermionic
(γ2 = 0) in nature as it anticommutes with all the other fermionic variables of our theory
(i.e., γ χ + χ γ = 0, γ ψ5 + ψ5 γ = 0, γ ψµ + ψµ γ = 0, γ c + c γ = 0, γ c̄ + c̄ γ = 0, etc.).

The above Lagrangians Lb and Lb̄ are coupled (but equivalent) on the submanifold of
the quantum variables where the CF-type restriction: b + b̄ + 2 β̄ β = 0 is satisfied [12,13].
Furthermore, it is straightforward to check that under the following off-shell nilpotent
[s2
(a)b = 0] (anti-)BRST symmetry transformations [s(a)b], namely;

sab xµ = c̄ pµ + β̄ ψµ, sab e = ˙̄c + 2 β̄ χ, sab ψµ = i β̄ pµ,

sab c̄ = −i β̄2, sab c = i b̄, sab β̄ = 0, sab β = −i γ, sab pµ = 0,

sab γ = 0, sab b̄ = 0, sab χ = i ˙̄β, sab b = 2 i β̄ γ, sab ψ5 = i β̄ m, (4)

sb xµ = c pµ + β ψµ, sb e = ċ + 2 β χ, sb ψµ = i β pµ,

sb c = −i β2, sb c̄ = i b, sb β = 0, sb β̄ = i γ, sb pµ = 0,

sb γ = 0, sb b = 0, sb χ = i β̇, sb b̄ = −2 i β γ, sb ψ5 = i β m, (5)

the Lagrangians Lb and Lb̄ transform4 to the total derivatives as:

sab Lb̄ =
d

d τ

[ c̄
2
(p2 + m2) +

β̄

2
(pµ ψµ + m ψ5)− b̄ ( ˙̄c + 2 β̄ χ)

]
, (6)

sb Lb =
d

d τ

[ c
2
(p2 + m2) +

β

2
(pµ ψµ + m ψ5) + b (ċ + 2 β χ)

]
. (7)

As a consequence, the action integrals S1 =
∫ ∞
−∞ d τ Lb and S2 =

∫ ∞
−∞ d τ Lb̄ remain in-

variant for the physically well-defined variables that vanish off as τ → ±∞. The application
of Noether’s theorem yields the following explicit expressions for the conserved (anti-)BRST
charges [Q(a)b] for our 1D SUSY system of a relativistic spinning particle, namely:

Qab =
c̄
2
(p2 −m2) + β̄ (pµ ψµ −m ψ5)− b̄ ˙̄c− 2 b̄ β̄ χ− i m β̄γ − β̄2 ċ− 2 β β̄2 χ, (8)

Qb =
c
2
(p2 −m2) + β (pµ ψµ −m ψ5) + b ċ + 2 b β χ− i m βγ + β2 ˙̄c + 2 β̄ β2 χ, (9)
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where we have used the following explicit relationships

Qab = (sab xµ)
∂ Lb̄
∂ ẋµ

+ (sab ψµ)
∂ Lb̄
∂ ψ̇µ

+ (sab e)
∂ Lb̄
∂ ė

+ (sab c)
∂ Lb̄
∂ ċ

+ (sab c̄)
∂ Lb̄
∂ ˙̄c

+ (sab β)
∂ Lb̄
∂ β̇

+ (sab ψ5)
∂ Lb̄
∂ ψ̇5
− X, (10)

Qb = (sb xµ)
∂ Lb
∂ ẋµ

+ (sb ψµ)
∂ Lb
∂ ψ̇µ

+ (sb e)
∂ Lb
∂ ė

+ (sb c)
∂ Lb
∂ ċ

+ (sb c̄)
∂ Lb
∂ ˙̄c

+ (sb β̄)
∂ Lb

∂ ˙̄β
+ (sb ψ5)

∂ Lb
∂ ψ̇5
−Y, (11)

for the derivations of conserved (anti-)BRST charges Q(a)b.
The following points are pertinent as far as Equations (10) and (11) are concerned.

First, even though some of the auxiliary variables (e.g., b, b̄, χ) transform (cf. Equations (4)
and (5)) under the (anti-)BRST symmetry transformations, we have not used their contribu-
tions because their “time" derivative is not present in the Lagrangians Lb and Lb̄. Second,
we have not taken into account the contributions of β and β̄ in (11) and (10), respectively,
because sab β̄ = 0 and sb β̄ = 0. Third, the expressions X and Y are the quantities that are
present in the square brackets of (6) and (7). Fourth, the direct applications of the EL-EoMs
ensure that Q(a)b are conserved quantities [13]. Finally, the conserved charges Q(a)b are the
generators for the continuous (anti-)BRST symmetry transformations (4) and (5) because it
can be checked that the following is true, namely:

sr Φ = − i [Φ, Qr]±, r = b, ab, (12)

where the (±) signs (as the subscript) on the square bracket, on the r.h.s., denote that the
square bracket is an (anti)commutator for the given variable Φ being fermionic/bosonic
in nature. Here, Φ denotes the generic variable of Lb and Lb̄. In other words, we have:
Φ = xµ, φµ, ψµ, ψ5, b, b̄, e, χ, c, c̄, β, β̄, γ. Using the principle behind the continuous
symmetries and their corresponding generators (cf. Equation (12)), we have the following

sb Qb = − i {Qb, Qb}, sab Qab = − i {Qab, Qab}, (13)

where the l.h.s. of both the entries can be directly computed by using the (anti-)BRST
symmetry transformations (cf. Equations (4) and (5)) and the explicit expressions for the
Noether conserved (anti-)BRST charges (8) and (9). It is interesting to point out that the
explicit computations of sb Qb and sab Qab are as follows:

sb Qb = i β2
[
ḃ +

1
2
(p2 −m2) + 2 γ χ + 2 β̄β̇

]
≡ − i {Qb, Qb},

sab Qab = i β̄2
[1

2
(p2 −m2)− ˙̄b + 2 γ χ− 2 β ˙̄β

]
≡ − i {Qab, Qab}. (14)

It is obvious, from the above expressions, that the (anti-)BRST charges Q(a)b are not
off-shell nilpotent. However, these non-nilpotent conserved charges can be made off-shell
nilpotent if (i) we use the EL-EoMs with respect to the “gauge” and “supergauge” variables
e (τ) and χ (τ), respectively, which are, in some sense, superpartners of each other, (ii)
we apply the principle that the off-shell nilpotent continuous (anti-)BRST transformations
are generated by the conserved (anti-)BRST charges, and (iii) we apply the (anti-)BRST
symmetry transformations at appropriate places.

We propose here a systematic method to obtain the off-shell nilpotent version Q(1)
b of

the BRST charge Qb. Our aim would be to obtain Q(1)
b from the non-nilpotent Noether BRST

charge from Qb such that sb Q(1)
b = − i {Q(1)

b , Q(1)
b } = 0. In other words, the l.h.s. (i.e.,

sb Q(1)
b ) should be precisely equal to zero. Toward this goal in mind, first of all, we focus on



Universe 2022, 8, 566 6 of 29

the EL-EoMs that emerge out from Lb with respect to e (τ) and χ (τ) which are the “gauge”
and “supergauge” variables. These, in their useful form, are as follows:

1
2
(p2 −m2) = − ḃ− 2 (β̄ β̇ + γ χ),

(pµ ψµ − m ψ5) = − i m γ + 2 i e γ− 2 (β ˙̄c− β̄ ċ). (15)

In the second step, the substitutions of EL-EoMs with respect to “gauge” and “super-
gauge” variables in the appropriate terms of Noether conserved BRST charge Qb. For in-
stance, the substitutions of (15) lead to the modifications of the following terms:

c
2
(p2 −m2) = − ḃ c− 2 c (β̄ β̇ + γ χ),

β (pµ ψµ − m ψ5) = − i m β γ + 2 i e β γ− 2 β (β ˙̄c− β̄ ċ). (16)

In the third step, we observe whether the above “modified” terms add, subtract and/or
cancel out with some of the terms of Qb. For instance, we note that in our present case, only
the term which is added in (16) is “− i m β γ” from Qb. The total sum of the expressions in
(16) and this term is the following explicit expression:

− ḃ c− 2 c (β̄ β̇ + γ χ)− 2 i m β γ + 2 i e β γ− 2 β (β ˙̄c− β̄ċ). (17)

In the fourth step, we apply the BRST transformations on (17) which yields:

− i ḃ β2 + 2 i β2 χ γ− 2 i β2 β̇ β̄. (18)

In our fifth step, we keenly observe whether some of terms of the Noether conserved
charge Qb should be modified so that the terms of (18) cancel out precisely when we apply the
BRST symmetry transformations on them. In our present case, we observe luckily that

sb [β
2 ˙̄c + 2 β2 β̄ χ] = i ḃ β2 + 2 i β2 γ χ + 2 i β2 β̇ β̄, (19)

which cancels out whatever we have obtained in (18). In the final step, we apply the BRST
symmetry transformations on the leftover terms of the Noether conserved charge Qb. It
turns out that we have the following

sb [b ċ + 2 b β χ] = − 2 i b β β̇ + 2 i b β β̇ = 0. (20)

It is pertinent to point out that all the terms that cancel out due to the application of
the BRST symmetry transformations should be present in the off-shell nilpotent version of
the (anti-)BRST charges Q(1)

(a)b. For instance, all the terms of (17) and the terms, on the l.h.s.

of (19) and (20) in the square bracket, will be present5 in Q(1)
b . Ultimately, in our present

case, we obtain the following off-shell nilpotent version of the BRST charge:

Qb −→ Q(1)
b = b ċ− ḃ c + 2 β [i e γ + β̄ ċ− i m γ + b χ + β β̄ χ]− β2 ˙̄c− 2 c [β̄ β̇ + γ χ]. (21)

At this stage, it is straightforward to note that the following observation is true, namely:

sb Q(1)
b = − i {Q(1)

b , Q(1)
b }, =⇒ [Q(1)

b ]2 = 0. (22)

In other words, we point out that the off-shell nilpotent version of the conserved BRST
charge [Q(1)

b ] is obtained from the non-nilpotent Noether conserved charge by using the
EL-EoMs with respect to the “gauge” variable e (τ) and “supergauge” variable χ (τ) and
the application of the (anti-)BRST symmetry transformations at appropriate places.
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Against the backdrop of the above paragraph, we note that to obtain the off-shell
nilpotent version of the conserved anti-BRST charge, we use the following EL-EoMs

1
2
(p2 −m2) = ˙̄b + 2 ( ˙̄β β− γ χ),

(pµ ψµ − m ψ5) = 2 i e γ− i m γ− 2 (β ˙̄c− β̄ ċ). (23)

that are derived from the perfectly anti-BRST invariant Lb̄. We follow exactly the same
steps as in the case of BRST charge Qb to obtain the off-shell nilpotent version of the anti-
BRST Q(1)

ab . In fact, the substitution of (23) into the expression for Qab (cf. Equation (8)) at

appropriate places leads to the following expression for Q(1)
ab , namely:

Qab −→ Q(1)
ab = ˙̄b c̄− b̄ ˙̄c + 2 β̄ [i e γ− β ˙̄c− b̄ χ− i m γ− β β̄ χ]

+ 2 c̄ (β̄ β̇ + γ χ) + β̄2 ċ. (24)

It is now straightforward to note that we have the following:

sab Q(1)
ab = − i {Q(1)

ab , Q(1)
ab }, =⇒ [Q(1)

ab ]2 = 0. (25)

The above observation is nothing but the proof of the off-shell nilpotency of the
anti-BRST charge Q(1)

ab where the l.h.s. is computed explicitly by using (4) and (24).
We end this section with the following remarks. First of all, we note that it is the

EL-EoMs with respect to the “gauge” and “supergauge” variables that have been used
and these have been singled out from the rest of the EL-EoM. This observation is one
of the key ingredients of our proposal followed by the steps that have been discussed
from Equation (15) to Equation (20). Second, in our present simple case of a 1D spinning
relativistic particle, only a single step is good enough to enable us to obtain an off-shell
nilpotent set of (anti-)BRST conserved charges. However, we shall see that in the context
of Abelian two-form and three-form gauge theories defined in any arbitrary dimension
of spacetime, more steps will be required to obtain the off-shell nilpotent set of conserved
(anti-)BRST charges from the non-nilpotent forms of the (anti)BRST charges (that are derived
directly from the applications of Noether’s theorem). Third, it is interesting to mention that
in the limiting case of the spinning relativistic particle when β = β̄ = γ = 0, we obtain the
(anti-)BRST charges for the scalar relativistic particle from (8) and (9) as

Qab −→ Q(sr)
ab =

c̄
2
(p2 −m2)− b̄ ˙̄c, Qb −→ Q(sr)

b =
c
2
(p2 −m2) + b ċ, (26)

which are off-shell nilpotent of order two because sb Q(sr)
b = 0 and sab Q(sr)

ab = 0 due to:
sb c = 0, sb b = 0, sb pµ = 0 and sab c̄ = 0, sab b̄ = 0, sab pµ = 0 which are true for the scalar
relativistic particle. In the above equation, the superscript (sr) on the charges stand for
the conserved and off-shell nilpotent (anti-)BRST charges for the scalar relativistic particle.
Finally, it can be explicitly checked that the modified versions of the (anti-)BRST charges
Q(1)

(a)b are also conserved quantities if we use the proper EL-EoMs that are derived from the
coupled (but equivalent) Lagrangians Lb and Lb̄ of our 1D massive SUSY gauge theory.

3. (Anti-)BRST Charges and Nilpotency: Arbitrary Dimensional Non-Abelian 1-Form
Gauge Theory

In this section, we show that the Noether conserved (anti-)BRST charges for the
D-dimensional non-Abelian one-form gauge theory are non-nilpotent. However, following
our proposal, we can obtain the appropriate forms of the conserved and off-shell nilpotent
expressions for the (anti-)BRST charges for our non-Abelian theory (without any inter-
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actions with the matter fields). We begin with the following coupled (but equivalent)
Lagrangian densities (see, e.g., [9]) in the Curci–Ferrari gauge (see, e.g., [15,16])

LB = − 1
4

Fµν · Fµν + B · (∂µ Aµ) +
1
2
(B · B + B̄ · B̄)− i ∂µC̄ · Dµ C,

LB̄ = − 1
4

Fµν · Fµν − B̄ · (∂µ Aµ) +
1
2
(B · B + B̄ · B̄)− i Dµ C̄ · ∂µC, (27)

where the field strength tensor Fµν ≡ Fa
µν Ta (a = 1, 2, . . . , N2− 1) has been derived from the

non-Abelian two-form: F(2) = d A(1) + i A(1) ∧ A(1) where the one-form A(1) = dxµ Aµ ≡
d xµ Aq

µ Ta defines the non-Abelian gauge field (Aa
µ) so that we have: Fa

µν = ∂µ Aa
ν − ∂ν Aa

µ +

i f abc Ab
µ Ac

ν. For the SU(N) Lie algebraic space, we have the Lie algebra: [Ta, Tb] = f abc Tc

that is satisfied by the SU(N) generators Ta (a = 1, 2, . . . , N2 − 1) where f abc are the
structure constants that can be chosen [17] to be totally antisymmetric in all the indices for
the semi-simple Lie group SU(N). In this section, we adopt the dot and cross products
only in the SU(N) Lie algebraic space where we have: S · T = Sa Ta, (S× T)a = f abc Sb Tc

for the two non-null vectors Sa and Ta (in this space and a, b, c, · · · = 1, 2, . . . N2 − 1). We
have also taken into account the summation convention where the repeated indices are
summed over and DµC = ∂µC + i (Aµ × C) and DµC̄ = ∂µC̄ + i (Aµ × C̄) are the covariant
derivatives in the adjoint representation of the SU(N) Lie algebra.

The above coupled (but equivalent) Lagrangian densities (27) respect the following
off-shell nilpotent [s2

(a)b = 0] (anti-)BRST symmetry transformations (s(a)b)

sab Aµ = DµC̄, sab C̄ = − i
2
(C̄× C̄), sab C = iB̄, sab B̄ = 0,

sab Fµν = i (Fµν × C̄), sab(∂µ Aµ) = ∂µDµC̄, sab B = i (B× C̄),

sb Aµ = DµC, sb C = − i
2
(C× C), sb C̄ = i B, sb B = 0,

sb B̄ = i (B̄× C), sb (∂µ Aµ) = ∂µDµC, sb Fµν = i (Fµν × C), (28)

because of the following observations

sbLB = ∂µ(B · DµC), sabLB̄ = − ∂µ(B̄ · DµC̄),

sbLB̄ = ∂µ [{B + (C× C̄)} · ∂µC ]− {B + B̄ + (C× C̄)} · Dµ∂µC,

sabLB = − ∂µ [{B̄ + (C× C̄)} · ∂µC̄ ] + {(B + B̄ + (C× C̄)} · Dµ∂µC̄, (29)

which establish that the action integrals S1 =
∫

dDxLB, S2 =
∫

dDxLB̄ remain invari-
ant (sb S1 = 0, sab S2 = 0) under the BRST and anti-BRST symmetry transformations,
respectively, because the physical fields vanish off as x −→ ±∞ due to Gauss’s diver-
gence theorem. If we confine our whole discussion on the submanifold of the total
quantum Hilbert space of fields where the CF-condition: B + B̄ + (C × C̄) = 0 is re-
spected [18], we note that both the Lagrangian densities respect both the nilpotent sym-
metries. In other words, we have sbLB̄ = − ∂µ[B̄ · ∂µC], sabLB = ∂µ[B · ∂µC̄] on the
above submanifold of Hilbert space of quantum fields. We christen the transformations:
sbLB = ∂µ[B · DµC], sabLB̄ = − ∂µ[B̄ · DµC̄] as perfect symmetry transformations because
we do not use any EL-EoMs and/or CF-type condition for their proof.

In addition to the equivalence of the coupled Lagrangian densities (27) from the point
of view of the (anti-)BRST symmetry considerations, we note that the absolute anticom-
mutativity (i.e., {sb, sab} = 0) property of the (anti-)BRST symmetry transformations is
satisfied if and only if we invoke the sanctity of the CF-condition: B + B̄ + (C× C̄) = 0.
This becomes obvious when we observe that the following are true, namely:

{sb, sab} Aµ = i Dµ

[
B + B̄ + (C× C̄)

]
,

{sb, sab} Fµν = − Fµν ×
[
B + B̄ + (C× C̄)

]
. (30)
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Thus, it is clear that the absolute anticommutativity properties: {sb, sab} Aµ = 0
and {sb, sab} Fµν = 0 are true if and only if B + B̄ + (C × C̄) = 0. We further note that
{sb, sab}Φ = 0 where Φ = C, C̄, B, B̄ is the generic field of the theory (besides Aµ and
Fµν). Thus, the absolute anticommutativity property (i.e., {sb, sab}Φ = 0) is automatically
satisfied for the fields: B, B̄, C, C̄ due to the off-shell nilpotent (anti-)BRST symmetry
transformations (28). It is very interesting to point out that the straightforward equivalence
(LB = LB̄) of both the Lagrangian densities (27) of our theory leads to

(∂µ Aµ) ·
[
B + B̄ + (C× C̄)

]
= 0, (31)

modulo a total spacetime derivative. The above observation establishes the fact that both the
Lagrangian densities LB and LB̄ of Equation (27) are coupled in the sense that the Nakanishi–
Lautrup auxiliary fields B and B̄ are not free but these specific fields are restricted to obey
B + B̄ + (C× C̄) = 0 (which is nothing but the CF condition [18]). This condition, for the
SU(N) non-Abelian gauge theory, is physically sacrosanct because it is an (anti-)BRST
invariant (i.e., s(a)b [B + B̄ + (C × C̄)] = 0) quantity, which can be verified by using the
(anti-)BRST symmetry transformations (28).

The perfect symmetry invariance of the Lagrangian densities LB and LB̄ under the
infinitesimal, continuous and off-shell nilpotent [s2

(a)b = 0] BRST and anti-BRST symmetry
transformations, respectively, leads to the derivation of the following expressions for the
conserved Noether currents

Jµ

(B) = (sb Aν)
∂LB

∂ (∂µ Aν)
+ (sb C̄)

∂LB

∂ (∂µ C̄)
+ (sb C)

∂LB
∂ (∂µ C)

− B · Dµ C,

Jµ

(B̄) = (sab Aν)
∂LB̄

∂ (∂µ Aν)
+ (sab C)

∂LB̄
∂ (∂µ C)

+ (sab C̄)
∂LB̄

∂ (∂µ C̄)
+ B̄ · Dµ C̄, (32)

where we have followed the convention of the left derivative with respect to all the fermionic
fields. The explicit form of the (anti-)BRST Noether currents are:

Jµ

(B̄) = − Fµν · Dν C̄− B̄ · Dµ C̄− 1
2
(C̄× C̄) · ∂µ C,

Jµ

(B) = B · Dµ C− Fµν · Dν C +
1
2

∂µ C̄ · (C× C). (33)

The conservation law ∂µ Jµ

(r) = 0 (with r = B̄, B) can be proven by exploiting the power

and potential of the EL-EoMs. For the proof of ∂µ Jµ

(B̄) = 0, we have to use the following

EL-EOMs with respect to the gauge field Aµ and (anti-)ghost fields (C̄)C, namely:

Dµ Fµν + ∂ν B̄ + (C̄× ∂ν C) = 0, ∂µ (Dµ C̄) = 0, Dµ (∂
µ C) = 0, (34)

that are derived from LB̄. In exactly similar fashion, for the proof of ∂µ Jµ

(B) = 0, we utilize

the following EL-EoMs with respect to Aµ, C and C̄, namely:

Dµ Fµν − ∂ν B− (∂ν C̄× C) = 0, ∂µ (Dµ C) = 0, Dµ (∂
µ C̄) = 0, (35)

which are derived from the Lagrangian density LB. Ultimately, we claim that the Noether
currents (33) are conserved, and they lead to the derivation of conserved (anti-)BRST charges
for our D-dimensional non-Abelian one-form gauge theory. Following the sacrosanct
prescription of Noether theorem, we derive the expressions for the conserved (anti-)BRST
charges (Q(B̄)B =

∫
dD−1x J0

(B̄)B) as follows:

QB̄ = −
∫

dD−1x
[

F0i · Di C̄ + B̄ · D0 C̄ +
1
2
(C̄× C̄) · Ċ

]
,

QB =
∫

dD−1x
[

B · D0 C− F0i · Di C +
1
2

˙̄C · (C× C)
]
. (36)
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A few comments, at this juncture, are in order. First of all, it can be checked that
∂0 QB̄ = 0 and ∂0 QB = 0 where we have to use the EL-EoMs from LB and LB̄, and (ii) the
above conserved (anti-)BRST charges are the generators of all the symmetry transformations
(28) provided we use the canonical (anti-)commutators by deriving the explicit expressions
for the canonical conjugate momenta from LB and LB̄. Using the principle behind the
continuous symmetry transformations and their generators as the Noether conserved
charges, we note that the expressions (36) lead to the following

sab QB̄ = −
∫

dD−1x
[
i (F0i × C̄) · Di C̄− i

2
(C̄× C̄) · ˙̄B

]
6= 0,

sb QB =
∫

dD−1x
[
− i (F0i × C) · Di C +

i
2

Ḃ · (C× C)
]
6= 0, (37)

which are not equal to zero. In other words, we note that: sab QB̄ = − i {QB̄, QB̄} 6= 0 and
sb QB = − i {QB, QB} 6= 0. Hence, the expressions for the Noether (anti-)BRST charges (36)
are not off-shell nilpotent (i.e., Q2

B̄ 6= 0, Q2
B 6= 0) of order two.

Following the proposal mentioned in the context of 1D massive spinning relativistic
particle, in the first step, we have to find out the EL-EOMs with respect to the non-Abelian
gauge field and substitute it in the non-nilpotent Noether conserved charges QB and QB̄.
In our present case, it can be done only after the application of the Gauss divergence theorem
so that we have the following for the first term in QB̄ and the second term QB, namely:∫

dD−1 x
[
− F0i · (∂i C̄ + i Ai × C̄)

]
≡ +

∫
dD−1 x (∂i F0i) · C̄

− i
∫

dD−1 x
[

F0i · (Ai × C̄)
]
, (38)

∫
dD−1 x

[
− F0i · (∂i C + i Ai × C)

]
= +

∫
dD−1 x (∂i F0i) · C

− i
∫

dD−1 x
[

F0i · (Ai × C)
]
, (39)

where we can use the following EL-EoM with respect to the gauge field, namely:

(∂i F0i) · C̄ = ˙̄B · C̄ + (C̄× Ċ) · C̄− i (Ai × F0i) · C̄,

(∂i F0i) · C = −Ḃ · C + ( ˙̄C× C) · C− i (Ai × F0i) · C. (40)

In the second step, we have to find out if there are addition, subtraction and/or
cancellations with the rest of the terms of the conserved Noether charges QB̄ and QB

in (36). At this stage, taking the help of: +(C̄× Ċ) · C̄ = +(C̄× C̄) · Ċ and −( ˙̄C× C) · C =

− ˙̄C · (C× C), we have the following expressions for Q(1)
(B̄)B from the expressions for QB̄ and

QB, namely:

QB̄ → Q(1)
B̄ =

∫
dD−1 x

[
˙̄B · C̄− B̄ · D0 C̄ +

1
2
(C̄× C̄) · Ċ

]
,

QB → Q(1)
B =

∫
dD−1 x

[
B · D0 C− Ḃ · C− 1

2
˙̄C · (C× C)

]
, (41)

where (i) a cancellation has taken place between
[
− i (Ai × F0i) · C̄

]
and

[
− i F0i · (Ai × C̄)

]
in the expression for QB̄, (ii) in the expression for QB, there has been a cancellation between[
− i (Ai × F0i) · C

]
and

[
− i F0i · (Ai × C)

]
, (iii) the pure ghost terms have been added to

yield
[
+ 1

2 (C̄× C̄) · Ċ
]

in QB̄ and − 1
2

˙̄C · (C× C) in the expression for QB, and (iv) the final
contributions, after the applications of the Gauss divergence theorem (cf. Equations (38)
and (39)) and the equation of motion (40), are as follows

˙̄B · C̄ +
1
2
(C̄× C̄) · Ċ, −Ḃ · C− 1

2
˙̄C · (C× C), (42)
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in QB̄ and QB, respectively. In the third step, we have to apply the anti-BRST and BRST
symmetry transformations on (42), respectively. It turns out that we have the following:

sab

[
˙̄B · C̄ +

1
2
(C̄× C̄) · Ċ

]
= 0, sb

[
− Ḃ · C− 1

2
˙̄C · (C× C)

]
= 0. (43)

Thus, our all the relevant steps terminate here, and we have the final expression for
the (anti-)BRST charges as quoted in (41) because it is elementary to check that the leftover
terms of (36) are (anti-)BRST invariant: sab (B̄ · D0 C̄ ) = 0, sb (B · D0 C ) = 0. It is straight-
forward now to observe that the above expressions for the conserved (anti-)BRST charges
are off-shell nilpotent [(Q(1)

(B̄)B)
2 = 0] of order two. To corroborate this statement, we have

the following observations related with the modified version of Q(1)
(B̄)B

sab Q(1)
B̄ = − i {Q(1)

B̄ , Q(1)
B̄ } = 0 =⇒ [Q(1)

B̄ ]2 = 0,

sb Q(1)
B = − i {Q(1)

B , Q(1)
B } = 0 =⇒ [Q(1)

B ]2 = 0, (44)

where the l.h.s. of the above equation can be computed explicitly by taking the help of (28)
and (34). Thus, the (anti-)BRST charges Q(1)

(B̄)B are off-shell nilpotent.
We end this section with the following useful remarks. First, we observe that the

Noether conserved (anti-)BRST charges QB̄ and QB are not off-shell nilpotent of order two
as was the case with the massive spinning (i.e., SUSY) relativistic particle. Second, to obtain
the conserved and off-shell nilpotent expressions for the (anti-)BRST charges Q(1)

B̄ and Q(1)
B ,

we have, first of all, taken the help of Gauss’s divergence theorem and, then, used only
the equation of motion for the gauge field from the coupled Lagrangian densities LB̄ and
LB. This observation is similar to our observation in the context of the 1D massive spinning
relativistic particle (modulo Gauss’s divergence theorem). Finally, we observe that the
Abelian limit (i.e., f abc = 0 plus no dot and/or cross products plus no covariant derivative,
etc.) of the Noether conserved charges QB̄ and QB from (31) are:

QB̄ −→ Qab = −
∫

dD−1x
[

F0i ∂i C̄− B ˙̄C
]
,

QB −→ Qb =
∫

dD−1x
[

F0i ∂i C− B Ċ
]
, (45)

where Q(a)b are the (anti-)BRST charges for the free Abelian 1-form gauge theory. It is an
elementary exercise to note that the above expressions for the charges are off-shell nilpotent
(sb Qb = − i {Qb, Qb} = 0, sab Qab = − i {Qab, Qab} = 0) where we have to apply the
analogues of the (anti-)BRST transformations (28) on Q(a)b for the Abelian one-form theory
theory, which are: sb F0i = 0, sb C = 0, sb B = 0 and sab F0i = 0, sab C̄ = 0, sab B̄ = 0.

4. (Anti-)BRST Charges and Nilpotency: Arbitrary Dimensional Abelian 2-Form
Gauge Theory

We begin with the (anti-)BRST invariant coupled (but equivalent) Lagrangian densities for
the free D-dimensional Abelian two-form gauge theory as follows (see, e.g., [8,19] for details)

LB =
1
12

Hµνκ Hµνκ + Bµ
(

∂νBνµ − ∂µφ
)
+ B · B + ∂µ β̄ ∂µβ

+ (∂µC̄ν − ∂νC̄µ) (∂
µCν) + (∂ · C− λ) ρ + (∂ · C̄ + ρ) λ, (46)

LB̄ =
1

12
Hµνκ Hµνκ + B̄µ

(
∂ν Bνµ + ∂µφ

)
+ B̄ · B̄ + ∂µ β̄ ∂µβ

+ (∂µC̄ν − ∂νC̄µ) (∂
µCν) + (∂ · C− λ) ρ + (∂ · C̄ + ρ) λ, (47)

where the totally antisymmetric tensor Hµνλ = ∂µ Bνλ + ∂ν Bλµ + ∂λ Bµν is derived from the
Abelian three-form H(3) = d B(2) ≡

[
(d xµ ∧ d xν ∧ d xλ)/3!

]
Hµνλ. Here, the Abelian two-
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form B(2) =
[
(d xµ ∧ d xν)/2!

]
Bµν is an antisymmetric (Bµν = − Bνµ) tensor gauge field

and d = d xµ ∂µ (with d2 = 0) is the exterior derivative. The gauge-fixing term for the gauge
field has its origin in the co-exterior derivative of differential geometry (see, e.g., [20–23]),
as it is straightforward to check that δ B(2) = − ∗ d ∗ B(2) ≡ (∂ν Bνµ) d xµ where ∗ is the
Hodge duality operator on the flat D-dimesnional spectime manifold. A derivative on a
scalar field (φ) has been incorporated into the gauge-fixing term on dimensional ground.
The Nakanishi–Lautrup-type auxiliary vector fields Bµ and B̄µ are restricted to obey the
CF-type restriction: Bµ − B̄µ − ∂µ φ = 0 (see, e.g., [24]). Here, the fermionic (C2

µ = 0, C̄2
µ =

0, Cµ Cν + Cν Cµ = 0, C̄µ C̄ν + C̄ν C̄µ = 0, Cµ C̄ν + C̄ν Cµ = 0, etc.) vector (anti-)ghost fields
(C̄µ)Cµ carry the ghost numbers (−1) + 1, respectively, and the bosonic (anti-)ghost fields
(β̄) β are endowed with the ghost numbers (−2)+ 2, respectively. The auxiliary (anti-)ghost
fields (ρ) λ are fermionic (ρ2 = λ2 = 0, ρ λ + λ ρ = 0, etc.) in nature, and they also carry the
ghost numbers (−1) + 1, respectively, due to the fact that λ = 1

2 (∂ · C) and ρ = − 1
2 (∂ · C̄).

The (anti-)ghost fields are invoked to maintain the unitarity in the theory.
The above coupled Lagrangian densities LB and LB̄ respect the following perfect off-

shell nilpotent [s2
(a)b = 0] (anti-)BRST symmetry transformations [s(a)b], namely:

sabBµν = −(∂µC̄ν − ∂νC̄µ), sabC̄µ = −∂µ β̄, sabCµ = B̄µ,

sabφ = ρ, sabβ = −λ, sabBµ = ∂µρ, sab
[
ρ, λ, β̄, B̄µ, Hµνκ

]
= 0,

sbBµν = −(∂µCν − ∂νCµ), sbCµ = −∂µβ, sbC̄µ = −Bµ,

sbφ = λ, sb β̄ = −ρ, sb B̄µ = − ∂µλ, sb
[
ρ, λ, β, Bµ, Hµνκ

]
= 0, (48)

due to our observations that:

sabLB̄ = −∂µ

[
(∂µC̄ν − ∂νC̄µ)B̄ν − ρ B̄µ + λ∂µ β̄

]
,

sbLB = −∂µ

[
(∂µCν − ∂νCµ)Bν + ρ ∂µβ + λBµ

]
. (49)

Thus, it is crystal clear that the action integrals S1 =
∫

dDxLB and S2 =
∫

dDxLB̄
remain invariant (i.e., sbS1 = 0, sabS2 = 0) for the physical fields that vanish-off as x −→
±∞ due to Gauss’s divergence theorem. It should be noted that the above (anti-)BRST
symmetry transformations are absolutely anticommuting only on the submanifold of the
Hilbert space of quantum fields where the CF-type restriction: Bµ − B̄µ − ∂µφ = 0 is
satisfied. This statement can be corroborated by the following observation

{sb, sab} Bµν = ∂µ(Bν − B̄ν)− ∂ν(Bµ − B̄µ), (50)

which establishes that {sb, sab} Bµν = 0 if and only if we invoke the sanctity of CF-type
restriction Bµ − B̄µ − ∂µφ = 0. It can be checked that the absolute anticommutativ-
ity property {sb, sab}Ψ = 0 is satisfied automatically if we use (48) for the generic field
Ψ = Cµ, C̄µ, φ, λ, ρ, β, β̄, Bµ, B̄µ of LB and LB̄.

The above infinitesimal, continuous and off-shell nilpotent (anti-)BRST symmetry
transformations lead to the derivations of the Noether conserved currents

Jµ

(ab) = ρ B̄µ − (∂µC̄ν − ∂νC̄µ) B̄ν − (∂µCν − ∂νCµ) ∂ν β̄− λ ∂µ β̄− Hµνκ (∂νC̄κ),

Jµ

(b) = (∂µC̄ν − ∂νC̄µ) ∂νβ− (∂µCν − ∂νCµ) Bν − λ Bµ − ρ ∂µβ− Hµνκ (∂νCκ), (51)

where it is quite straightforward to check (see, e.g., [19] for details) that the conservation law
(∂µ Jµ

(r), r = ab, b) is true provided we use the EL-EoMs from the coupled (but equivalent)
(anti-)BRST invariant Lagrangian densities LB and LB̄, respectively. The conserved Noether
(anti-)BRST charges Qr =

∫
dD−1 x J0

(r) (r = ab, b) are as follows
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Qab =
∫

dD−1x
[
ρ B̄0 − (∂0C̄i − ∂iC̄0) B̄i − (∂0Ci − ∂iC0) ∂i β̄− λ ∂0 β̄− H0ij (∂iC̄j)

]
,

Qb =
∫

dD−1x
[
(∂0C̄i − ∂iC̄0) ∂iβ− (∂0Ci − ∂iC0)Bi − λ B0 − ρ ∂0β− H0ij (∂iCj)

]
, (52)

which are the generators for the infinitesimal, continuous and off-shell nilpotent [s2
(a)b = 0]

(anti-)BRST symmetry transformations (48). At this stage, it is worthwhile to point out that
the following observations are true, namely:

sab Qab = − i {Qab, Qab} =
∫

dD−1x
[
− (∂0B̄i − ∂i B̄0) ∂i β̄

]
6= 0,

sb Qb = − i {Qb, Qb} =
∫

dD−1x
[
− (∂0Bi − ∂iB0) ∂iβ

]
6= 0, (53)

when we apply the principle behind the continuous symmetry transformations and their
generators as the conserved Noether charges. The above observations establish that the
Noether conserved charges Qb and Qab are not off-shell nilpotent (i.e., Q2

b 6= 0, Q2
ab 6= 0).

At this juncture, we follow our proposal to obtain the off-shell nilpotent versions [Q(1)
(a)b]

of the (anti-)BRST conserved charges from the conserved Noether (anti-)BRST charge Q(a)b
[cf. Equation (52)] which are found to be non-nilpotent [cf. Equation (53)]. Our objective is
to prove the validity of s(a)bQ(1)

(a)b = − i {Q(1)
(a)b, Q(1)

(a)b} = 0 by computing precisely the l.h.s.

(i.e., s(a)bQ(1)
(a)b). In the first step, we have to use the equation of motion with respect to the

gauge field. Toward this goal in mind, first of all, we note that the last terms of Qb and Qab
can be re-expressed as follows

−
∫

dD−1x H0ij ∂iCj = −
∫

dD−1x ∂i [H0ij Cj] +
∫

dD−1x (∂i H0ij)Cj,

−
∫

dD−1x H0ij ∂iC̄j = −
∫

dD−1x ∂i [H0ij C̄j] +
∫

dD−1x (∂i H0ij) C̄j, (54)

where the first-term will be zero due to Gauss’s divergence theorem for the physical fields
(which vanish-off as x −→ ∓∞), and we can apply the first step of our proposal where the
equations of motion with respect to the gauge field from LB and LB̄ are as follows:

∂i H0ij = (∂0Bj − ∂jB0), ∂i H0ij = (∂0B̄j − ∂j B̄0). (55)

Thus, the last terms of Qab and Qb are as follows:∫
dD−1x (∂i H0ij) C̄j =

∫
dD−1x [(∂0B̄i − ∂i B̄0) C̄i],∫

dD−1x (∂i H0ij)Cj =
∫

dD−1x [(∂0Bi − ∂iB0)Ci]. (56)

We remark here that the terms in (56) here emerged out from the EL-EoMs with respect
to the gauge field, and they are sacrosanct. As a consequence, they will be present in the
off-shell nilpotent version of Q(1)

(a)b. In the second step, we apply the (anti-)BRST symmetry
transformations on the above terms (modulo integration) which lead to the following:

sab [(∂
0B̄i − ∂i B̄0) C̄i] = − (∂0B̄i − ∂i B̄0) ∂i β̄,

sb [(∂
0Bi − ∂iB0)Ci] = − (∂0Bi − ∂iB0) ∂iβ. (57)

In the third step, we have to modify6 appropriate terms of Qab and Qb so that (57)
cancels out when we apply the (anti-)BRST symmetry transformations on them. With this
goal in mind, first of all, we focus on the BRST charge Qb and explain clearly the third step
of our proposal. It can be seen that the first term of Qb can be re-written as

(∂0C̄i − ∂iC̄0) ∂iβ = 2 (∂0C̄i − ∂iC̄0) ∂iβ− (∂0C̄i − ∂iC̄0) ∂iβ. (58)
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It is clear that if we apply the BRST symmetry transformations on the second term
of the above equation, it will serve our purpose and cancel out the second entry in (57).
At this stage, we comment that the second term of (58) and (56) will be present in the off-shell
nilpotent version (Q(1)

b ) of the BRST charge. This is due to the fact that our central aim is to

show that sbQ(1)
b = 0. Now, we focus on the first term of (57), which can be re-written in an

appropriate form:

2 (∂0C̄i − ∂iC̄0) ∂iβ = ∂i [2 (∂0C̄i − ∂iC̄0) β]− 2 ∂i [∂
0C̄i − ∂iC̄0] β. (59)

The above terms are inside the integration with respect to dD−1x. Hence, the first term
of the above equation will vanish due to the Gauss divergence theorem. The second term
can be written, using the following equations of motion, derived from LB, as:

� C̄µ − ∂µ (∂ · C̄)− ∂µρ = 0,

=⇒ − 2 ∂i [∂
0C̄i − ∂iC̄0] β = 2 β ∂0ρ ≡ 2 β ρ̇. (60)

In the fourth step, we have to apply the BRST symmetry transformations on (2 β ρ̇)
which turns out to be zero. We comment that this term will be present in the off-shell
nilpotent version (Q(1)

b ) of the BRST charge due to our objective to show that sb Q(1)
b = 0.

Hence, all the steps of our proposal terminate at this stage. As a consequence, we have the
following off-shell nilpotent version of the BRST charge:

Qb −→ Q(1)
b =

∫
dD−1x

[
(∂0Bi − ∂iB0)Ci − (∂0C̄i − ∂iC̄0) ∂iβ

+ 2 β ρ̇− (∂0Ci − ∂iC0)Bi − λB0 − ρ β̇
]
, (61)

where we have taken into account the appropriate term from (56), the second term from (58)
and the r.h.s. of (60). It is straightforward now to check that

sb Q(1)
b = − i {Q(1)

b , Q(1)
b } = 0 =⇒ [Q(1)

b ]2 = 0, (62)

which proves the off-shell nilpotency of the modified version (i.e., Q(1)
b ) of the non-nilpotency

Noether conserved charges Qb. It is worthwhile to mention that sb [λ B0 + ρ β̇] = 0. Hence,
these terms (i.e., − (λ B0 + ρ β̇)) remain intact and they are present in the expression for
Q(1)

b . We follow exactly the above prescription of our proposal in the case of the non-nilpotent
Noether anti-BRST charge Qab to obtain its modified off-shell nilpotent version as

Qab −→ Q(1)
ab =

∫
dD−1x

[
(∂0B̄i − ∂i B̄0) C̄i + (∂0Ci − ∂iC0) ∂i β̄

− (∂0C̄i − ∂iC̄0) B̄i + ρ B̄0 − 2 β̄ λ̇− λ ˙̄β
]
, (63)

which satisfies the following relationship:

sab Q(1)
ab = − i {Q(1)

ab , Q(1)
ab } = 0 =⇒ [Q(1)

ab ]2 = 0. (64)

The above observations establish the sanctity of our proposal that enables us to ob-
tain precisely the off-shell nilpotent versions of the (anti-)BRST charges [Q(1)

(a)b] from the
conserved Noether (anti-)BRST charges [Q(a)b] which are non-nilpotent.

We end this section with the following remarks. First, in the case of the 1D massive
spinning particle, only the EL-EoMs with respect to the “gauge" and “supergauge" variables
were good enough to convert the non-nilpotent Noether (anti-)BRST charges into the off-shell
nilpotent versions of the (anti-)BRST conserved charges. Second, to obtain the off-shell
nilpotent versions of the (anti-)BRST conserved charges in the context of the D-dimensional
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non-Abelian one-form theory, we required Gauss’s divergence theorem plus the EL-EoMs
with respect to the gauge field. Third, in the context of the D-dimensional Abelian two-form
theory, we invoked twice the Gauss divergence theorem and the EL-EoMs with respect to
the gauge field and fermionic (anti-)ghost fields (C̄µ)Cµ to obtain the off-shell nilpotent
versions of the (anti-)BRST charges from the conserved Noether non-nilpotent (anti-)BRST
charges. In all the above examples, we have also used the strength of the (anti-)BRST
symmetry transformations, at appropriate places, so that we could obtain the off-shell
nilpotent versions of the (anti-)BRST charges from the Noether conserved charges, which
are non-nilpotent.

5. (Anti-)BRST Charges and Nilpotency: Arbitrary Dimensional Stückelberg-Modified
Massive Abelian Three-Form Gauge Theory

We begin our present section with the (anti-)BRST invariant coupled (but equivalent)
Lagrangian densities7 for the Stückelberg-modified massive Abelian three-form gauge
theory (see, e.g., [25] for details)

LB = LS + (∂µ Aµνλ)Bνλ −
1
2

Bµν Bµν +
1
2

Bµν
[
∂µ φν − ∂ν φµ ∓ m Φµν

]
− (∂µ Φµν) Bν −

1
2

Bµ Bµ +
1
2

Bµ
[
± mφµ − ∂µ φ

]
+

m2

2
C̄µν Cµν

+ (∂µC̄νλ + ∂νC̄λµ + ∂λC̄µν)(∂
µCνλ)±m (∂µ C̄µν)Cν ± m C̄ν (∂µ Cµν)

+ (∂µ C̄ν − ∂ν C̄µ) (∂
µ Cν)− 1

2

[
±m β̄µ − ∂µ β̄

] [
±m βµ − ∂µ β

]
− (∂µ β̄ν − ∂ν β̄µ) (∂

µ βν)− ∂µC̄2∂µC2 − m2 C̄2 C2 + [(∂ · β̄)∓m β̄] B

− [(∂ · φ)∓m φ] B1 − [(∂ · β)∓m β] B2 +
[
∂νC̄νµ + ∂µ C̄1 ∓

m
2

C̄µ
]

fµ

− 2 Fµ fµ − 2 F f −
[
∂νCνµ + ∂µ C1 ∓

m
2

Cµ
]

Fµ +
[1

2
(∂ · C)∓m C1

]
F

−
[1

2
(∂ · C̄)∓m C̄1

]
f − B B2 −

1
2

B2
1, (65)

LB̄ = LS − (∂µ Aµνλ)B̄νλ −
1
2

B̄µν B̄µν +
1
2

B̄µν
[
∂µ φν − ∂µ φν ± m Φµν

]
+ (∂µ Φµν) B̄ν −

1
2

B̄µ B̄µ +
1
2

B̄µ
[
± mφµ − ∂µ φ

]
+

m2

2
C̄µν Cµν

+ (∂µC̄νλ + ∂νC̄λµ + ∂λC̄µν)(∂
µCνλ)±m (∂µ C̄µν)Cν ± m C̄ν (∂µ Cµν)

+ (∂µ C̄ν − ∂ν C̄µ) (∂
µ Cν)− 1

2

[
±m β̄µ − ∂µ β̄

] [
±m βµ − ∂µ β

]
− (∂µ β̄ν − ∂ν β̄µ) (∂

µ βν)− ∂µC̄2∂µC2 − m2 C̄2 C2 + [(∂ · β̄)∓m β̄] B

− [(∂ · φ)∓m φ] B1 − [(∂ · β)∓m β] B2 +
[
∂νCνµ − ∂µ C1 ∓

m
2

Cµ
]

f̄µ

+ 2 F̄µ f̄µ + 2 F̄ f̄ −
[
∂νC̄νµ − ∂µ C̄1 ∓

m
2

C̄µ
]

F̄µ +
[1

2
(∂ · C̄)±m C̄1

]
F̄

−
[1

2
(∂ · C)±m C1

]
f̄ − B B2 −

1
2

B2
1, (66)

where LS is the Stückelberg-modified classical Lagrangian density that incorporates into
it the totally antisymmetric tensor gauge field (Aµνλ) and antisymmetric (Φµν = −Φνµ)
Stückelberg field (Φµν) along with their kinetic terms as follows [25]:

LS =
1

24
Hµνλζ Hµνλζ −

m2

6
Aµνλ Aµνλ ±

m
3

Aµνλ Σµνλ −
1
6

Σµνλ Σµνλ. (67)

In the above, the kinetic term with the tensor field Hµνλζ for the gauge field Aµνλ owes its ori-
gin to the exterior derivative d = d xµ ∂µ (µ = 0, 1 . . . D− 1) because the Abelian four-form
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is: H(4) = d A(3) =
[
(d xµ ∧ d xν ∧ d xλ ∧ d xξ)/4!

]
Hµνλξ where the Abelian three-form

totally antisymmetric gauge field is defined through: A(3) =
[
(d xµ ∧ d xν ∧ d xλ)/3!

]
Aµνλ.

In addition, the Abelian three-form Σ(3) =
[
(d xµ ∧ d xν ∧ d xλ)/3!

]
Σµνλ is defined through

the Abelian Stückelberg two-form Φ(2) =
[
(d xµ ∧ d xν)/2!

]
Φµν as: Σ(3) = d Φ(2), which

implies that Σµνλ = ∂µΦνλ + ∂νΦλµ + ∂λΦµν. It is also evident that Hµνλξ is equal to

Hµνλζ = ∂µ Aνλζ − ∂ν Aλζµ + ∂λ Aζµν − ∂ζ Aµνλ, (68)

which is invoked in the definition of the kinetic term for the gauge field Aµνλ.
In the (anti-)BRST invariant Lagrangian densities LB and LB̄, we have the bosonic aux-

iliary fields (Bµν, B̄µν, Bµ, B̄µ B1, B2, B) and a fermionic set of auxiliary fields is
(Fµ, F̄µ, fµ, f̄µ, F, F̄, f , f̄ ) out of which the two bosonic auxiliary fields (B, B2) carry the
ghost numbers (−2, +2), respectively, and a set of fermionic auxiliary fields (Fµ, f̄µ, f̄ , F)
carry the ghost number (−1). On the other hand, a fermionic set of auxiliary fields
(F̄µ, fµ, f , F̄) is endowed with ghost number (+1). To maintain the unitarity in the theory,
we need the fermionic set of ghost fields (Cµν, C̄µν, Cµ, C̄µ, C̄2, C2, C̄1, C1) as well as the
bosonic set of (anti-)ghost fields (β̄µ, βµ, β̄, β) where the latter (anti-)ghost fields carry the
ghost numbers (−2, +2). To be precise, the set of bosonic anti-ghost fields (β̄µ, β̄) and
the ghost fields (βµ, β) are endowed with (−2) and (+2) ghost numbers, respectively.
The fermionic set of (anti-)ghost fields (C̄2)C2 has the ghost numbers (−3) + 3, respec-
tively, and all the rest of the fermionic (anti-)ghost fields: (C̄µ, C̄1) and (Cµ, C1) carry the
ghost numbers (−1) and (+1), respectively. We have the bosonic vector and scalar fields
(φµ, φ), too, in our theory, which appear in the gauge-fixing terms.

The following off-shell nilpotent [s2
(a)b = 0] anti-BRST transformations [s(a)b]

sab Aµνλ = ∂µC̄νλ + ∂νC̄λµ + ∂λC̄µν, sabC̄µν = ∂µ β̄ν − ∂ν β̄µ,

sabBµν = − (∂µFν − ∂νFµ) ≡ (∂µ f̄ν − ∂ν f̄µ), sabCµν = B̄µν,

sab Φµν = ±m C̄µν − (∂µ C̄ν − ∂ν C̄µ), sab Fµ = − ∂µ B2,

sab C̄µ = ±m β̄µ − ∂µ β̄, sabφµ = f̄µ, sab β̄µ = ∂µ C̄2,

sab Bµ = ±m f̄µ − ∂µ f̄ , sabβµ = F̄µ, sab fµ = ∂µB1,

sab Cµ = B̄µ, sab f = ±m B1, sab φ = f̄ ,

sab β̄ = ±m C̄2, sab β = F̄, sab F = ∓m B2

sabC̄1 = −B2, sabC1 = B1, sabC2 = B,

sab [Hµνλζ , B̄µν, B̄µ, F̄µ, f̄µ, F̄, f̄ , B, B1, B2, C̄2] = 0, (69)

are the symmetry transformations for the action integral S1 =
∫

dD−1 xLB̄ because the
Lagrangian density LB̄ transforms to a total spacetime derivative under the infinitesimal,
continuous and off-shell nilpotent (s2

ab = 0) anti-BRST symmetry transformations sab:

sab LB̄ = ∂µ

[
B̄µν f̄ν − (∂µ C̄νλ + ∂ν C̄λµ + ∂λ C̄µν) B̄νλ + B ∂µ C̄2

− B2 F̄µ − B1 f̄ µ − (∂µ β̄ν − ∂ν β̄µ) F̄ν +
1
2
(±m β̄µ − ∂µ β̄) F̄

− (∂µ C̄ν − ∂ν C̄µ) B̄ν ∓ m B̄µν C̄ν −
1
2

B̄µ f̄

± m Cµν (±m β̄ν − ∂ν β̄)± m (∂µ β̄ν − ∂ν β̄µ)Cν

]
. (70)
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On the other hand, under the infinitesimal, continuous and off-shell nilpotent (s2
b = 0)

BRST symmetry transformations (sb)

sb Aµνλ = ∂µCνλ + ∂νCλµ + ∂λCµν, sbCµν = ∂µβν − ∂νβµ,

sb B̄µν = − (∂µ F̄ν − ∂ν F̄µ) ≡ (∂µ fν − ∂ν fµ), sbC̄µν = Bµν,

sb Φµν = ±m Cµν − (∂µ Cν − ∂ν Cµ), sb F̄µ = −∂µB,

sb Cµ = ±m βµ − ∂µ β, sbφµ = fµ, sbβµ = ∂µC2,

sb B̄µ = ±m fµ − ∂µ f , sb f̄µ = − ∂µB1, sb β̄µ = Fµ,

sb C̄µ = Bµ, sbC̄2 = B2, sbC̄1 = − B1,

sb φ = f , sb β = ±m C2, sb β̄ = F,

sb F̄ = ∓m B, sb f̄ = ∓m B1, sb C1 = −B,

sb [Hµνλζ , Bµν, Bµ, fµ, Fµ, F, f , B, B1, B2, C2] = 0, (71)

the Lagrangian density LB transforms to a total spacetime derivative

sb LB = ∂µ

[
(∂µ Cνλ + ∂ν Cλµ + ∂λ Cµν) Bνλ + Bµν fν − B2 ∂µ C2

− B1 f µ + B Fµ − (∂µ βν − ∂ν βµ) Fν +
1
2
(±m βµ − ∂µ β) F

+ (∂µ Cν − ∂ν Cµ) Bν ± m Bµν Cν −
1
2

Bµ f

∓ m C̄µν
(
±m βν − ∂ν β

)
∓ m (∂µ βν − ∂ν βµ) C̄ν

]
, (72)

which establishes the fact that the action integral S2 =
∫

dD−1 xLB respects the above
infinitesimal, continuous and nilpotent BRST symmetry transformations (sb).

According to Noether’s theorem, the above observations imply that the BRST conserved
currents can be derived, by exploiting the standard theoretical formula, as [26]:

Jµ

(b) = Hµνλζ (∂ν Cλζ)±
m
2
[±m β̄µ − ∂µ β̄]C2 ±m C̄µν (±m βν − ∂ν β) + (∂µ Cνλ

+ ∂ν Cλµ + ∂λ Cµν) Bνλ − (∂µ C̄νλ + ∂ν C̄λµ + ∂λ C̄µν) (∂ν βλ − ∂λ βν)∓m Cµν Bν

− B1 f µ + [±m Aµνλ − Σµνλ] [±m Cνλ − (∂ν Cλ − ∂λ Cν)] − B2 ∂µ C2 + Bµν fν

− (∂µ β̄ν − ∂ν β̄µ) (∂ν C2)− (∂µ βν − ∂ν βµ) Fν + (∂µ Cν − ∂ν Cµ) Bν + B Fµ

− 1
2

Bµ f +
1
2
(
±m βµ − ∂µ β

)
F− (∂µ C̄ν − ∂ν C̄µ) (±m βν − ∂ν β). (73)

In exactly similar fashion, we obtain the precise expression for the conserved
(∂µ Jµ

(ab) = 0) anti-BRST Noether current Jµ

(ab) [26]:

Jµ

(ab) = Hµνλζ (∂ν C̄λζ)±
m
2
[±m βµ − ∂µ β] C̄2 ∓m Cµν (±m β̄ν − ∂ν β̄)− (∂µ C̄νλ

+ ∂ν C̄λµ + ∂λ C̄µν) B̄νλ + (∂µ Cνλ + ∂ν Cλµ + ∂λ Cµν) (∂ν β̄λ − ∂λ β̄ν)±m C̄µν B̄ν

− f̄ µ B1 + [±m Aµνλ − Σµνλ] [±m C̄νλ − (∂ν C̄λ − ∂λ C̄ν)] + B ∂µ C̄2 + B̄µν f̄ν

− (∂µ βν − ∂ν βµ) (∂ν C̄2)− (∂µ β̄ν − ∂ν β̄µ) F̄ν − (∂µ C̄ν − ∂ν C̄µ) B̄ν − B2 F̄µ

− 1
2

B̄µ f̄ +
1
2
(
±m β̄µ − ∂µ β̄

)
F̄ + (∂µ Cν − ∂ν Cµ) (±m β̄ν − ∂ν β̄). (74)

The conservation law (∂µ Jµ

(a)b = 0) can be checked by using the EL-EoMs that have
been derived in our earlier work [26]. In these proofs, the algebra is a bit involved, but it is
quite straightforward to check that ∂µ Jµ

(r) = 0 with r = b, ab.
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The conserved Noether charges Q(a)b =
∫

dD−1 x J0
(a)b (that emerge out from the

conserved currents) Jµ

(a)b are as follows [26]:

Qab =
∫

dD−1x J0
(ab) ≡

∫
dD−1x

[
H0ijk (∂i C̄jk)±

m
2
[±m β0 − ∂0 β] C̄2

− [±m C0i − (∂0 Ci − ∂i C0)] (±m β̄i − ∂i β̄) + [±m C̄0i − (∂0 C̄i − ∂i C̄0)] B̄i

− (∂0 C̄ij + ∂i C̄j0 + ∂j C̄0i) B̄ij + (∂0 Cij + ∂i Cj0 + ∂j C0i) (∂i β̄ j − ∂j β̄i)

− f̄ 0 B1 + [±m A0ij − Σ0ij] [±m C̄ij − (∂i C̄j − ∂j C̄i)] + B ∂0 C̄2 −
1
2

B̄0 f̄ − B2 F̄0

+ B̄0i f̄i − (∂0 βi − ∂i β0) (∂i C̄2)− (∂0 β̄i − ∂i β̄0) F̄i +
1
2
(
±m β̄0 − ∂0 β̄

)
F̄
]
, (75)

Qb =
∫

dD−1x J0
(b) ≡

∫
dD−1x

[
H0ijk (∂i Cjk)±

m
2
[±m β̄0 − ∂0 β̄]C2

+ [±m C̄0i − (∂0 C̄i − ∂i C̄0)] (±m βi − ∂i β)− [±m C0i − (∂0 Ci − ∂i C0)] Bi

+ (∂0 Cij + ∂i Cj0 + ∂j C0i) Bij − (∂0 C̄ij + ∂i C̄j0 + ∂j C̄0i) (∂i β j − ∂j βi)

− B1 f 0 + [±m A0ij − Σ0ij] [±m Cij − (∂i Cj − ∂j Ci)] − B2 ∂0 C2 −
1
2

B0 f + B0i fi

− (∂0 β̄i − ∂i β̄0) (∂i C2)− (∂0 βi − ∂i β0) Fi + B F0 +
1
2
(
±m β0 − ∂0 β

)
F
]
. (76)

These conserved charges are the generators of all the (anti-)BRST symmetry transforma-
tions. However, they are not off-shell nilpotent of order two. Exploiting the principle behind
the continuous symmetry transformations and their generators, we obtain the following

sb Qb = − i {Qb, Qb} =
∫

dD−1x
[
± m

2

(
± m F0 − ∂0F

)
C2 − (∂0Fi − ∂iF0) (∂iC2)

− (∂0 Bij + ∂i Bj0 + ∂j B0i) (∂iβ j − ∂jβi)

+
[
± m B0i − (∂0Bi − ∂iB0)] (±m βi − ∂iβ)

]
6= 0,

sab Qab = − i {Qab, Qab} =
∫

dD−1x
[
± m

2

(
± m F̄0 − ∂0 F̄

)
C̄2 − (∂0 F̄i − ∂i F̄0) (∂iC̄2)

+ (∂0 B̄ij + ∂i B̄j0 + ∂j B̄0i) (∂i β̄ j − ∂j β̄i)

−
[
± m B̄0i − (∂0B̄i − ∂i B̄0)] (±m β̄i − ∂i β̄)

]
6= 0, (77)

where the l.h.s. of the above equations has been explicitly computed by using the (anti-)
BRST symmetry transformations (cf. Equations (69) and (71)) and the expressions for the
Noether conserved charges Q(a)b (cf. Equations (75) and (76)). The above observations
establish that the conserved Noether (anti-)BRST charges Q(a)b are not off-shell nilpotent of
order two.

We now follow our step-by-step proposal to obtain the off-shell nilpotent expres-
sions for the (anti-)BRST charges Q(1)

(a)b where the off-shell nilpotency is proven by using
the principle behind the continuous symmetry transformations and their generators as:
sb Q(1)

b = − i {Q(1)
b , Q(1)

b } = 0 and sab Q(1)
ab = − i {Q(1)

ab , Q(1)
ab } = 0. First of all, we focus on

the BRST charge Qb. The first step is to use the equation of motion with respect to the gauge
field. Toward this goal in mind, we note that the first term of Qb can be re-expressed as:∫

dD−1 x
[

H0ijk ∂i Cjk

]
=
∫

dD−1 x
[
∂i
{

H0ijk Cjk
}]
−
∫

dD−1 x
[
(∂i H0ijk)Cjk

]
. (78)
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The first term on the r.h.s. of the above equation vanishes for the physical fields due to
celebrated Gauss’s divergence theorem. In the second term, we apply the following equation
of motion with respect to the gauge field Aµνλ, namely:

∂ρ Hρµνλ + m2 Aµνλ ∓m Σµνλ + (∂µ Bνλ + ∂ν Bλµ + ∂λ Bµν) = 0

=⇒ − (∂i H0ijk)Cjk = ∓m
[
± mA0ij − Σ0ij

]
Cij − (∂0 Bij + ∂i Bj0 + ∂j Boi)Cij. (79)

In the second step, we look for the terms of Qb that cancel out with some of the terms
that emerge out after the first step. In this context, we note that such an appropriate term is

+
[
± m A0ij − Σ0ij

] [
± m Cij − (∂i Cj − ∂j Ci)

]
. (80)

The sum of (79) and (80) yields the following:

− (∂i H0ijk)Cjk +
[
± m A0ij − Σ0ij

] [
± m Cij − (∂i Cj − ∂j Ci)

]
≡ −(∂0 Bij + ∂i Bj0 + ∂j Boi)Cij − 2

[
± m A0ij − Σ0ij

]
(∂i Cj). (81)

We comment here that as pointed out earlier, one of the key ingredients of our proposal
is the use of EL-EoM with respect to the gauge field. This step opens up a decisive door
for (i) our further applications of Gauss’s divergence theorem, (ii) use of the appropriate
EL-EoM, and (iii) the application of the BRST symmetry transformations (sb) at appropriate
places. In the third step, we focus on the second term of the r.h.s., which can be written as:

−2 ∂i

[
(±m A0ij − Σ0ij)Cj

]
+ 2 ∂i

[
(±m A0ij − Σ0ij)

]
Cj. (82)

The terms in (82) are inside the integration. Thus, the first term of (82) will vanish due
to Gauss’s divergence theorem for physical fields. Using the following equation of motion
with respect to the Stückelberg field Φµν from the Lagrangian density LB, we obtain:

∂µ Σµνλ ∓ m (∂µ Aµν λ) +
1
2
(∂ν Bλ − ∂λ Bν)∓ m

2
Bνλ = 0

=⇒ 2 ∂i

[
± m A0ij − Σ0ij

]
Cj = ±m B0i Ci − (∂0 Bi − ∂i B0)Ci, (83)

where the l.h.s. is nothing but the second term of (82). Using (83), we can re-write the whole
sum of (81) as follows:

+
[
± m B0i − (∂0 Bi − ∂i B0)

]
Ci − (∂0 Bij + ∂i Bj0 + ∂j Boi)Cij. (84)

Within the framework of our proposal, the terms in (84) will be present in the off-shell
nilpotent form of the BRST charge (Q(1)

b ) because they have come out from the use of
EL-EoMs and, hence, will remain intact. This is also required due to the fact that, as pointed
out earlier, we wish to obtain sb Q(1)

b = 0 which will automatically imply that [Q(1)
b ]2 = 0.

In the fourth step, we apply the BRST symmetry transformation (sb) on (84), which leads to
the following explicit expression:

+
[
± m B0i − (∂0 Bi − ∂i B0)

]
(±m βi − ∂i β)

−(∂0 Bij + ∂i Bj0 + ∂j Boi) (∂i β j − ∂j βi). (85)
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In the fifth step, we modify some of the terms of Qb so that when sb acts on a part of
them, there is precise cancellation between the ensuing result and (85). In this context, we
modify the following terms from the explicit expression for Qb (cf. Equation (76)), namely:

− (∂0 C̄ij + ∂i C̄j0 + ∂j C̄oi) (∂i β j − ∂j βi) = +(∂0 C̄ij + ∂i C̄j0 + ∂j C̄oi) (∂i β j − ∂j βi)

− 2 (∂0 C̄ij + ∂i C̄j0 + ∂j C̄oi) (∂i β j − ∂j βi),

+
[
± m C̄0i − (∂0 C̄i − ∂i C̄0)

]
(±m βi − ∂i β) = 2

[
± m C̄0i − (∂0 C̄i

− ∂i C̄0)
]
(±m βi − ∂i β)−

[
± m C̄0i − (∂0 C̄i − ∂i C̄0)

]
(±m βi − ∂i β). (86)

In the sixth step, we note that in the above modified expressions, when we apply sb on
a part of (86) as explicitly written below, namely:

sb

[
(∂0 C̄ij + ∂i C̄j0 + ∂j C̄0i) (∂i β j − ∂j βi)

−
{
± m C̄0i − (∂0 C̄i − ∂i C̄0)

}
(±m βi − ∂i β)

]
, (87)

we obtain the desired result

(∂0 Bij + ∂i Bj0 + ∂j B0i) (∂i β j − ∂j βi)

−
{
± m B0i − (∂0 Bi − ∂i B0)

}
(±m βi − ∂i β)

]
, (88)

which precisely cancels out with whatever we have obtained in (85). At this juncture, we
point out that in the off-shell nilpotent version of the BRST charge Q(1)

b , the terms in the
square bracket of (87) will be always (along with (84) (as pointed out earlier)) present. We
now focus on the leftover terms of (86), which can be re-expressed as follows:

± 2 m
{
± m C̄0i − (∂0 C̄i − ∂i C̄0)

}
βi

− 2
{
± m C̄0i − (∂0 C̄i − ∂i C̄0)

}
∂i β

− 4
[
∂0 C̄ij + ∂i C̄j0 + ∂j C̄0i] (∂i β j). (89)

All the above terms are inside the integration. Hence, we can apply the following
algebraic tricks on the last two terms of (89) to obtain the following

−2
{
± m C̄0i − (∂0 C̄i − ∂i C̄0)

}
∂i β = ∂i

[
− 2

{
± m C̄0i − (∂0 C̄i − ∂i C̄0)

}
β
]

+ 2 ∂i

[
± m C̄0i − (∂0 C̄i − ∂i C̄0)

]
β

−4
[
∂0 C̄ij + ∂i C̄j0 + ∂j C̄0i] ∂i β j = ∂i

[
− 4

{
∂0 C̄ij + ∂i C̄j0 + ∂j C̄0i} β j

]
+ 4 ∂i

[
∂0 C̄ij + ∂i C̄j0 + ∂j C̄0i

]
β j, (90)

so that the total space derivative terms vanish due to Gauss’s divergence theorem for the
physical fields, and we are left with the following from the above Equation (90):

2 ∂i

[
± m C̄0i − (∂0 C̄i − ∂i C̄0)

]
β + 4 ∂i

[
∂0 C̄ij + ∂i C̄j0 + ∂j C̄0i

]
β j. (91)

In the above, we apply the following equation of motion:

∂µ [∂
µC̄ν − ∂νC̄µ]− 1

2
∂νF ∓ m (∂µC̄µν) ± m

2
Fν = 0,

=⇒ 2 ∂i [±m C̄0i − (∂0C̄i − ∂iC̄0)] β = − (±m F0 − ∂0F) β, (92)
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which provides the concise value of the first term of (91). Exactly, in a similar fashion,
the application of the following equation of motion

∂µ [∂
µC̄νλ + ∂νC̄λµ + ∂λC̄µν]± m

2
(∂ν C̄λ − ∂λ C̄ν)

+
1
2
(∂ν Fλ − ∂λ Fν)− m2

2
C̄νλ = 0,

=⇒ 4 ∂i [∂
0C̄ij + ∂iC̄j0 + ∂jC̄0i] β j = 2 (∂0Fi − ∂iF0) βi

∓ 2 m
[
± m C̄0i − (∂0C̄i − ∂iC̄0)

]
βi, (93)

leads to the alternative (but appropriate) form of the second term of (91). The sum of the
r.h.s. of (92) and (93) and the leftover term (i.e., the first term) of (89) is equal to:

2 (∂0Fi − ∂iF0) βi − (±m F0 − ∂0F) β. (94)

At this stage, we take the seventh step and apply the BRST symmetry transformations
(sb) on (94) which yields the following explicit expression, namely:

− 2 (∂0Fi − ∂iF0) (∂i C2) + (±m F0 − ∂0F) (±m C2). (95)

We emphasize that the term in (94) will be present in the off-shell nilpotent version
of the BRST charge (Q(1)

b ). We take now the eighth step and modify some of the terms of
Qb so that when we apply the BRST transformations (sb) on a part of them, the resulting
expressions must cancel out (95) in a precise manner. Toward this goal in mind, we modify
the following appropriate terms of the original expression for Qb (cf. Equation (76)):

− (∂0 β̄i − ∂i β̄0) ∂i C2 ±
1
2

m (±m β̄0 − ∂0 β̄)C2

≡ 2 (∂0 β̄i − ∂i β̄0) ∂i C2 ∓m (±m β̄0 − ∂0 β̄)C2

± 3
2
(±m β̄0 − ∂0 β̄)C2 − 3 (∂0 β̄i − ∂i β̄0) ∂i C2. (96)

It is evident that if we apply the BRST symmetry transformations (sb) on the first two
terms of (96), the resulting expressions will cancel out the terms that are written in (95).
Hence, along with (94), the above first two terms will be present in the off-shell nilpotent
version of the BRST charge (Q(1)

b ) so that our central objective sb Q(1)
b = 0 can be fulfilled.

At this juncture, we focus on the last term of (96), which can be re-written as

−3 (∂0 β̄i − ∂i β̄0) ∂i C2 = ∂i
[
− 3 (∂0 β̄i − ∂i β̄0)C2

]
+ 3 ∂i

[
(∂0 β̄i − ∂i β̄0)

]
C2. (97)

The above terms are inside the integral. Hence, the first term on the r.h.s. will vanish
due to Gauss’s divergence theorem and only the second term on the r.h.s. of (97) will survive.
Now, we apply the following EL-EoM

� β̄µ − ∂µ (∂ · β̄) + ∂µ B2 −
m2

2
β̄µ ±

m
2

∂µ β̄ = 0

=⇒ 3 ∂i
[
∂0 β̄i − ∂i β̄0]C2 = 3 Ḃ2 C2 ∓

3
2

m (±m β̄0 − ∂0 β̄)C2, (98)

which will replace the last term of (96). The substitution of (98) into (96) yields the following
concise and beautiful result, namely:

± 3
2

m (±m β̄0 − ∂0 β̄)C2 + 3 ∂i
[
∂0 β̄i − ∂i β̄0]C2 = 3 Ḃ2 C2. (99)

If we apply further the BRST symmetry transformation (sb) on (99), it turns out to be
zero. Here, all our steps terminate (according to our proposal). It is self-evident that the
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r.h.s. of (99) will be part of Q(1)
b . Ultimately, the off-shell nilpotent version Q(1)

b , from the
non-nilpotent Noether conserved charge Qb, is as follows

Qb −→ Q(1)
b =

∫
dD−1x

[
(∂0Cij + ∂iCj0 + ∂jC0i) Bij − [±m C0i − (∂0Ci − ∂iC0)] Bi

− (∂0Bij + ∂iBj0 + ∂jB0i)Cij + [±m B0i − (∂0Bi − ∂iB0)]Ci

− [±m C̄0i − (∂0C̄i − ∂iC̄0) (±m βi − ∂iβ)] + 2 (∂0 β̄i − ∂i β̄0) ∂iC2

∓ m (±m β̄0 − ∂0 β̄)C2 + (∂0C̄ij + ∂iC̄j0 + ∂jC̄0i) (∂iβ j − ∂jβi)

+ 2 (∂0Fi − ∂iF0) βi − (±m F0 − ∂0F) β + 3 Ḃ2 C2 − B2 Ċ2 + B F0

− B1 f 0 − 1
2

B0 f + B0i fi +
1
2
(±m β0 − ∂0β)F− (∂0βi − ∂iβ0) Fi

]
. (100)

It will be noted that we have not touched several terms of the Noether conserved
charge Qb (cf. Equation (76)) because these terms are BRST invariant. For instance, we have
the following explicit observations:

sb

[
(∂0Cij + ∂iCj0 + ∂jC0i) Bij

]
= 0, sb

[{
± m C0i − (∂0Ci − ∂iC0)

}
Bi

]
= 0,

sb

[
(±m F0 − ∂0F) β

]
= 0, sb (B1 f 0) = 0, sb (B0 f ) = 0, sb (B0i fi) = 0,

sb

[
(±m β0 − ∂0β) F

]
= 0, sb

[
(∂0βi − ∂iβ0) Fi

]
= 0, sb (Ḃ2 C2) = 0,

sb (B2 Ċ2) = 0, sb (B F0) = 0. (101)

It is straightforward to check that the following is true, namely:

sb Q(1)
b = − i {Q(1)

b , Q(1)
b } = 0 =⇒ [Q(1)

b ]2 = 0, (102)

where the l.h.s. is computed directly by using the BRST symmetry transformations (71) on
the expression for the modified version of the BRST charge Q(1)

b .
We follow the prescriptions and proposal outlined above to compute the exact expres-

sion for the off-shell nilpotent version of the anti-BRST charge Q(1)
ab from the non-nilpotent

conserved Noether anti-BRST charge Qab as follows:

Qab −→ Q(1)
ab =

∫
dD−1 x

[
(∂0B̄ij + ∂i B̄j0 + ∂j B̄0i) C̄ij − [±m B̄0i − (∂0B̄i − ∂i B̄0)] C̄i

− (∂0C̄ij + ∂iC̄j0 + ∂jC̄0i) B̄ij + [±m C̄0i − (∂0C̄i − ∂iC̄0)] B̄i

+ [±m C0i − (∂0Ci − ∂iC0)] (±m β̄i − ∂i β̄) + 2 (∂0βi − ∂iβ0) ∂iC̄2

∓ m (±m β0 − ∂0β) C̄2 − (∂0Cij + ∂iCj0 + ∂jC0i) (∂i β̄ j − ∂j β̄i)

+ 2 (∂0 F̄i − ∂i F̄0) β̄i − (±m F̄0 − ∂0 F̄) β̄− 3 Ḃ C̄2 + B ˙̄C2 − B2 F̄0

− B1 f̄ 0 − 1
2

B̄0 f̄ + B̄0i f̄i +
1
2
(±m β̄0 − ∂0 β̄) F̄− (∂0 β̄i − ∂i β̄0)F̄i

]
. (103)

It is now straightforward to check that:

sabQ(1)
ab = − i {Q(1)

ab , Q(1)
ab } = 0 =⇒ [Q(1)

ab ]2 = 0. (104)

The above observation proves that we have derived the off-shell nilpotent version
[Q(1)

ab ] of the non-nilpotent Noether conserved charge Qab in a precise and logical manner.

Our final results are the expressions for Q(1)
(a)b in (104) and (100).
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6. Conclusions

In our present investigation, for a few physically interesting gauge systems, we have shown
that wherever there is existence of the coupled (but equivalent) Lagrangians/Lagrangian
densities due to the presence of the (anti-)BRST invariant CF-type restriction(s), we observe
that the Noether theorem does not lead to the derivation of the off-shell nilpotent versions of
the conserved (anti-)BRST charges [Q(a)b] within the framework of BRST formalism. These
Noether conserved charges are found to be the generators for the infinitesimal, continuous
and off-shell nilpotent (anti-)BRST symmetry transformations from which they are derived
by exploiting the theoretical strength of Noether’s theorem. However, they are found to be
non-nilpotent in the sense that sb Qb = −i {Qb, Qb} 6= 0 and sab Qab = −i {Qab, Qab} 6= 0,
which can be verified by applying the (anti-)BRST transformations directly on the Noether
conserved charges Q(a)b. In other words, by directly computing the explicit expressions for
sb Qb and sab Qab, which are the l.h.s. of: sb Qb = −i {Qb, Qb} and sab Qab = −i {Qab, Qab},
we show that these charges are not nilpotent (see, e.g., Equation (77)). However, a close and
careful look at them demonstrates that sb Qb and sab Qab are proportional to the EL-EoM.
For instance, we are sure that in the simple case of a BRST-invariant 1D massive spinning
relativistic particle, the r.h.s. of (14) is zero due to the EL-EoMs (15) and (23) that are derived
from Lb and Lb̄, respectively.

In the derivations of the off-shell nilpotent versions of the (anti-)BRST charges [Q(1)
(a)b],

the crucial roles are played by (i) the Gauss divergence theorem, (ii) the appropriate
EL-EoMs from the appropriate Lagrangian/Lagrangian density of a set of coupled (but
equivalent) Lagrangians/Lagrangian densities, and (iii) the application of the (anti-)BRST
symmetry transformations at appropriate places (cf. Section 5 for details). We lay emphasis
on the fact that for the D-dimensional (D≥ 2) higher p-form (p = 1, 2, 3, . . . ) gauge theories,
it is imperative to first exploit the Gauss divergence theorem so that we can use the EL-EoMs
with respect to the gauge field. For the 1D case of a spinning (i.e., SUSY) relativistic particle,
we have shown that the Gauss divergence theorem, for obvious reasons, is not required at
all and we directly use the EL-EoMs, right in the beginning, with respect to the “gauge” and
“supergauge” variables. This is not the case with the rest of the examples considered in our
present investigation which are connected with the D-dimensional (D ≥ 2) (non-)Abelian
p-form (p = 1, 2, 3, . . . ) massless and massive gauge theories.

The sequence of our proposal, to obtain the off-shell nilpotent versions of the (anti-)
BRST charges from the non-nilpotent Noether (anti-)BRST charges, is as follows. In the first
step, we apply the Gauss divergence theorem and take the help of EL-EoM with respect
to the gauge field. This is the crucial and key first step of our proposal. In the next (i.e.,
second) step, we observe carefully whether there are any addition, subtraction and/or
cancellation of the resulting terms (from the first step) with any of the terms of the non-
nilpotent Noether conserved charges. The existing terms, after these two steps, will always
be present in the off-shell nilpotent version of the (anti-)BRST charges Q(1)

(a)b. After the
above two steps, we apply the (anti-)BRST symmetry transformations on the existing
terms. In the third step, we modify some of the appropriate terms of the non-nilpotent
Noether conserved (anti-) BRST charges and see to it that a part of these modified terms
cancel precisely with the terms that have appeared after the application of the nilpotent
(anti-)BRST transformations on the existing terms (after the first two steps of our proposal).
The parts which participate in the above cancellation are also always present in the off-shell
nilpotent versions of (anti-)BRST charges [Q(1)

(a)b]. After this step, it is the interplay amongst

the Gauss divergence theorem, appropriate8 EL-EoMs and application of the nilpotent
(anti-) BRST symmetry transformations at appropriate places that lead to the derivation of
the precise forms of the off-shell nilpotent versions9 of the (anti-)BRST charges [Q(1)

(a)b] from
the non-nilpotent Noether conserved (anti-)BRST charges (cf. Sections 4 and 5 for details).

Before we end this section by pointing out our future directions of investigation in the
next paragraph, it is worthwhile to point out the physical significance of the conserved
and off-shell nilpotent (anti-)BRST charges in the context of a given gauge theory which
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is endowed with a set of non-trivial CF-type restrictions(s). The physicality condition
(Q(1)

B | phys >= 0, cf. Section 3) ensures that the operator form of the first-class constraints
of the given gauge theory annihilate the physical state, which is consistent with the re-
quirements of the Dirac quantization condition for a theory endowed with constraints (see,
e.g., [5,6] for details). As has been shown by Weinberg [19], in the Fock space, the gauge-
transformed states differ from their original counterparts by the BRST-exact states. Hence,
if we have an off-shell nilpotent BRST charge, their difference becomes trivial when we
invoke the physicality condition on the states with respect to the BRST charge. This argu-
ment has been extended in our earlier research works (see, e.g., [28,29]) where we have
been able to prove that the 2D (non-)Abelian one-form and 4D Abelian two-form gauge
theories are the tractable field–theoretic models for the Hodge theory. In the case of the 2D
(non-)Abelian one-form theories, we have been able to show that the BRST and co-BRST
symmetry transformations “gauge away” both the d.o.f. of the gauge fields and these
theories become a new kind of topological field theory (see, e.g., [30] for details).

We end this section with the final comment that our proposal is very general and
it can be applied to any physical system where (i) the (anti-)BRST invariant non-trivial
CF-type restrictions exist, and (ii) the coupled (but equivalent) Lagrangians/Lagrangian
densities describe the dynamics of the above physical systems within the framework of
BRST formalism. The systematic application of our proposal sheds light on the appropriate
directions that should be followed in order to obtain the off-shell nilpotent versions of the
(anti-)BRST charges from the non-nilpotent versions of the Noether conserved (anti-)BRST
charges. We plan to extend our present ideas in the context of more challenging problems
of physical interest in the future.
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Appendix A. On the Massive Abelian Two-Form Theory

To supplement our discussions in Section 4, in this Appendix A, we concisely mention
the off-shell nilpotency property of the non-nilpotent Noether conserved (anti-)BRST charges
for the Stückelberg-modified massive Abelian two-form gauge theory within the framework
of BRST formalism. For this purpose, we begin with the generalized (i.e., Stückelberg-
modified) versions of the (anti-)BRST invariant Lagrangian densities of Equations (46) and
(47) for the D-dimensional massive Abelian two-form theory (see, e.g., [27,31] for details) as

Lb =
1
12

Hµνη Hµνη − 1
4

m2 BµνBµν − 1
4

ΦµνΦµν +
1
2

m BµνΦµν − B2

− B(∂ · φ + m ϕ) + BµBµ + Bµ
(
∂νBνµ − ∂µ ϕ + mφµ

)
−m2 β̄β

+
(
∂µC̄ν − ∂νC̄µ

)
(∂µCν)−

(
∂µC̄−mC̄µ

)
(∂µC−mCµ) + ∂µ β̄ ∂µβ

+(∂ · C̄ + ρ + m C̄)λ + (∂ · C− λ + m C)ρ, (A1)

Lb̄ =
1
12

Hµνη Hµνη − 1
4

m2 BµνBµν − 1
4

ΦµνΦµν +
1
2

m BµνΦµν − B̄2
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+ B̄(∂ · φ−m ϕ) + B̄µ B̄µ + B̄µ
(
∂νBνµ + ∂µ ϕ + mφµ

)
−m2 β̄β

+
(
∂µC̄ν − ∂νC̄µ

)
(∂µCν)−

(
∂µC̄−mC̄µ

)
(∂µC−mCµ) + ∂µ β̄ ∂µβ

+(∂ · C̄ + ρ + m C̄)λ + (∂ · C− λ + m C)ρ, (A2)

where Φµν = ∂µφν − ∂νφµ is the field-strength tensor for the vector Stückelberg field φµ.
There are additional fermionic (anti-)ghost fields (C̄µ, Cµ, C̄, C) and bosonic (anti-)ghost
fields (β̄)β in our theory along with an additional scalar field ϕ with ghost numbers
(− 1) + 1, (− 2) + 2 and zero, respectively. There are a couple of additional Nakanishi–
Lautrup-type fields (B̄)B, too. It will be noted that the massive Abelian two-form field
has the rest mass m which happens to be the mass of the rest of the fields of our the-
ory [31]. The above Lagrangian densities Lb̄ and Lb respect the following off-shell nilpotent
[s2
(a)b = 0] (anti-)BRST symmetry transformations [s(a)b], namely:

sabBµν = − (∂µC̄ν − ∂νC̄µ), sabC̄µ = − ∂µ β̄, sabφµ = ∂µC̄−m C̄µ,

sabCµ = B̄µ, sabβ = − λ, sabC̄ = −m β̄, sabC = B̄, sabB = −m ρ,

sab ϕ = ρ, sabBµ = ∂µρ, sab[B̄, ρ, λ, β̄, B̄µ, Hµνκ ] = 0,

sbBµν = − (∂µCν − ∂νCµ), sbCµ = − ∂µβ, sbφµ = ∂µC− m Cµ,

sbC̄µ = − Bµ, sb β̄ = − ρ, sbC = −m β, sbC̄ = B, sb B̄ = −m λ,

sb ϕ = λ, sb B̄µ = − ∂µλ, sb[B, ρ, λ, β, Bµ, Hµνκ ] = 0. (A3)

The above (anti-)BRST symmetries are perfect symmetries for the Lagrangian densities
Lb̄ and Lb, respectively, because we observe that:

sabLb̄ = ∂µ

[
(∂µC̄ + m C̄µ) B̄− (∂µC̄ν − ∂νC̄µ) B̄ν − λ ∂µ β̄ + ρ B̄µ

]
,

sbLb = − ∂µ

[
(∂µC− m Cµ) B + (∂µCν − ∂νCµ) Bν + ρ ∂µβ + λ Bµ

]
. (A4)

The above results establish that the action integrals S1 =
∫

dD xLb̄ and S2 =
∫

dD xLb
remain invariant under the (anti-)BRST symmetry transformations [s(a)b], respectively, due
to Gauss’s divergence theorem.

There are a few comments in order here. First, we note that the kinetic term for the
gauge field (Bµν), owing its origin to the exterior derivative (i.e., H(3) = d B(2)), remains
invariant under the (anti-)BRST symmetry transformations [s(a)b]. Second, we differ in
some of our notations, a few terms in the coupled (but equivalent) Lagrangian densities
and signs of the symmetry transformations from the earlier works [27,31]. Finally, we note
that the (anti-)BRST symmetry transformations [s(a)b] are off-shell nilpotent [s2

(a)b = 0] of
order two and absolutely anticommuting (i.e., {sb, sab} = 0) in nature, namely:

{sb, sab}Bµν = ∂µ(Bν − B̄ν)− ∂ν(Bµ − B̄µ),

{sb, sab}Φµ = ∂µ(B + B̄)−m (Bµ − B̄µ), (A5)

provided we invoke the (anti-)BRST invariant

s(a)b
[
Bµ − B̄µ − ∂µ ϕ

]
= 0, s(a)b

[
B + B̄ + m ϕ

]
= 0, (A6)

CF-type restrictions of our theory for the proof of the absolute anticommutativity in (A5).
The Noether conserved (anti-)BRST charges have been computed in [31]. We quote

here these expressions (with appropriate and correct signs) as (see, e.g., [31] for details):

Qab =
∫

dD−1x
[
− H0ij (∂iC̄j)−

(
∂0C̄i − ∂iC̄0) B̄i +

(
∂0C̄−m C̄0) B̄
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−
(
∂iC̄−m C̄i

) (
Φ0i −m B0i)+ m

(
∂0C−m C0) β̄

−
(
∂0Ci − ∂iC0)(∂i β̄)− λ ∂0 β̄ + ρ B̄0

]
,

Qb =
∫

dD−1x
[
− H0ij (∂iCj)−

(
∂0Ci − ∂iC0) Bi −

(
∂0C−m C0) B

−
(
Φ0i −m B0i) (∂iC−m Ci

)
−m

(
∂0C̄−m C̄0) β

+
(
∂0C̄i − ∂iC̄0)(∂iβ)− ρ ∂0β− λ B0

]
. (A7)

These Noether conserved charges are the generators for all the (anti-)BRST symmetry
transformations (A3) which have been explicitly quoted in (A3). At this stage, we observe
that the above Noether conserved (anti-)BRST charges are non-nilpotent. This can be
checked explicitly by applying the BRST symmetry transformations (sb) on Qb and anti-
BRST symmetry transformation (sab) on Qab as illustrated below:

sbQb = − i {Qb, Qb} = −
∫

dD−1x
[
m (∂0B + m B0) β + (∂0Bi − ∂iB0) ∂iβ

]
6= 0,

sabQab = − i {Qab, Qab} =
∫

dD−1x
[
m (∂0B̄−m B̄0) β̄− (∂0B̄i − ∂i B̄0) ∂i β̄

]
6= 0. (A8)

Thus, we note that the Noether (anti-)BRST charges (i) are conserved quantities, (ii) are
the generators [28] for the appropriate (anti-)BRST symmetry transformations, and (iii) are
found to be not nilpotent of order two (i.e., Q2

b 6= 0, Q2
ab 6= 0).

In what follows, we follow a systematic method to convert the non-nilpotent Noether
conserved (anti-)BRST charges (A7) into their off-shell nilpotent versions. Since we have
demonstrated our method in the context of the BRST charge for the Stückelberg-modified
massive Abelian three-form theory (cf. Section 5), we derive the off-shell nilpotent version
[Q(1)

ab ] of the non-nilpotent Noether anti-BRST Qab following our proposal. First of all, we
apply the Gauss divergence theorem whch turns the first term of Qab (cf. Equation (A7)) as

(∂i H0ij) C̄j + m (Φ0i −m B0i) C̄i = (∂0B̄i − ∂i B̄0) C̄i, (A9)

where we have used the following EL-EoM that is derived from Lb̄

∂µHµνλ + (∂ν B̄λ − ∂ν B̄λ)−m (Φνλ −m Bνλ) = 0. (A10)

We claim that the r.h.s. of (A9) will be present in the off-shell nilpotent version of the
anti-BRST charge [Q(1)

ab ].
Now, let us focus on the remaining part of the fourth term inside the integration. We

note that using the Gauss divergence theorem, we obtain

− (Φ0i −m B0i) ∂i C̄ ≡ ∂i [(Φ0i −m B0i) C̄]. (A11)

At this stage, we use the following equation of motion in the above:

∂µ Φµν − ∂ν B̄−m (∂µ Bµν) + m B̄ν = 0. (A12)

The appropriate substitution leads to the following

∂i [(Φ0i −m B0i) C̄] = − ˙̄B C̄ + m B̄0 C̄ ≡ − ( ˙̄B−m B̄0) C̄. (A13)

Ultimately, the sum of the first term and fourth term (i.e., sum of (A10) and (A13)) leads
to the following two terms:

+ (∂0 B̄i − ∂i B̄0) C̄i − ( ˙̄B−m B̄0) C̄. (A14)
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These two terms will stay in the off-shell nilpotent version of the anti-BRST charge
[Q(1)

ab ]. If we apply an anti-BRST symmetry transformations sab on (A14), we obtain the
following

sab [(∂
0 B̄i − ∂i B̄0) C̄i − ( ˙̄B−m B̄0) C̄] = − (∂0 B̄i − ∂i B̄0) ∂i β̄ + m ( ˙̄B−m B̄0) β̄. (A15)

We have to look, according to our proposal, and see whether the above terms in (A15)
can cancel and/or can be added and/or subtracted with any terms of Qab (i.e., Noether
charge). We find that the following modifications of the fifth and sixth terms, namely:

+m (∂0 C−m C0) β̄− (∂0 Ci − ∂i C0) ∂i β̄ ≡ 2 m (∂0 C−m C0) β̄,

−2 (∂0 Ci − ∂i C0) ∂i β̄− m (∂0 C−m C0) β̄ + (∂0 Ci − ∂i C0) ∂i β̄, (A16)

will enable us to observe that the anti-BRST symmetry transformations sab on the last two
terms of the above equation, namely:

sab[(∂
0Ci − ∂iC0) ∂i β̄−m (∂0C−m C0) β̄] = (∂0B̄i − ∂i B̄0) ∂i β̄−m ( ˙̄B−m B̄0) β̄, (A17)

cancels out with the ones that have been obtained in (A15). Hence, we note that in addition
to the terms in (A14), the terms in the square bracket of (A17) will also stay in the off-shell
nilpotent version [Q(1)

ab ] of the anti-BRST charge.
We concentrate now on the leftover terms of (A16), which are as follows

2 m (∂0C−m C0) β̄− 2 (∂0Ci − ∂iC0) ∂i β̄. (A18)

Using the Gauss divergence theorem, we note that the last term can be written as

2 ∂i(∂
0Ci − ∂iC0) β̄, (A19)

because both the terms of (A18) are inside the integration. At this stage, we use the
following EL-EoM derived from Lb̄, namely:

∂µ(∂
µCν − ∂νCµ) + ∂νλ−m (∂νC−m Cν) = 0, (A20)

which leads to the following for the choice ν = 0, namely:

∂i(∂
0Ci − ∂iC0) β̄ = 2 λ̇ β̄− 2 m (Ċ−m C0) β̄. (A21)

The above relationship plays an important and decisive role. For instance, the substi-
tution of the above into equation (A18) leads to

2 m (Ċ−m C0) β̄ + 2 ∂i (∂
0Ci − ∂iC0) β̄ = 2 λ̇ β̄. (A22)

We find that if we apply an anti-BRST symmetry transformation (sab) on the r.h.s.
of (A22), it turns out to be zero. Thus, the theoretical tricks of our proposal terminate
here. Hence, the term (2 λ̇ β̄) will stay in the off-shell nilpotent version of the [Q(1)

ab ] of the
anti-BRST charge. Finally, we have the off-shell nilpotent version of the anti-BRST charge
[Q(1)

ab ] (derived from the non-nilpotent Noether conserved anti-BRST charge) as follows

Qab −→ Q(1)
ab =

∫
dD−1x

[
(∂0B̄i − ∂i B̄0) C̄i − (B̄0 −m B̄0) C̄ + (∂0Ci − ∂iC0) ∂i β̄

−m (Ċ−m C0) β̄ + 2 λ̇ β̄− λ ˙̄β + ρ B̄0 + ( ˙̄C−m C̄0) B̄− (∂0C̄i − ∂iC̄0) B̄i

]
, (A23)
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where we note that some of the original terms of the Noether conserved anti-BRST charge
Qab are present, which are found to be the anti-BRST invariant quantities, namely:

sab(λ
˙̄β) = 0, sab(ρ B̄0), sab[(

˙̄C−m C̄0) B̄] = 0, sab[(∂
0C̄i − ∂iC̄0) B̄i] = 0. (A24)

It is now straightforward to check that the following is true, namely:

sabQ(1)
ab = − i {Q(1)

ab , Q(1)
ab } = 0 =⇒ [Q(1)

ab ]2 = 0, (A25)

where the l.h.s. can be explicitly computed using the application of the anti-BRST symmetry
transformation (sab) on the explicit expression (A23).

We end this appendix with the final remark that following the theoretical tricks of our
proposal, it is a bit of involved but straightforward algebra that leads to the deduction of the
off-shell nilpotent ([Q(1)

b ]2 = 0) version of the BRST charge [Q(1)
b ] from the non-nilpotent

Noether BRST charge (Qb) as follows:

Qb −→ Q(1)
b =

∫
dD−1x

[
(∂0Bi − ∂iB0)Ci + (Ḃ + m B0)C + m ( ˙̄C0 −m C̄0) β

− (∂0C̄i − ∂iC̄0) ∂iβ + 2 ρ̇ β− ρ β̇− λ B0 − (∂0Ci − ∂iC0) Bi − (Ċ−m C0) B
]
. (A26)

It is an elementary exercise to check that we have

sbQ(1)
b = − i {Q(1)

b , Q(1)
b } = 0 =⇒ [Q(1)

b ]2 = 0, (A27)

where the l.h.s. is computed by an explicit application of sb on the BRST charge [Q(1)
b ] (cf.

Equation (A26)) which establishes that we have obtained the off-shell nilpotent version of
the BRST charge [Q(1)

b ] from the non-nilpotent conserved Noether BRST charge (Qb).

Notes
1 It is found that the Noether conserved (anti-)BRST charges are the generators of the off-shell nilpotent (anti-)BRST symmetry

transformations from which they are derived by using the Noether theorem.
2 The higher p-form (p = 2, 3, . . . ) gauge fields (and corresponding theories) are important because such fields appear in the

quantum excitations of the (super)string theories (see, e.g., [14] for details).
3 The (anti-)BRST symmetry transformations (4) and (5) are absolutely anticommuting (i.e., {sb, sab} = 0) in nature on the

submanifold of the Hilbert space of quantum variables, which is defined by the (anti-) BRST invariant (i.e., s(a)b [b + b̄ + 2 β̄ β] = 0)
CF-type restriction: b + b̄ + 2 β̄ β = 0.

4 The off-shell nilpotent [s2
(a)b = 0] (anti-)BRST symmetry transformations s(a)b (cf. Equations (4) and (5)) are said to be perfect

symmetry transformations for the Lagrangians L(b̄)b, respectively, because of our observations in (6) and (7) where no EL-EoMs
and/or CF-type restriction(s) are used for their validity.

5 This is due to the fact that, as pointed out earlier, we wish to obtain Q(1)
b such that sb Q(1)

b = 0.
6 It will be noted that, in the cases of the 1D massive spinning relativistic particle and D-dimensional non-Abelian 1-form gauge

theory, the original term of the Noether conserved charges are good enough to ensure that: sb Q(1)
b = 0, sab Q(1)

ab = 0, sb Q(1)
B = 0

and sab Q(1)
B̄ = 0.

7 The Lagrangian densities LB and LB̄ are coupled and equivalent due to the existence of six (anti-)BRST invariant CF-type
restrictions on our theory which have been systematically derived using the augmented version of superfield approach to BRST
formalism in [25].

8 It is worthwhile to point out here that the number of fields and corresponding equations of motion become too many even in
the case of the modified version of a massive Abelian three-form gauge theory (see. e.g., [26,27] for details), and it becomes
very difficult to know which equation of motion will be picked up from amongst the total number of EL-EoMs, to render the
non-nilpotent versions of the Noether conserved charges into the off-shell nilpotent versions of the conserved charges. Moreover,
the expressions for the conserved Noether charges themselves become very complicated and cumbersome (see, e.g., [26] for
details) when we discuss the modified massive higher p-form (p = 2, 3, . . . ) gauge theories.
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9 There are two ways by which sb Q(1)
b = 0 and sab Q(1)

ab = 0 can be proven because of the integration present in the expressions for

Q(1)
(a)b. The first option is a clear-cut proof that the total integrand turns out to be zero when we apply s(a)b on it. The second option

is the case when the integrand transforms to a total space derivative under the applications of s(a)b. In our present endeavor, it is

the first option that has been chosen where we have proven that sb Q(1)
b = 0 and sab Q(1)

ab = 0.
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