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Abstract: The main purpose of this research is to propose a new methodology to observe a class of
time-fractional generalized fifth-order Korteweg–de Vries equations. Laplace transform along with
a homotopy perturbation algorithm is utilized for the solution and analysis purpose in the current
study. This extended technique provides improved and convergent series solutions through symbolic
computation. The proposed methodology is applied to time-fractional Sawada–Kotera, Ito, Lax’s,
and Kaup–Kupershmidt models, which are induced from a generalized fifth-order KdV equation.
For validity purposes, obtained and existing results at integral orders are compared. Convergence
analysis was also performed by computing solutions and errors at different values in a fractional
domain. Dynamic behavior of the fractional parameter is also studied graphically. Simulations affirm
the dominance of the proposed algorithm in terms of accuracy and fewer computations as compared
to other available schemes for fractional KdVs. Hence, the projected algorithm can be utilized for
more advanced fractional models in physics and engineering.

Keywords: fractional partial differential equations; Korteweg–de Vries equations; time-fractional
Sawada–Kotera equation; time-fractional Ito equation; time-fractional Lax’s equation; time-fractional
Kaup–Kupershmidt equation; Laplace transform; homotopy perturbation

1. Introduction

Modeling and analysis of physical phenomena is an essential step in scientific work.
There are many important mathematical models for capturing different situations in vari-
ous fields. Among many, Korteweg–de Vries models are essential due to their ability of
capturing physical situations, such as the motion of long waves in shallow water with weak
non-linearities. Initially, this model was derived as 1D small amplitude and long surface
gravity waves. Flood analysis and ocean flow analysis are a few uses of shallow water
equations. Scott Russell in 1834 [1], Boussinesq and Rayleigh in 1870 [2–4], and Korteweg
and De Vries in 1895 [5] played a major role in the discovery of the KdV model. These
models have many uses in collision-free hydromagnetic waves, stratified internal waves,
shock wave formation [6], fluid and quantum mechanics [7], and in biology [8].

A generalized fifth-order time-fractional KdV equation is usually in the following
form of non-linear partial differential equation(PDE):

∂βJ
∂tβ

+ aJ2 ∂J
∂x

+ b
∂J
∂x

∂2J
∂x2 + cJ

∂3J
∂x3 +

∂5J
∂x5 = 0, (1)

where J is the wave function with x and t as the space and time variables, respectively.
In addition, β represents the fractional order parameter. The model in Equation (1) has
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various physical applications in acoustic magnetic propagation in plasma, incompressible
and inviscid fluids, gravitational field, etc. It typically consists of one linear dispersive
term and three non-linear terms. The linear dispersive term has a momentous role in the
balancing of non-linearity and dispersion effects of soliton behavior [9]; a, b, and c in Equa-
tion (1) are real constant parameters. Different values of these parameters give different
versions of time-fractional KdV equations. For instance, a = 45, b = 15, and c = 15 give a
time-fractional, Sawada–Kotera equation [10]. Fixing a, b, and c as 2, 6, and 3, respectively,
leads to a time-fractional Ito equation [11]. In addition, when a = 30, b = 20, and c = 10, it
gives a time-fractional Lax’s KdV equation [12,13]. Similarly, a = 45, b = −15, and c = −15
leads to a time-fractional Kaup–Kupershmidt equation [14]. Many researchers tried to find
exact solutions of these equations in [15–18].

Since fractional calculus deals with the calculation of non-integer order derivatives
and integrals, it appeals to a wide range of audiences while dealing with fractional ordinary
and partial differential equations. Different numerical and analytical methods, including
the homotopy analysis method [19], the residual power series method [20], the variation
iteration method [21], the Adomian decomposition method [22], the Bernstein polynomials
method [23], homotopy perturbation method [24], etc., are used in the literature while deal-
ing with fractional problems. Many modifications of existing techniques are also applied to
fractional KdV equations [25–27].

The homotopy perturbation method (HPM), introduced by He [28], provides a conve-
nient technique to find analytical solutions of linear and non-linear differential equations
in both fractional and integer form. To reduce errors and increase its reliability, many
modifications of HPM [29–32] have been adapted in the literature. The Laplace homotopy
perturbation method (LHPM), which combines HPM with Laplace transform, is an efficient
and convenient modification of HPM for solving fractional and integral differential equa-
tions [33]. Results obtained from LHPM are highly accurate and straightforward without
imposing any restrictions on the concerned model. In this paper, we have extended LHPM
to generalized fifth-order highly non-linear time-fractional KdV models. In the rest of the
manuscript, Sections 2 and 3 consist of preliminaries and the general concept of LHPM for
fractional KdV equations. Convergence and error estimation are presented in Section 4.
Applications and solutions of different KdV models are explained in Section 5. Discussion
and conclusion are presented in Sections 6 and 7, respectively.

2. Preliminaries

Definition 1 ([34]). The Laplace transform L of the Riemann–Liouville time-fractional integral
I

β
t on a function J (v, t) is described as:

L [I
β

t J (v, t)] = s−βL [J (v, t)], f − 1 < β ≤ f . (2)

Definition 2 ([35]). The Laplace transform L of Caputo’s time-fractional derivative D
β
t on a

function J (v, t) is described as:

L [D
β
t J (v, t)] = sβL [J (v, t)]−

f−1

∑
j=0

sβ−j−1J ( f )(v, 0), f − 1 < β ≤ f . (3)

where J ( f )(v, 0) represents the initial conditions.

Lemma 1 ([36]). Let J be a function, then for a positive constant c, the stability result states

‖ J (u)−J (v) ‖≤ c ‖ u− v ‖, u, v ε Rn. (4)
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3. Fundamental Concept of the Laplace Homotopy Perturbation Method for
Fifth-Order Time-Fractional KdV Models

Let us consider a general non-linear, fifth-order, time-fractional KdV equation as:

∂βJ(x, t)
∂tβ

+ aJ2(x, t)
∂J(x, t)

∂x
+ b

∂J(x, t)
∂x

∂2J(x, t)
∂x2 + cJ(x, t)

∂3J(x, t)
∂x3 +

∂5J(x, t)
∂x5 = 0,

x ε Ω, t > 0, f − 1 < β ≤ f ,
(5)

with initial conditions

J( f )(x, 0) = I f , f = 0, 1, 2, . . . , (6)

where J(x, t) is an unknown function with ∂β

∂tβ as its fractional derivative; a, b, and c
are constant parameters that give distant versions of time fractional KdV equations for
different values.

The first step of the Laplace transform algorithm is applied on both sides of (5),
which gives

L {∂βJ(x, t)
∂tβ

+ aJ2(x, t)
∂J(x, t)

∂x
+ b

∂J(x, t)
∂x

∂2J(x, t)
∂x2 + cJ(x, t)

∂3J(x, t)
∂x3 +

∂5J(x, t)
∂x5 } = 0, (7)

Using (3) gives

L [J(x, t)]−
(

1
sβ

) f−1

∑
j=0

sβ−j−1J( f )(x, 0) +
(

1
sβ

)
L

{
aJ2(x, t)

∂J(x, t)
∂x

+ b
∂J(x, t)

∂x

∂2J(x, t)
∂x2

+cJ(x, t)
∂3J(x, t)

∂x3 +
∂5J(x, t)

∂x5

}
= 0,

(8)

Now, we can construct a homotopy

H = (1− p)(L {J(x, t; p)} − J0(x, t)) + p
(

L {J(x, t; p)} −
(

1
sβ

) f−1

∑
j=0

sβ−j−1J( f )(x, 0)+

(
1
sβ

)
L

{
aJ2(x, t)

∂J(x, t)
∂x

+ b
∂J(x, t)

∂x

∂2J(x, t)
∂x2 + cJ(x, t)

∂3J(x, t)
∂x3 +

∂5J(x, t)
∂x5

})
,

(9)

where J0(x, t) is the initial guess, and it satisfies the given conditions.
Expanding J(x, t) in Taylor series with regard to p gives:

J(x, t; p) =
∞

∑
m=1

pmJm, (10)

Substituting (10) into (9) and then comparing the coefficients of p, we have distinct
order problems.

The problem at the first order is:

L {J1(x, t)}+ J0(x, t)−
(

1
sβ

) f−1

∑
j=0

sβ−j−1J( f )(x, 0) +
(

1
sβ

)
L

{
aJ2

0(x, t)
∂J0(x, t)

∂x

+b
∂J0(x, t)

∂x

∂2J0(x, t)
∂x2 + cJ0(x, t)

∂3J0(x, t)
∂x3 +

∂5J0(x, t)
∂x5

}
= 0,

(11)
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Employing inverse Laplace transform gives

J1(x, t) = L −1
{
− J0(x, t) +

(
1
sβ

) f−1

∑
j=0

sβ−j−1J( f )(x, 0)
}
−L −1

{(
1
sβ

)
L

{
aJ2

0(x, t)

∂J0(x, t)
∂x

+ b
∂J0(x, t)

∂x

∂2J0(x, t)
∂x2 + cJ0(x, t)

∂3J0(x, t)
∂x3 +

∂5J0(x, t)
∂x5

}}
,

(12)

The the problem at the kth order is:

L {Jk(x, t)}+
(

1
sβ

)
L

{
aJ2

k−1(x, t)
∂Jk−1(x, t)

∂x
+ b

∂Jk−1(x, t)
∂x

∂2Jk−1(x, t)
∂x2

+cJk−1(x, t)
∂3Jk−1(x, t)

∂x3 +
∂5Jk−1(x, t)

∂x5

}
= 0,

(13)

By taking Inverse Laplace transform, we have

Jk(x, t) = L −1
{
−

(
1
sβ

)
L

{
aJ2

k−1(x, t)
∂Jk−1(x, t)

∂x
+ b

∂Jk−1(x, t)
∂x

∂2Jk−1(x, t)
∂x2

+cJk−1(x, t)
∂3Jk−1(x, t)

∂x3 +
∂5Jk−1(x, t)

∂x5

}}
,

(14)

The approximate solution of the general fifth-order KdV equation is

J̃ = J0(x, t) + J1(x, t) + J2(x, t) + J3(x, t) + . . . , (15)

Residual error is observed by substituting (15) in a given time fractional KdV
Equation (5) as:

Res =
∂β J̃
∂tβ

+ aJ̃2 ∂J̃
∂x

+ b
∂J̃
∂x

∂2 J̃
∂x2 + cJ̃(x, t)

∂3 J̃
∂x3 +

∂5 J̃
∂x5 . (16)

4. Convergence and Error Estimation of LHPM for Fractional KdV Equation
4.1. Convergence

Theorem 1. Consider a Banach space (B[0,T],‖ . ‖) and suppose Jn(x, t) and J(x, t) are defined in
it. Then, for a constant ζ where 0 < ζ < 1, the series solution in (15) converges to the solution of
fractional KdV (5).

Proof. Let {an} be the sequence of partial sums of (15). We have to prove that an(x, t) is a
Cauchy sequence in (B[0,T],‖ . ‖). Consider

‖ an+1(x, t)− an(x, t) ‖ =‖ Jn+1(x, t) ‖
≤ ζ ‖ Jn(x, t) ‖
≤ ζ2 ‖ Jn−1(x, t) ‖
≤ . . . ≤ ζn+1 ‖ J0(x, t) ‖,

(17)

Now, for partial sums an and am where n,m ε N and n ≥ m, using triangle inequality,
we obtain

‖ an − am ‖=‖ (an(x, t)− an−1(x, t)) + (an−1(x, t)− an−2(x, t))

+ . . . + (am+1(x, t)− am(x, t)) ‖
≤‖ an(x, t)− an−1(x, t) ‖ + ‖ an−1(x, t)− an−2(x, t) ‖

+ . . .+ ‖ am+1(x, t)− am(x, t) ‖,

(18)
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Using (17), we have

‖ an − am ‖ ≤ ζn ‖ J0(x, t) ‖ +ζn−1 ‖ J0(x, t) ‖ + . . . + ζm+1 ‖ J0(x, t) ‖
≤ (ζn + ζn−1 + . . . + ζm+1) ‖ J0(x, t) ‖
≤ ζm+1(ζn−m−1 + ζn−m−2 + . . . + ζ + 1) ‖ J0(x, t) ‖

≤ ζm+1
(

1− ζn−m

1− ζ

)
‖ J0(x, t) ‖,

(19)

Since 0 < ζ < 1, therefore, 1− ζn−m < 1. Thus, we have

‖ an − am ‖≤
ζm+1

1− ζ
max|J0(x, t)|, ∀ tε[0, T], (20)

Since J0 is bounded, so

lim
n,m→∞

‖ an(x, t)− am(x, t) ‖= 0. (21)

Hence, we have proved that an(x, t) is a Cauchy sequence in Banach space (B[0,T],‖ . ‖).
Thus, the series solution in (15) converges to the solution of (5).

4.2. Error Estimation

Theorem 2. Consider the time fractional KdV Equation (5), then the maximum absolute truncation
error of its solution (15) is ∣∣∣∣J(x, t)− m

∑
j=0

Jj(x, t)
∣∣∣∣ ≤ ζm+1

1− ζ
‖ J0(x, t) ‖ . (22)

Proof. From (19) we have,

‖ J(x, t)− am ‖≤ ζm+1
(

1− ζn−m

1− ζ

)
‖ J0(x, t) ‖, (23)

Since 0 < ζ < 1, therefore 1− ζn−m < 1. Thus we have∣∣∣∣J(x, t)− m

∑
j=0

Jj(x, t)
∣∣∣∣ ≤ ζm+1

1− ζ
‖ J0(x, t) ‖ . (24)

5. Solutions of Time-Fractional KdV Models Using Laplace Homotopy
Perturbation Method

Example 1. Consider the time fractional, Sawada–Kotera equation

∂βJ
∂tβ

= −45J2 ∂J
∂x
− 15

∂J
∂x

∂2J
∂x2 − 15J

∂3J
∂x3 −

∂5J
∂x5 , 0 < β ≤ 1, t > 0, (25)

associated with initial condition

J(x, 0) = 2k2sech2(kx), (26)

where k 6= 0. The exact solution of (25) is:

J(x, t) = 2k2sech2(k(x− 16k4t)). (27)
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Solution: Taking Laplace transform of (25) and then by using (3), we have

sβL [J(x, t)]− sβ−12k2sech2(kx)−L

{
−45J2 ∂J

∂x
− 15

∂J
∂x

∂2J
∂x2 − 15J

∂3J
∂x3 −

∂5J
∂x5

}
= 0, (28)

Using (9), homotopy can be constructed as follows:

H = (1− p)(L {J(x, t)} − J0(x, t)) + p
(

L {J(x, t)} −
(

1
s

)
2k2sech2(kx)−(

1
sβ

)
L

{
−45J2 ∂J

∂x
− 15

∂J
∂x

∂2J
∂x2 − 15J

∂3J
∂x3 −

∂5J
∂x5

})
,

(29)

where J0(x, t) is the initial guess which satisfies the initial condition (26). For the current
problem, the following initial guess is taken

J0(x, t) = 2k2sech2(kx), (30)

Expanding J(x, t) in Taylor’s series with regard to p, and then comparing the coeffi-
cients of identical powers of p, we have.

First-order problem:

L {J1(x, t)}+ J0(x, t)−
(

1
s

)
2k2sech2(kx)−

(
1
sβ

)
L

{
− 45J2

0
∂J0

∂x
− 15

∂J0

∂x

∂2J0

∂x2

−15J0
∂3J0

∂x3 −
∂5J0

∂x5

}
= 0,

J1(x, 0) = 0,

(31)

Taking inverse Laplace transform leads to a solution at the first order:

J1(x, t) = tk7(64sech6(xk) tanh(xk) + 128sech4(xk) tanh3(xk) + 64sech2(xk) tanh5(xk)), (32)

Second-order problem:

L {J2(x, t)} −
(

1
sβ

)
L

{
− 45J2

1
∂J1

∂x
− 15

∂J1

∂x

∂2J1

∂x2 − 15J1
∂3J1

∂x3 −
∂5J1

∂x5

}
= 0,

J2(x, 0) = 0,
(33)

Second-order solution:

J2(x, t) = −512t2k12sech2(x, t)(sech2(x, t)− 2 tanh2(x, t))(sech2(x, t) + tanh2(x, t))4, (34)

Third-order problem:

L {J3(x, t)} −
(

1
sβ

)
L

{
− 45J2

2
∂J2

∂x
− 15

∂J2

∂x

∂2J2

∂x2 − 15J2
∂3J2

∂x3 −
∂5J2

∂x5

}
= 0,

J3(x, 0) = 0,
(35)

Third order-solution:

J3(x, t) = −
32768

3
t3k17sech2(x, t) tanh(x, t)(2sech2(x, t)− tanh2(x, t))(sech2(x, t)

+ tanh2(x, t))6,
(36)
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Fourth-order problem:

L {J4(x, t)} −
(

1
sβ

)
L

{
− 45J2

3
∂J3

∂x
− 15

∂J3

∂x

∂2J3

∂x2 − 15J3
∂3J3

∂x3 −
∂5J3

∂x5

}
= 0,

J4(x, 0) = 0,
(37)

Fourth-order solution:

J4(x, t) =
131072

3
t4k22sech2(x, t)(sech2(x, t) + tanh2(x, t))8(2sech4(x, t)

−11sech2(x, t) tanh2(x, t) + 2 tanh4(x, t)),
(38)

The rest of values for Ji(x, t) with i ≥ 5 can be computed in a similar way. The
approximate solution of (25) can be captured by

J̃ =
4

∑
i=0

Ji(x, t) (39)

Residual error is obtained by substituting (39) in (25) as follows:

ResJ =
∂β J̃
∂tβ

+ 45J̃2 ∂J̃
∂x

+ 15
∂J̃
∂x

∂2 J̃
∂x2 + 15J̃

∂3 J̃
∂x3 +

∂5 J̃
∂x5 . (40)

Example 2. Consider the following time-fractional Ito model

∂βJ
∂tβ

= −2J2 ∂J
∂x
− 6

∂J
∂x

∂2J
∂x2 − 3J

∂3J
∂x3 −

∂5J
∂x5 , 0 < β ≤ 1, t > 0, (41)

along with the initial condition

J(x, 0) = 20k2 − 30k2 tanh2(kx), (42)

where k 6= 0. The exact solution of (41) is

J(x, t) = 20k2 − 30k2 tanh2(k(x− 96k4t)). (43)

Solution: Applying the Laplace transform on (41) and using (3) give the following:

sβL [J(x, t)]− sβ−120k2 − 30k2 tanh2(kx)−L

{
−2J2 ∂J

∂x
− 6

∂J
∂x

∂2J
∂x2 − 3J

∂3J
∂x3 −

∂5J
∂x5

}
= 0, (44)

Utilizing (9) homotopy for the given problem is

H = (1− p)(L {J(x, t)} − J0(x, t)) + p
(

L {J(x, t)} −
(

1
s

)
20k2 − 30k2 tanh2(kx)−(

1
sβ

)
L

{
−2J2 ∂J

∂x
− 6

∂J
∂x

∂2J
∂x2 − 3J

∂3J
∂x3 −

∂5J
∂x5

})
,

(45)

where
J0(x, t) = 20k2 − 30k2 tanh2(kx), (46)

By replacing (10) in (41) and then comparing coefficients of like power of p, leads to
the following:

First-order problem:
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L {J1(x, t)}+ J0(x, t)−
(

1
s

)
20k2 − 30k2 tanh2(kx)−

(
1
sβ

)
L

{
− 2J2

0
∂J0

∂x
− 6

∂J0

∂x

∂2J0

∂x2

−3J0
∂3J0

∂x3 −
∂5J0

∂x5

}
= 0,

J1(x, 0) = 0,

(47)

Second-order problem:

L {J2(x, t)} −
(

1
sβ

)
L

{
− 2J2

1
∂J1

∂x
− 6

∂J1

∂x

∂2J1

∂x2 − 3J1
∂3J1

∂x3 −
∂5J1

∂x5

}
= 0,

J2(x, 0) = 0,
(48)

Third-order problem:

L {J3(x, t)} −
(

1
sβ

)
L

{
− 2J2

2
∂J2

∂x
− 6

∂J2

∂x

∂2J2

∂x2 − 3J2
∂3J2

∂x3 −
∂5J2

∂x5

}
= 0,

J3(x, 0) = 0,
(49)

Fourth-order problem:

L {J4(x, t)} −
(

1
sβ

)
L

{
− 2J2

3
∂J3

∂x
− 6

∂J3

∂x

∂2J3

∂x2 − 3J3
∂3J3

∂x3 −
∂5J3

∂x5

}
= 0,

J4(x, 0) = 0,
(50)

Continuing this way, higher order problems and solutions can be formulated. The
approximate solution of (41) is

J̃ = J0(x, t) + J1(x, t) + J2(x, t) + J3(x, t) + J4(x, t) + . . . (51)

Residual error is derived by substituting the obtained approximate solution in (41)

ResJ =
∂β J̃
∂tβ

+ 2J̃2 ∂J̃
∂x

+ 6
∂J̃
∂x

∂2 J̃
∂x2 + 3J̃

∂3 J̃
∂x3 +

∂5 J̃
∂x5 . (52)

Example 3. Consider the following time-fractional Lax’s KdV model

∂βJ
∂tβ

= −30J2 ∂J
∂x
− 20

∂J
∂x

∂2J
∂x2 − 10J

∂3J
∂x3 −

∂5J
∂x5 , 0 < β ≤ 1, t > 0, (53)

with initial condition

J(x, 0) = 2k2(2− 3 tanh2(kx)), (54)

where k 6= 0 is an arbitrary constant. The exact solution of (53) is

J(x, t) = 2k2(2− 3 tanh2(k(x− 56k4t))). (55)

Solution:
Following the similar steps mapped out in Section 3, we have
First-order problem:
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L {J1(x, t)}+ J0(x, t)−
(

1
s

)
2k2(2− 3 tanh2(kx))−

(
1
sβ

)
L

{
− 30J2

0
∂J0

∂x
− 20

∂J0

∂x

∂2J0

∂x2

−10J0
∂3J0

∂x3 −
∂5J0

∂x5

}
= 0,

J1(x, 0) = 0,

(56)

Second-order problem:

L {J2(x, t)} −
(

1
sβ

)
L

{
− 30J2

1
∂J1

∂x
− 20

∂J1

∂x

∂2J1

∂x2 − 10J1
∂3J1

∂x3 −
∂5J1

∂x5

}
= 0,

J2(x, 0) = 0,
(57)

Third-order problem:

L {J3(x, t)} −
(

1
sβ

)
L

{
− 30J2

2
∂J2

∂x
− 20

∂J2

∂x

∂2J2

∂x2 − 10J2
∂3J2

∂x3 −
∂5J2

∂x5

}
= 0,

J3(x, 0) = 0,
(58)

Fourth-order problem:

L {J4(x, t)} −
(

1
sβ

)
L

{
− 30J2

3
∂J3

∂x
− 20

∂J3

∂x

∂2J3

∂x2 − 10J3
∂3J3

∂x3 −
∂5J3

∂x5

}
= 0,

J4(x, 0) = 0,
(59)

The inverse Laplace transform leads to the approximate solution J̃(x, t). The residual
error of the current problem is

ResJ =
∂β J̃
∂tβ

+ 30J̃2 ∂J̃
∂x

+ 20
∂J̃
∂x

∂2 J̃
∂x2 + 10J̃

∂3 J̃
∂x3 +

∂5 J̃
∂x5 . (60)

Results related to Example 3 are in Tables 1 and 2 and Figures 1–3.

Table 1. Comparison of LHPM errors with FCRPSA and mADM errors in Example 3 when β = 1 and
k = 0.01.

t x Exact Solution LHPM Solution LHPM Error FCRPSA Error [14] mADM Error [13]

2 0.00039976 0.00039976 5.42 × 10−20 1.34 × 10−17 2.30 × 10−13

4 0.00039904 0.00039904 0 1.30 × 10−17 4.60 × 10−13

0.8 6 0.00039784 0.00039784 0 1.27 × 10−17 6.19 × 10−13

8 0.00039617 0.00039617 0 1.21 × 10−17 9.21 × 10−13

10 0.00039404 0.00039404 0 1.14 × 10−17 1.15 × 10−12

2 0.00039976 0.00039976 5.42 × 10−20 5.17 × 10−16 1.42 × 10−12

4 0.00039904 0.00039904 5.42 × 10−20 5.08 × 10−16 2.84 × 10−12

5 6 0.00039784 0.00039784 5.42 × 10−20 4.94 × 10−16 4.26 × 10−12

8 0.00039617 0.00039617 5.42 × 10−20 4.73 × 10−16 5.68 × 10−12

10 0.00039404 0.00039404 0 4.49 × 10−16 7.10 × 10−12
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Table 2. Error analysis of LHPM in fractional domain for time-fractional Lax’s KdV model (Example 3)
when k = 0.14 and x = 4.

t β = 0.2 β = 0.4 β = 0.6 β = 0.8

0.1 3.15 × 10−8 1.35 × 10−9 3.43 × 10−11 4.87 × 10−13

0.3 9.45 × 10−8 1.22 × 10−8 9.27 × 10−10 3.94 × 10−11

0.5 1.57 × 10−7 3.39 × 10−8 4.29 × 10−9 3.04 × 10−10

0.7 2.20 × 10−7 6.65 × 10−8 1.17 × 10−8 1.16 × 10−9

0.9 2.83 × 10−7 1.10 × 10−7 2.50 × 10−8 3.19 × 10−9

(a) (b)

Figure 1. 3D graphical illustration of LHPM solution (a) and error (b) in Example 3 when β = 1 and
k = 0.15.
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Figure 2. Effect of fractional parameter β on time-fractional Lax’s KdV equation (Example 3) when
k = 0.1 and x = 10.
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Figure 3. 2D surface formation at different values of β in Example 3 when k = 1, t = 3.

Example 4. Consider the following time-fractional Kaup–Kupershmidt model

∂βJ
∂tβ

= −45J2 ∂J
∂x

+ 15ρ
∂J
∂x

∂2J
∂x2 + 15J

∂3J
∂x3 −

∂5J
∂x5 , 0 < β ≤ 1, t > 0, (61)
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associated with initial condition

J(x, 0) =
1
4

w2λ2sech2(
wλx

2
) +

w2λ2

12
, (62)

where λ and w 6= 0 are arbitrary constants. The exact solution of (61) is:

J(x, t) =
1
4

w2λ2sech2(
−w5λtβ(−8λ2µ + 16µ2 + λ4)

32β
+

wλx

2
) +

w2λ2

12
, (63)

Solution:
Using basic steps given in Section 3, we obtain the following
First-order problem:

L {J1(x, t)}+ J0(x, t)−
(

1
s

)
1
4

w2λ2sech2(
wλx

2
) +

w2λ2

12
−

(
1
sβ

)
L

{
− 45J2

0
∂J0

∂x

+15ρ
∂J0

∂x

∂2J0

∂x2 + 15J0
∂3J0

∂x3 −
∂5J0

∂x5

}
= 0,

J1(x, 0) = 0,

(64)

Second-order problem:

L {J2(x, t)} −
(

1
sβ

)
L

{
− 45J2

1
∂J1

∂x
+ 15ρ

∂J1

∂x

∂2J1

∂x2 + 15J1
∂3J1

∂x3 −
∂5J1

∂x5

}
= 0,

J2(x, 0) = 0,
(65)

Third-order problem:

L {J3(x, t)} −
(

1
sβ

)
L

{
− 45J2

2
∂J2

∂x
+ 15ρ

∂J2

∂x

∂2J2

∂x2 + 15J2
∂3J2

∂x3 −
∂5J2

∂x5

}
= 0,

J3(x, 0) = 0,
(66)

Fourth-order problem:

L {J4(x, t)} −
(

1
sβ

)
L

{
− 45J2

3
∂J3

∂x
+ 15ρ

∂J3

∂x

∂2J3

∂x2 + 15J3
∂3J3

∂x3 −
∂5J3

∂x5

}
= 0,

J4(x, 0) = 0,
(67)

The inverse Laplace transform leads to the approximate solution J̃(x, t). The residual
error of the concerned problem is

ResJ =
∂β J̃
∂tβ

+ 45J̃2 ∂J̃
∂x
− 15ρ

∂J̃
∂x

∂2 J̃
∂x2 − 15J̃

∂3 J̃
∂x3 +

∂5 J̃
∂x5 . (68)

6. Discussion

In this manuscript, the Laplace transform with homotopy perturbation method is
proposed for the solution of generalized fifth-order time-fractional KdV models. The
proposed method is tested against different time-fractional KdV models, including Sawada–
Kotera, Ito, Lax, and Kaup–Kupershmidt KdV equations. These equations belong to the
prominent form of fractional KdV family hierarchy. The main focus of this paper is to
propose a new method for the solution and analysis of KdV equations in a fractional
environment. Graphical and numerical comparisons of the obtained results were also made
to provide strong evidence for the usage of the proposed technique. Obtained results are
compared with existing ones from the literature.
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The proposed method is firstly applied to the Sawada–Kotera model in Example 1,
and the results are shown in Tables 3 and 4. Table 3 presents a comparison of LHPM
with exact and fractional conformable residual power series algorithm (FCRPSA) results.
These results showed the efficiency of LHPM over FCRPSA. In Table 4, error analysis has
been performed in the fractional domain by finding residual errors at different values of
β. The results are consistent through out the fractional domain. It is also observed that
increasing the value of the fractional parameter decreases the error. Figure 4 illustrates the
three-dimensional plot of approximate solutions and errors at β = 1. The 3D solution curve
(part a) depicts that at x and t = 0, the crest of the wave is highest, and as the distance and
time increased, the altitude of the wave started to decrease. Figure 5 represents the effect of
fractional parameter β on the water waves at x = 10. It is observed that for the time range
between 0 and 1, increasing β decreases the water wave profile. Elevation and motion of
the surface of water waves in two-dimensional form at a fixed time for various β can be
seen in Figure 6. Near x = 0, the altitude of the wave was highest, but it started to smoothen
out as the distance increased.

Table 3. Comparison of LHPM and FCRPSA errors in Example 1 when β = 1 and k = 0.01.

t x Exact Solution LHPM Solution LHPM Error FCRPSA Error [14]

2 0.00019992 0.00019992 1.38 × 10−20 3.46 × 10−18

4 0.00019968 0.00019968 3.13 × 10−21 3.46 × 10−18

0.1 6 0.00019928 0.00019928 2.57 × 10−20 1.04 × 10−17

8 0.00019872 0.00019872 1.38 × 10−20 1.38 × 10−17

10 0.00019801 0.00019801 4.48 × 10−20 1.73 × 10−17

2 0.00019992 0.00019992 6.59 × 10−20 2.70 × 10−16

4 0.00019968 0.00019968 3.86 × 10−20 8.22 × 10−16

0.5 6 0.00019928 0.00019928 2.05 × 10−20 1.35 × 10−15

8 0.00019872 0.00019872 1.18 × 10−20 1.88 × 10−15

10 0.00019801 0.00019801 6.15 × 10−20 2.39 × 10−15

2 0.00019992 0.00019992 3.71 × 10−20 1.59 × 10−15

4 0.00019968 0.00019968 2.63 × 10−20 4.75 × 10−15

0.9 6 0.00019928 0.00019928 1.54 × 10−20 7.90 × 10−15

8 0.00019872 0.00019872 4.39 × 10−20 1.09 × 10−14

10 0.00019801 0.00019801 5.10 × 10−20 1.40 × 10−14

Table 4. Error analysis of LHPM in fractional domain for time-fractional Sawada–Kotera model
(Example 1) when k = 0.15 and x = 1.

t β = 0.2 β = 0.4 β = 0.6 β = 0.8

0.1 9.50 × 10−9 4.09 × 10−10 1.03 × 10−11 1.47 × 10−13

0.3 2.85 × 10−8 3.68 × 10−9 2.79 × 10−10 1.19 × 10−11

0.5 4.75 × 10−8 1.02 × 10−8 1.29 × 10−9 9.19 × 10−11

0.7 6.65 × 10−8 2.00 × 10−8 3.55 × 10−9 3.53 × 10−10

0.9 8.55 × 10−8 3.31 × 10−8 7.55 × 10−9 9.64 × 10−10
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(a) (b)

Figure 4. 3D graphical illustration of LHPM solution (a) and error (b) in Example 1 when β = 1 and
k = 0.15.
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Figure 5. Effect of fractional parameter β on time-fractional Sawada–Kotera equation (Example 1)
when k = 0.1 and x = 10.
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Figure 6. 2D surface formation at different values of β in Example 1 when k = 1, t = 3.

For the time-fractional Ito equation in Example 2, Table 5 is the comparison of LHPM
with the modified Adomian decomposition method (mADM) and FCRPSA error at β = 1
and k = 0.01, whereas Table 6 displays the residual errors at different values of β. In both
tables, it can be seen that LHPM is a reliable and powerful technique. Figure 7 is the LHPM
solution and error graphs in 3D form, which displays the decrease in wave altitude with
the increase of distance and time. The effect of different values of fractional parameter
on the water waves surface at distance x = 10 can be seen in Figure 8, which shows that
increasing β decreases the water wave level for the interval 0 < t < 1. A 2D plot to evaluate
the motion of the wave surface is displayed in Figure 9 for k = 1, t = 3, and β = 0.2, 0.4, 0.8,
and 1.0. It can be seen that nearby x = 0, the wave is at its peak but starts declining as the
distance becomes larger.
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(a) (b)

Figure 7. 3D graphical illustration of LHPM solution (a) and error (b) in Example 2 when β = 1 and
k = 0.15.
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Figure 8. Effect of fractional parameter β on a time-fractional Ito equation (Example 2) when k = 0.1
and x = 10.
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Figure 9. 2D surface formation at different values of β in Example 2 when k = 1, t = 3.
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Table 5. Comparison of LHPM errors with FCRPSA and mADM in Example 2 when β = 1 and
k = 0.01.

t x Exact Solution LHPM Solution LHPM Error FCRPSA Error [14] mADM Error [13]

2 0.0019988 0.0019988 2.11 × 10−22 2.77 × 10−17 1.41 × 10−16

4 0.0019952 0.0019952 8.47 × 10−22 3.88 × 10−16 5.63 × 10−16

0.2 6 0.0019892 0.0019892 5.08 × 10−21 4.13 × 10−16 1.26 × 10−15

8 0.0019808 0.0019808 3.38 × 10−21 1.04 × 10−15 2.25 × 10−15

10 0.0019702 0.0019702 0 2.31 × 10−15 3.52 × 10−15

2 0.0019988 0.0019988 0 0 1.41 × 10−16

4 0.0019952 0.0019952 8.47 × 10−22 3.60 × 10−16 5.64 × 10−16

0.6 6 0.0019892 0.0019892 5.08 × 10−21 4.05 × 10−16 1.27 × 10−15

8 0.0019808 0.0019808 3.38 × 10−21 9.90 × 10−16 2.25 × 10−15

10 0.0019702 0.0019702 3.38 × 10−21 2.20 × 10−15 3.52 × 10−15

2 0.0019988 0.0019988 0 2.77 × 10−17 1.41 × 10−16

4 0.0019952 0.0019952 1.69 × 10−21 3.33 × 10−16 5.66 × 10−16

1.0 6 0.0019892 0.0019892 1.69 × 10−21 3.94 × 10−16 1.27 × 10−15

8 0.0019808 0.0019808 3.38 × 10−21 8.99 × 10−16 2.26 × 10−15

10 0.0019702 0.0019702 3.38 × 10−21 2.00 × 10−15 3.53 × 10−15

Table 6. Error analysis of LHPM in a fractional domain for a time-fractional Ito model (Example 2)
when k = 0.14 and x = 1.

t β = 0.2 β = 0.4 β = 0.6 β = 0.8

0.1 2.16 × 10−7 9.34 × 10−9 2.36 × 10−10 3.35 × 10−12

0.3 6.50 × 10−7 8.41 × 10−8 6.38 × 10−9 2.71 × 10−10

0.5 1.08 × 10−6 2.33 × 10−7 2.95 × 10−8 2.09 × 10−9

0.7 1.51 × 10−6 4.58 × 10−7 8.11 × 10−8 8.05 × 10−9

0.9 1.95 × 10−6 7.57 × 10−7 1.72 × 10−7 2.20 × 10−8

In Example 3, a time-fractional Lax’s KdV equation is solved numerically and analyti-
cally by LHPM. A comparison of FCRPSA, mADM, and LHPM absolute errors at β = 1 in
Table 1 shows that LHPM is more productive than mADM and FCRPSA. Residual errors
for various β values are also shown in Table 2. A 3D LHPM solution plot and an error plot
(Figure 1) are also displayed. From Figure 2 at k = 0.1 and x = 10, it is observed that increas-
ing the value of the fractional parameter for the fifth-order Lax’s KdV model decreases the
waves level. The effect of various β values on surface waves for fixed t = 3 is shown in
2D form in Figure 3. Analysis reveals that the behaviour of escalation of a wave is similar
to that of Example 2. Tables 7–9 provide a comparison of LHPM errors with the optical
optimal homotopy asymptotic method (OHAM) errors of the Kaup–Kupershmidt equation
(Example 4) for β = 0.5, 0.75, and 1, respectively. Observation showed that LHPM is more
reliable than OHAM. A 3D solution graph and error graph of the Kaup–Kupershmidt
equation can be seen in Figure 10. For different β values, surface waves level in a 2D form
for t = 3 is displayed in Figure 11 which depicts a sinusoidal cycle between x = −0.3 and 0.3.
Moreover, wave level is declining at a greater value of x.
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Table 7. Comparison of LHPM and OHAM errors in the Kaup–Kupershmidt model (Example 4) at
different t when β = 0.5, λ = 0.1, w = 1, ρ = 2.5 and µ = 0.

x t = 0.3 t = 0.5 t = 0.8

OHAM [37] LHPM OHAM [37] LHPM OHAM [37] LHPM

0.2 7.23 × 10−6 4.22 × 10−9 7.21 × 10−6 5.41 × 10−9 7.18 × 10−6 6.78 × 10−9

0.4 5.79 × 10−5 8.55 × 10−9 5.78 × 10−5 1.10 × 10−8 5.78 × 10−5 1.38 × 10−8

0.6 1.53 × 10−4 1.28 × 10−8 1.53 × 10−4 1.65 × 10−8 1.53 × 10−4 2.08 × 10−8

0.8 2.86 × 10−4 1.71 × 10−8 2.86 × 10−4 2.20 × 10−8 2.85 × 10−4 2.78 × 10−8

Table 8. Comparison of LHPM and OHAM errors in the Kaup–Kupershmidt equation (Example 4) at
different t when β = 0.75, λ = 0.1, w = 1, ρ = 2.5 and µ = 0.

x t = 0.3 t = 0.5 t = 0.8

OHAM [37] LHPM OHAM [37] LHPM OHAM [37] LHPM

0.2 7.22 × 10−6 3.05 × 10−9 7.17 × 10−6 4.44 × 10−9 7.12 × 10−6 6.26 × 10−9

0.4 5.79 × 10−5 6.14 × 10−9 5.78 × 10−5 8.98 × 10−9 5.76 × 10−5 1.27 × 10−8

0.6 1.53 × 10−4 9.21 × 10−9 1.53 × 10−4 1.34 × 10−8 1.52 × 10−4 1.91 × 10−8

0.8 2.86 × 10−4 1.22 × 10−8 2.85 × 10−4 1.79 × 10−8 2.85 × 10−4 2.55 × 10−8

Table 9. Comparison of LHPM and OHAM errors in the Kaup–Kupershmidt model (Example 4) at
different t when β = 1, λ = 0.1, w = 1, ρ = 2.5 and µ = 0.

x t = 0.3 t = 0.5 t = 0.8

OHAM [37] LHPM OHAM [37] LHPM OHAM [37] LHPM

0.2 7.21 × 10−6 2.09 × 10−9 7.14 × 10−6 3.46 × 10−9 7.03 × 10−6 5.05 × 10−9

0.4 5.79 × 10−5 4.19 × 10−9 5.77 × 10−5 6.97 × 10−9 5.74 × 10−5 1.11 × 10−8

0.6 1.53 × 10−4 6.28 × 10−9 1.52 × 10−4 1.04 × 10−8 1.52 × 10−4 1.66 × 10−8

0.8 2.86 × 10−4 8.36 × 10−9 2.85 × 10−4 1.39 × 10−8 2.85 × 10−4 2.22 × 10−8

(a) (b)

Figure 10. 3D graphical illustration of LHPM solution (a) and error (b) in Example 4 when β = 1,
λ = 0.1, w = 1, ρ = 2.5, and µ = 0.
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Figure 11. 2D surface formation at different values of β in Example 4 when λ = 1, w = 1, ρ = 2.5, µ = 1
and t = 3.
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7. Conclusions

This paper is focused on the analysis of generalized fifth-order time-fractional KdV
models through the Laplace transform along with homotopy perturbation. For checking
the validity and efficiency of the proposed method, it is applied to the Sawada–Kotera,
Ito, Lax, and Kaup–Kupershmidt KdV models in fractional sense, and residual errors are
computed for different values of fractional parameter in the fractional domain. LHPM
solutions are obtained without the imposition of any restrictions on the structure of models.
The obtained approximate solutions and errors are illustrated in three-dimensional plots for
reader convenience. Plots against different values of fractional parameter on water surface
level are also displayed to provide better understanding of the models. A comparison of
proposed and existing techniques affirm the efficiency and accuracy of LHPM over other
methods. Hence, LHPM is helpful in managing complex non-linear, fractional, higher order
KdV equations with improved accuracy.
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