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Abstract: Superstring theories in ten dimensions allow spacetime supersymmetry breaking at the
string scale at the expense of controlled Minkowski backgrounds. The next-to-maximally symmetric
backgrounds, found by Dudas and Mourad, involve a warped compactification on an interval
associated with codimension-one defects. We generalize these solutions by varying the effective field
theory parameters, and we discuss the dimensional reduction on the interval. In particular, we show
that scalars and form fields decouple in a certain range of dimensions, yielding Einstein-Yang-Mills
theory. Moreover, we find that the breakdown of this effective description due to light Kaluza-Klein
modes reflects the swampland distance conjecture, supporting the consistency of the picture at
least qualitatively.
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1. Introduction

Any attempt to build realistic models in string phenomenology faces at least two
main challenges. The first is achieving scale separation, or more generally, settings in
which low-energy observers see physics in four spacetime dimensions without moduli. The
second is breaking supersymmetry while also obtaining a sufficiently long-lived universe.

Recent progress on the first issue indicates that scale separation, at least in Anti-de Sit-
ter (flux) compactifications, is very difficult to achieve, and existing proposals are currently
under detailed scrutiny [1–18]. In particular, the existence of scale-separated compactifi-
cations appears to be in tension with criteria arising from the swampland program [19]
(see [20–22] for reviews).

The second issue is also quite severe, since breaking supersymmetry typically entails in-
stabilities (see e.g., [23,24] in the context of AdS vacua). While perturbative instabilities can
be avoided [25,26], nonperturbative decay channels still exist [27–30] (see however [31–33]).
The ultimate fate of non-supersymmetric vacua in string theory remains an outstanding
open problem. In particular, it is unclear whether the models survive in a stringy regime,
potentially described by perturbative (S-)dual frames [34–37], decay in supersymmetric
states [38], or are completely inconsistent.

This puzzling state of affairs calls for a deeper understanding of both scale separation
and supersymmetry breaking in string theory. To this end, a natural starting point is directly
breaking supersymmetry at the string scale. This approach is supported by swampland
arguments [39–41], according to which it would be inconsistent to break supersymmetry
at a parametrically low scale. Moreover, evidence is accumulating to the effect that, at
least with a sufficient number of supercharges, consistent effective field theories (EFTs) of
supergravity are entirely captured by the string landscape [42–45]. While this could be
due to a “lamppost” effect, in light of these results it is natural to turn to supersymmetry-
breaking mechanisms that arise at the string scale.

Constructions of this type involve projections of ten-dimensional superstrings, and
there are only a handful of options that leave no tachyon in the perturbative spectrum. One
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is the SO(16)× SO(16) heterotic model of [46,47], which arises from a projection of the
E8×E8 model. The other two options are orientifold projections [48–55] of type 0B and type
IIB strings. The former yields the U(32) “type 0′B” model of [56,57], and retains the absence
of supersymmetry of the parent theory. The latter, in contrast, yields the USp(32) model of
Sugimoto [58], whereby supersymmetry is broken spontaneously in the open-string sector.
This peculiar phenomenon, dubbed “brane supersymmetry breaking” (BSB) [59–63], is
reflected by the presence of a Goldstino gauge-singlet fermion in the spectrum [64–67]. See
also [68–70] for reviews.

A remarkable link among the issues of scale separation and supersymmetry breaking
emerged in [66]. The low-energy dynamics of the non-supersymmetric string models that
we mentioned above contains an exponential potential for the dilaton, leading to string-
scale runaway if unbalanced. While one can stabilize the vacuum with fluxes [27,71], at
least perturbatively [25] in a metastable state [27], one can alternatively rely on warping.
In this fashion, the dilaton varies along the internal space, while leaving no moduli in the
low-energy EFT. Furthermore, the resulting Dudas–Mourad vacua of [66] are perturbatively
stable [25] and scale-separated, since the Ricci-flat spacetime can have a Minkowski factor,
while the internal space turns out to be an interval of finite length.

The interval hosts singularities at its ends, thereby casting doubt on the construction
at the global level. However, there are reasons to believe that stringy effects would regular-
ize the geometry: these end-of-the-world “pinch-off” singularities are universal in these
models [27], in the sense that they arise independently of the sources placed in the bulk.
As a result, one is tempted to infer that they originate from additional defects that need to
be included for the triviality of cobordism classes, as advocated in [72] (see also [42,73–75]).
The dynamical nature of the gravitational tadpoles driving this intriguing phenomenon
thus appears to be closely related to string-scale supersymmetry breaking, and it has been
highlighted in [76–79] in relation to (a variation of) the distance conjecture [80].

In this paper, we revisit the Dudas–Mourad solutions, generalizing them to other
values of the EFT parameters, in particular to any spacetime dimension D. One motivation
for doing so is that various features of the compactification exhibit peculiar patterns varying
D, and it is instructive to uncover them. This approach is somewhat complementary to
that of [81], where several integrable dilaton potentials are explored instead. Moreover,
solutions of this type could be potentially relevant to study non-critical string backgrounds.
We also discuss in more detail the dimensional reduction over the Dudas–Mourad in-
terval, analyzing the Kaluza–Klein (KK) spectrum of scalar perturbations to address the
moduli problem.

This paper is structured as follows. In Section 2 we briefly review the Dudas–Mourad
solutions arising from non-supersymmetric strings in ten dimensions. These come in two
varieties: an orientifold solution, which we discuss in Section 2.1, and a heterotic solution,
which we discuss in Section 2.2. In Section 3 we present generalizations of these solutions.
In particular, in Sections 3.1 and 3.2 we focus on two particular values of a parameter which
result in simpler expressions, analogous to those of [66]. We also connect our discussion
to the cosmological phenomenon of “climbing” scalars [82]. In Section 4 we focus on the
case D = 10, relevant for critical strings, where one obtains a nine-dimensional Einstein–
Yang–Mills theory, which prompts us to address whether further scale separation can be
achieved by simple flux compactifications. Although, as expected, this does not work, we
nevertheless study the stability of the resulting nine-dimensional Freund–Rubin AdS vacua,
since they feature some differences with respect to the 10d ones of [25,71,83] (e.g., there is
no dynamical dilaton). We do not pinpoint specific unstable modes, but we show that, if
they exist, they pertain to the non-abelian gauge sector. We have reasons to believe that all
our vacua suffer from instabilities in this sector, the detailed investigation of which is left
for future work. Finally, in Section 5 we assess whether the dimensional reduction on the
Dudas–Mourad interval, which has a free parameter classically, produces moduli, studying
scalar perturbations and KK masses. In addition to showing the absence of moduli, as a
by-product we find that the scalar KK tower satisfies a distance conjecture. We also briefly
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discuss possible connections between these results and the cobordism (distance) conjecture
in Section 5.4. We conclude with some closing remarks in Section 6.

2. A Review of Dudas–Mourad Vacua

In this section, we review the prototype vacua found by Dudas and Mourad in [66].
These involve only gravity and the dilaton, for which there are two exponential potentials to
be considered. The first one is relevant for the USp(32) and U(32) orientifold models, where
in the string frame there is a “tadpole potential” proportional to e−φ, indicating the open
string origin of supersymmetry breaking. The second one represents the effective action of
the non-supersymmetric heterotic SO(16)× SO(16) model, with the scalar potential emerg-
ing from a one-loop effect. In this paper, we focus on the bosonic sector, but one should
keep in mind that the solutions we discuss bring along subtleties for fermions [84,85].

The Einstein-frame effective actions for metric and dilaton that we shall consider are

S =
1

2α′4

∫
d10x

√
−g
[

R− 1
2
(∂φ)2 − 2αEeγφ

]
, (1)

where in αE we merged the definitions of αE and βE in the original work. The tadpole
potential forbids ten-dimensional maximally symmetric solutions, and in [66] the authors
considered the codimension-one ansatz

ds2 = e2A(y)ηµνdxµdxν + e2B(y)dy2 ,

φ = φ(y) .
(2)

For completeness, we mention that the following computations can be extended to the
case of any nine-dimensional manifold that is Ricci-flat, instead of taking nine-dimensional
Minkowski as in Equation (2). Solutions with curved Einstein manifolds are not known in
this setup.

In Equation (2), one has the freedom to rescale y, which can be used to set B = − 1
2 γφ.

The equations of motion now read

36(A′)2 + 8A′′ + 4γA′φ′ +
1
4
(φ′)2 + αE = 0 ,

36(A′)2 − 1
4
(φ′)2 + αE = 0 ,

φ′′ + 9A′φ′ +
1
2

γ(φ′)2 − 2γαE = 0 .

(3)

It is then convenient to define

f (y) = log

√1 +
36(A′)2

αE

+
6A′√

αE

 , (4)

that is well-defined for any sign of A′. Written in terms of f , the equations of motion are
explicitly redundant, which reflects the y-reparametrization invariance. Then, A′ and φ′

reduce to the simple expressions

A′ =
√

αE

6
sinh f , φ′ = ±2

√
αE cosh f . (5)

2.1. Orientifold Case

In the USp(32) and U(32) models, the scalar potential has γ = 3
2 , corresponding to e−φ

in the string frame. The only remaining equation of motion in terms of f reads

4 f ′ + 6
√

αE cosh f ± 6
√

αE sinh f = 0 , (6)

where the sign choice arises from Equation (5). The solution is, up to an additive constant,
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f = ∓ log
(
±3

2
√

αE y
)

. (7)

From Equation (5) one obtains A and φ, with the sign choice of Equation (7) that cancels
after one integration. The metric and the dilaton are (we let y > 0 for definiteness)

ds2 = (
√

αE y)
1
9 e−

1
8 αEy2

dx2
(9) + e−

3
2 ϕ0(
√

αE y)−1e−
9
8 αEy2

dy2 ,

eφ = eϕ0(
√

αE y)
2
3 e

3
4 αEy2

.
(8)

There are two timelike curvature singularities at y = 0 and y → ∞, separated by a finite
distance. The “string coupling” eφ vanishes at y = 0 and diverges as y→ ∞.

2.2. Heterotic Case

For the heterotic effective action, the only difference is γ = 5
2 , corresponding to no

dilaton coupling in the string frame. Similar considerations lead to

2 f ′ + 3
√

αE cosh f ± 5
√

αE sinh f = 0 . (9)

The coefficients of sinh and cosh are different, making the functional form of the solution
more involved. In fact, Equation (9) has both a trivial solution, that has been discussed
in [86], and a non-trivial one, that is the focus of this section:

e f = ±2∓1 e
√

αE y + εe−
√

αE y

e
√

αE y − εe−
√

αE y
, (10)

with ε a constant. In A′ and φ′, from Equation (5), the sign choice of Equation (10) results in
a sign flip for ε. Hence, that choice can be undone by ε→ −ε, and without loss of generality,
we consider the upper sign in what follows.

For bulk solutions, |ε| can be rescaled away and only its sign becomes relevant. There-
fore, there are only two non-equivalent (that is, not related by coordinate transformations)
solutions, depending on whether ε = ±1.

If ε = 1, for y > 0 one finds

ds2 = (sinh
√

αE y)
1

12 (cosh
√

αE y)−
1
3 dx2

(9)+

+ e−
5
2 ϕ0(sinh

√
αE y)−

5
4 (cosh

√
αE y)−5dy2 ,

eφ = eϕ0(sinh
√

αE y)
1
2 (cosh

√
αE y)2 .

(11)

There are two timelike curvature singularities, at y = 0 and ∞, separated by a finite distance,
and eφ is again zero at y = 0 and diverges as y→ ∞.

If ε = −1, the resulting solution can be obtained from Equation (11) after interchanging
cosh with sinh. Curvature singularities are still present at y = 0 and ∞, but the proper
y-length and the nine-dimensional Planck mass are infinite.

3. Generalizing the EFT Parameters

We now generalize the gravitational solution of Section 2 to a generic dimension D.
We consider an exponential dilaton potential with a general coefficient γ, and study some
consequences on gravity, gauge fields and higher forms.

We set our notation by choosing the following action:

S =
1

2κ2
D

∫
dDx

√
−g
[

R− 4
D− 2

(∂φ)2 − 2αEeγφ

]
, (12)

with D > 2. The appropriate ansatz is the natural generalization of Equation (2), with
a codimension-one Ricci-flat gµν. The equations of motion become simpler in the gauge
B = − 1

2 γφ, and read
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(D− 2)A′′ +
(D− 2)

2
γφ′A′ +

(D− 1)(D− 2)
2

(A′)2 +
2

D− 2
(φ′)2 + αE = 0 ,

(D− 1)(D− 2)
2

(A′)2 − 2
D− 2

(φ′)2 + αE = 0 ,

8
D− 2

φ′′ +
8

D− 2

[
(D− 1)A′ +

γ

2
φ′
]
φ′ − 2γαE = 0 .

(13)

Only in this section, from now on we work in units αE = 1 to simplify the notation.
Restoring αE is straightforward for dimensional reasons.

One can define, similarly to Equation (4),

f (y) = log

[√
1 +

(D− 1)(D− 2)
2

(A′)2 +

√
(D− 1)(D− 2)

2
A′
]

, (14)

so that A′ and φ′ have simple expressions in terms of f . A sign choice arises in φ′, as in
Equation (5). The equations of motion become equivalent to a single condition for the
unknown function f . We can further simplify the notation, letting

γ =
4
√

D− 1
D− 2

(1 + 2δ) , ξ =

√
2(D− 1)

D− 2
y , ψ(ξ) = e− f (y(ξ)) . (15)

The differential equation for f translates into

ḟ + cosh f ± (1 + 2δ) sinh f = 0 , (16)

where dots stand for derivatives with respect to ξ.
A couple of sign choices must be fixed before presenting the solutions. First, it is

sufficient to work with γ ≥ 0, that is δ ≥ − 1
2 . In fact, negative and positive γs differ by a

sign flip in Equation (16). Different choices in Equation (16), while changing the functional
form of solution, do not present additional computational issues: the upper sign leads to

ψ̇ = 1 + δ− δψ2 , (17)

and the lower one leads to the same differential equation for λ(ξ) = −e f (ξ). Therefore, up
to interchanging cosh (or cos) with sinh (or sin), it suffices to work with a positive γ and
with the upper sign in Equation (16).

A trivial solution to Equation (16) exists when δ > 0. This has ḟ = 0, for which A and
φ become linear functions of ξ. In the remaining part of this section we shall focus on the
cases ḟ 6= 0.

After fixing the signs, one can write Ȧ and φ̇ in terms of ψ as

Ȧ = − 1
2(D− 1)

(
ψ− 1

ψ

)
,

φ̇ =
D− 2

4
√

D− 1

(
ψ +

1
ψ

)
.

(18)

There are three different types of solutions, depending on whether γ is greater than, equal,
or less than a critical value. In terms of δ they have the following classification:

• If δ > 0, then

ψ =
1
δ

√
δ(δ + 1) tanh

(√
δ(δ + 1)ξ

)
, (19)

hence, from (18),
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A = − 1
2(D− 1)

log

[(
cosh

√
δ(δ + 1)ξ

) 1
δ
(

sinh
√

δ(δ + 1)ξ
)− 1

δ+1
]

,

φ = ϕ0 +
D− 2

4
√

D− 1
log

[(
cosh

√
δ(δ + 1)ξ

) 1
δ
(

sinh
√

δ(δ + 1)ξ
) 1

δ+1
]

.

(20)

• If δ = 0, then ψ is linear and

A = − 1
2(D− 1)

[
1
2

ξ2 − log(ξ)
]

,

φ = ϕ0 +
D− 2

4
√

D− 1

[
1
2

ξ2 + log(ξ)
]

.
(21)

• If − 1
2 < δ < 0, then

A = − 1
2(D− 1)

log

[(
cos

√
−δ(δ + 1)ξ

) 1
δ
(

sin
√
−δ(δ + 1)ξ

)− 1
δ+1
]

,

φ = ϕ0 +
D− 2

4
√

D− 1
log

[(
cos

√
−δ(δ + 1)ξ

) 1
δ
(

sin
√
−δ(δ + 1)ξ

) 1
δ+1
]

.

(22)

We recognize, for D = 10, the orientifold solution in the critical case with δ = 0 and
the heterotic one when δ = 1

3 > 0. The cosmological counterpart of what we found in this
section has been analyzed in [82], and generalizations with other scalar potentials can be
found in [87].

3.1. Critical Case

The dilaton potential that corresponds to the critical case has

γ = γc ≡
4
√

D− 1
D− 2

, (23)

that is δ = 0, leading to Equation (21) for metric and dilaton. After restoring all the αE

factors and returning to the y coordinates (with an appropriate integration constant in A
and a redefinition of ϕ0), this resembles the (critical in ten dimensions) orientifold case
of [66]. The Ricci curvature diverges at ξ = 0 and ξ → ∞, and the two timelike singularities
lie at a finite distance

L ∼ e−
1
2 γc ϕ0 , (24)

leading to spontaneous compactifications for all values of D.
One could ask which dynamical fields survive in the reduced theory, and we shall

investigate the behavior of gravity, gauge fields, and higher-form field strengths, motivated
by the field content of ten-dimensional and non-critical strings. We shall postpone the more
involved dilaton discussion to Section 5.3.

As to the gravitational interaction, one must compute the Planck mass in one dimen-
sion less, that is

1
κ2

D−1
∝

1
κ2

D

∫ ∞

0
dξ e(D−3)A+B ∝

1
κ2

D
e−

1
2 γc ϕ0 . (25)

This is always finite, hence (D− 1)-dimensional gravity is dynamical in our model.
We now consider p-form field strengths, assuming Einstein-frame couplings eaφ. The

relevant integral we must evaluate turns out to be proportional to

exp
{(

a− 1
2

γc

)
ϕ0

}
, (26)



Universe 2022, 8, 544 7 of 19

which converges for

−4
D− p− 1

(D− 2)
√

D− 1
< a < 4

D− p− 1
(D− 2)

√
D− 1

. (27)

In these cases, a (D− 1)-dimensional p-form field strength survives the compactification.
Note the upper bound on the possible p-forms that are compatible with exponential dilaton
couplings: p < D− 1.

3.2. Supercritical Orientifold and Heterotic

We now ask the same questions for other values of γ. In particular, we shall be
interested in two cases that are, in some sense, related to the orientifold and heterotic
models in ten dimensions. One, that we shall call “supercritical orientifold”, corresponds to

γo =
D + 2
D− 2

, (28)

that we shall only consider in D > 10, and the other, called “supercritical heterotic”,
corresponds to

γh =
2D

D− 2
. (29)

We take these as natural generalizations of the ten-dimensional orientifold and heterotic
cases because the corresponding (D-dimensional) “string-frame” potentials would come
with e−φ and no dilaton coupling, respectively. In the supercritical orientifold case, we
require D > 10 in order to fall within the supercritical solution of Equation (20). Note that
each case consists of two possible solutions, obtained by interchanging sinh with cosh. In
this analysis, we shall only consider Equation (20), because the other solution does not
have finite proper distance for any value of γ, hence no dimensional reduction occurs.

The proper length of the spatial direction singled out by the ansatz is finite for any
solution from Equation (20), with

L ∼ e−
1
2 γo,h ϕ0 . (30)

Moreover, nine-dimensional gravity is dynamical for any D, with the ϕ0 scaling given
by Equation (25), in which our two cases of interest simply correspond to γc → γo,h.

p-form field strengths, accompanied by eaφ in the action, will descend to p-forms in
(D− 1) dimensions only when (δo,h is the obtained from γo,h following Equation (15))

−4
D− p− 1

(D− 2)
√

D− 1
< a < 4

D− p− 1 + 2δo,h(δo,h + 1)(D− 1)
(D− 2)

√
D− 1(2δo,h + 1)

. (31)

Hence, p-form field strengths with exponential dilaton couplings are possible only for
p < (D− 1)(δo,h + 1).

Let us now make some comments on the two special cases of Equations (28) and (29).
The only differences will be in the p-form cases since γ only appears there.

Guided by gauge fields in string theory, in the supercritical orientifold case we shall
consider a two-form field strength accompanied by e−φ in the string frame, corresponding to
a = D−6

D−2 . Then, using the appropriate value for δo, which is valid for D > 10, Equation (31)
implies convergence in the range 10 < D < 26. Additionally, p-form field strengths
with a = 2D−4p

D−2 , that would be the counterparts of R-R fields, are present in the reduced
spectrum for

3(D− 2)
8

< p <
D
2
+

√
D− 1

2
− 1

2
. (32)

There are always integer values for p that satisfy Equation (32). Note that the requirement
D > 10 translates into p > 3.
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As to the supercritical heterotic case, a possible string-inspired generalization would
be to consider p-forms with string frame e−2φ couplings, that means a = −4 p−1

D−2 . Here,
form fields in the reduced theory survive when

p <
√

D− 1 . (33)

In particular, the Kalb–Ramond 3-form in ten dimensions does not survive the dimensional
reduction, leaving an Einstein–Yang–Mills theory in nine dimensions.

4. AdS Compactifications with Gauge Fluxes

As we have discussed in the preceding section, integrating out the compact directions
of Section 3, one always obtains gravity in the remaining dimensions, while only some
of the form fields survive. In this section, we consider the resulting EFT and some of
its vacua, focusing on the ten-dimensional orientifold case for definiteness. Appropriate
generalizations are available for the other dimensions and dilaton potentials. Before we
proceed, let us remark that, although the strongly coupled edges of the Dudas–Mourad
interval can be pushed to parametrically far away regions as ϕ0 → −∞, stringy corrections
could significantly affect the naive dimensional reduction1. As we will discuss in Section 5.4,
there are reasons to expect that the main effect of such corrections would be to resolve the
Dudas–Mourad singularity into an end-of-the-world defect.

For D = 10 and δ = 0, the ten-dimensional theory contains a Yang–Mills gauge field
with Einstein-frame coupling eφ/2 tr F2. Upon dimensional reduction in the Dudas–Mourad
background, the gauge coupling is finite [66], and fixing the Planck length `Pl ∝ (α′)

1
2 e

γc
14 φ0

one is left with gravity and gauge fields in the nine-dimensional EFT described by the action

S ∼ 1
`7

Pl

∫
d9x
√

g

[
R−

`2
Pl
2

e
2
7 ϕ0 tr F2

]
, (34)

namely nine-dimensional Einstein–Yang–Mills theory, where we have rescaled F with an
O(1) factor from the dimensional reduction. The simplest types of vacua one can extract
from this action consist of gauge fields with U(1) vacuum values in the Cartan subalgebra
and Freund–Rubin spacetimes that are products of a two-dimensional manifold times
a seven-dimensional one, as in [89]. The Yang–Mills equations then require electric or
magnetic field strengths, proportional to the 2-volume form. Because of this structure, we
will treat the gauge field as if it were abelian, thereby suppressing Lie-algebra indices.

The first solution is an AdS2 × S7 compactification with the round metric on the S7,
although any other compact Einstein manifold with appropriate constant curvature yields
a similar solution. The vacuum is completely characterized by

Fµν = f εµν , Rµν = −3
7

f 2`2
Ple

2
7 ϕ0 gµν , Rmn =

1
14

f 2`2
Ple

2
7 ϕ0 gmn . (35)

As usual in Freund–Rubin vacua, the field equations require that f be constant, and its
value can be re-expressed in terms of the electric flux number Ne ∝

∫
S7 ?e

2
7 φ0 F2. Up to

irrelevant O(1) numerical factors, the two AdS2 and S7 curvature radii scale according to

RS7 ∼ lAdS2 ∼ `Pl e−
1

42 ϕ0 N
1
6

e . (36)

Analogously, the second possibility is an AdS7 × S2 compactification with a magnetic U(1)
flux Nm ∝

∫
S2 F2 threading the S2. This leads to a Freund–Rubin vacuum whose curvature

radii have a linear dependence on the magnetic flux number,

RS2 ∼ lAdS7 ∼ `Pl e
1
7 ϕ0 Nm . (37)

All in all, these solutions are not qualitatively different from other non-supersymmetric
Freund–Rubin vacua, such as the ten-dimensional studied in [25,27,71,83]. Among the
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shared features, the field equations force spacetime to be AdS, and they forbid scale
separation according to Equation (36) and its magnetic counterpart Equation (37). These
features are expected on general grounds, both from several examples and from swampland
considerations. Another similarity that these simpler nine-dimensional vacua share with
their ten-dimensional counterparts is that they are parametrically weakly curved for large
fluxes. Actually, in this case, the weakly coupled parameter space is controlled both by ϕ0
and the flux N, since we expect these solutions to be reliable whenever

eϕ0 � 1 , e∓
1
7 ϕ0 Ne,m � 1 (38)

including both types of fluxes. Similar results can be derived for the heterotic model or
more general dilaton potentials. As we will discuss in Section 5, this is consistent with the
expectation that ϕ0 is determined by the number of 8-branes sourcing the Dudas–Mourad
geometry. Indeed, ϕ0 cannot be interpreted as a modulus arising from the dimensional
reduction over the interval.

As a final comment, let us observe that the nine-dimensional theory we have discussed
clearly allows scale-separated Ricci flat compactifications. However, they bring along
moduli with no obvious novel stabilization mechanism. More generally, the results we
have presented in this section illustrate a recurring theme in string-scale supersymmetry
breaking: within the regime of validity of EFTs, the issues of scale separation and the (sign
of the) cosmological constant remain even after supersymmetry is broken. In fact, one could
think of this as an indication that these models are compatible with swampland conditions,
and indeed the very starting point of our constructions avoids the arguments of [39–41].
As a further check of consistency with swampland conditions, in Section 5.2 we show that
KK modes arising from the Dudas–Mourad interval behave in a manner consistent with
the distance conjecture with a specific decay rate constant.

Indications of (In)Stability

We now begin the investigation of perturbative stability for the two Freund–Rubin
vacua, focusing on a subset of all possible perturbations.

For the time being, let us consider metric perturbations hMN and gauge perturbations
aM only along the background U(1). This is consistent because, at the linearized level,
non-abelian modes do not mix with the other types of perturbations. The linearized
equations become

�hMN +∇M∇Nh− 2∇(M(∇ · h)N) − 2RB
(MhN)B + 2RB

MANhB
A+

+ `2
Ple

2
7 ϕ0
[
2FM

A∇[N aA] + 2FN
A∇[MaA] − FMAFNBhAB

]
+

−
`2

Pl
14

e
2
7 ϕ0 gMN

[
4FAB∇AaB − 2FABFC

BhAC
]
+

−
`2

Pl
14

e
2
7 ϕ0 F2hMN = 0 ,

�aN −∇M∇N aM − FAN(∇ · h)A − FMA∇MhA
N +

1
2

FMN∇Mh = 0 .

(39)

Let us simplify our notation, letting

τ =
`2

Pl
2

e
2
7 ϕ0 f 2 (40)

and

L =
l(l + 6)

42
or

6l(l + 1)
7

, (41)

where we employ the former notation for the AdS2 solution and the latter for the AdS7 one.
We classify perturbations in terms of their behavior under the isometries of the background,
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and we implicitly expand the fields in terms of spherical harmonics on the spheres. We
also denote the 9D, AdS and internal Laplacian operators as �, �AdS and ∇2, so that Lτ
represents the eigenvalues of the internal Laplacian on spherical harmonics. In both cases,
tensor modes in AdS are described by

�hµν = − 2
l2
AdS

hµν , (42)

representing a massless graviton and its KK tower, therefore bringing no instability (for
AdS2 these are pure gauge). Similarly, hij fluctuations, that are AdS scalars and tensors
with respect to the internal rotation group, are stable and satisfy

�AdShij = Lτhij . (43)

Let us consider the remaining modes in the AdS2× S7 case. Internal vectors arise from

hµi = εµν∇νVi and ai , (44)

and mix according to

�AdS

(
Vi
1
f ai

)
=

(
L− 1

6 2
L− 1

6 L + 89
42

)
τ

(
Vi
1
f ai

)
. (45)

The resulting mass matrix has a vanishing eigenvalue for l = 1 and positive eigenvalues
for all other cases, and therefore this sector is stable.

Singlet scalar modes correspond to fluctuations

hµν = Agµν , hij = Cgij , hµi =
1
τ
∇µ∇iD , aµ = εµν∇νa , (46)

which parameterize our fields up to gauge transformations with independent parameters
on the two manifolds. For l = 0 there is no dependence on the internal sphere, and
it is possible to express these modes in terms of A and a, with a mixing matrix whose
eigenvalues lie above the B-F bound. A similar behavior emerges for l > 0, where two
algebraic relations among the linearized equations bring the independent fluctuations to
the form

�AdS

(
A
D

)
=

( 19
7 L + 12

7
24
49 L(1− 6L)

1 − 5
7 L

)
τ

(
A
D

)
. (47)

One branch of the two eigenvalues can become negative, being l(l−6)
42 τ, but, after adding

the appropriate B-F bound, all modes are stable.2

We now turn to the other AdS7 × S2 type of vacua. Vector modes from

hµi = εij∇jVµ and aµ (48)

mix according to

�AdS

(
Vµ
1
f aµ

)
=

(
L + 1

7 2
L L− 1

7

)
τ

(
Vµ
1
f aµ

)
. (49)

For l = 0 only the aµ modes are present, subject to the massless AdS Maxwell equations.
For l = 1 there is a triplet of massless vectors representing the isometries of S2, while all
other modes have positive squared masses.

Singlet scalar perturbations can be parameterized as in Equation (46), with the only
difference being ai = εij∇ja instead of aµ. The l = 0 subsector is again simpler, because a
and D are absent, and it is possible to write these modes in terms of a single equation for C,
with a positive definite spectrum. In the generic l 6= 0 case, one can use the two resulting
algebraic equations in order to reduce scalar perturbations to
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�AdS

(
τ
f a
C

)
=

(
L −1
− 24

7 L L + 12
7

)
τ

(
τ
f a
C

)
. (50)

The eigenvalues of this mass matrix lie above the B-F bound, therefore this sector is stable.
In the above analysis, we found no explicit example of unstable modes, but we expect

that both types of vacua be unstable, because non-abelian gauge perturbations can mix
with the background U(1). In fact, it is a known result in flat space that constant electric
or magnetic fields result in unstable modes when the fluxes are large enough [90,91]. In
the regime of validity of our vacua, encoded in Equation (38), curvatures are small and
fluxes are large, and therefore we expect the same mechanism to play a role. A detailed
analysis of this type of gauge instability in AdS× S backgrounds will be the subject of
future investigations.

All in all, our analysis in this section delimits the presence of (perturbative) instabilities
to the non-abelian gauge sector, since no unstable modes emerge in the gravitational and
abelian sector. Even if unstable modes were present, as expected on general grounds, it is
conceivable that replacing the internal sphere with a suitable compact Einstein manifold or
orbifold3 could rid these vacua of instabilities. The ultimate fate of these settings would then
be determined by non-perturbative instabilities, which in this case could comprise bubbles
of nothing with gauge flux attached, or transitions mediated by Yang–Mills instantons. It
would be interesting to compare these effects to the analyses of [26,27,30–33,92].

5. Moduli and Kaluza–Klein Masses

In this section, we argue that the free parameter ϕ0 in the Dudas–Mourad solutions
cannot be interpreted as a modulus. To this end, we provide two independent checks. The
most substantial includes the analysis of the KK spectrum of the Dudas–Mourad geometry,
which allows us to conclude that moduli and perturbative instabilities are absent in all
dimensions D. At the level of field fluctuations around the solution, the ten-dimensional
solutions of [66] are already known to be perturbatively stable [25]. The only potentially
offending perturbations are scalars, which can be reduced to a single eigenvalue problem.
While the full spectrum of KK modes on the internal interval was not worked out in [25],
the positivity of the squared masses follows from a simpler argument, which we now revisit
and extend.

5.1. Perturbative Stability

Here we extend these considerations to the general settings presented in Section 3.
To this end, following the approach in [25], we choose conformally flat coordinates xM =
(xµ, z) such that the solution takes the form

ds2 = e2Ω(z) ηMN dxMdxN ,

φ = φ0(z) ,

and once again only the scalar perturbations

ds2 = e2Ω(z) (ηMN + hMN(x, z)) dxMdxN ,

hµν = A ηµν ,

hµz = ∂µ D̂ ,

hzz = C ,

φ = φ0(z) + ϕ(x, z)

can lead to perturbative instabilities. To lighten the notation, we shall write V0 ≡ V(φ0)
and denote derivatives with respect to z with primes, except for the potential V where
primes denote derivatives with respect to φ. The resulting linearized field equations read
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− 1
2

(
� hMN − ∂(M∂ · hN) + ∂M∂NhA

A

)
+

D− 2
2

Ω′
(

∂(Mhz
N) − ∂zhMN

)
−
(

Ω′′ + (D− 2)Ω′2
)

hMN +

((
Ω′′ + (D− 2)Ω′2

)
hzz + Ω′ ∂ · hz − Ω′

2
∂zhA

A

)
ηMN

=
4

D− 2
∂(Mφ0∂N)ϕ +

e2Ω

D− 2
(
V0 hMN + V′0 ϕ ηMN

)
,

� ϕ− hzz φ′′0 − φ′0

(
∂ · hz − 1

2
∂zhA

A

)
− (D− 2)Ω′2 hzz =

D− 2
8

e2Ω V′′0 ϕ ,

and for the scalar perturbations in Equation (51) they simplify to

− 1
2
� A− 2D− 3

2
Ω′ A′ +

(
Ω′′ + (D− 2)Ω′2

)
C +

Ω′

2
C′ + Ω′ ∂2 D̂ =

e2Ω

D− 2
V′0 ϕ ,

(D− 3) A + C− 2(D− 2)Ω′ D̂− 2D̂′ = 0 ,

− 1
2

∂2 C + ∂2 D̂′ − D− 1
2

A′′ +
D− 1

2
Ω′ C′ + Ω′∂2 D̂

− D− 1
2

Ω′ A′ =
8

D− 2
φ′0 ϕ′ +

e2Ω

D− 2
(
V0 C + V′0 ϕ

)
,

− D− 2
2

A′ +
D− 2

2
Ω′ C =

4
D− 2

φ′0 ϕ ,

� ϕ− φ′′0 C− φ′0

(
1
2

C′ + ∂2 D̂− D− 1
2

A′
)
− (D− 2)Ω′2 C =

D− 2
8

e2Ω V′′0 ϕ ,

where ∂2 ≡ ηµν ∂µ ∂ν and we used the vacuum equations to simplify some terms.
One can conveniently use the diffeomorphism invariance along z to gauge away D̂.

Hence, one finds
C = −(D− 3) A (51)

which, along with the other constraints, allows to isolate A as the only scalar degree of
freedom of the system. Indeed, isolating

ϕ = − (D− 2)2

8 φ′0

(
A′ + (D− 3)Ω′ A

)
(52)

one finds

� A + (D− 2)

(
3 Ω′ −

e2ΩV′0
4 φ′0

)
A′ − 2(D− 3) e2Ω

(
V0

D− 2
+ (D− 2)

Ω′V′0
8 φ′0

)
A = 0 . (53)

This is the “master equation” describing linearized scalar perturbations. One can perform a
Fourier transform to expose the D− 1 translational modes, replacing them with momenta
pµ with p2 = −m2. Then, �A→ A′′ + m2 A. One can then recast the resulting equation in
a Schrödinger-like form via the substitution

A = Ψ exp

[
−D− 2

2

∫ z

z0

(
3 Ω′ −

e2ΩV′0
4 φ′0

)
ds

]
. (54)

Analogously to the special case in [25], the equation takes the guise of a Schrödinger
eigenvalue problem for the squared masses m2 = −ηµν pµ pν,

HΨ = m2Ψ , (55)

where the “Hamiltonian”H can be written in the form [25]
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H ≡ b +A†A , (56)

where the annihilation-like operator

A ≡ − d
dz

+
D− 2

2

(
3 Ω′ −

e2ΩV′0
4 φ′0

)
(57)

has the adjoint

A† ≡ d
dz

+
D− 2

2

(
3 Ω′ −

e2ΩV′0
4 φ′0

)
(58)

with Dirichlet or Neumann boundary conditions4. Finally, the function b is

b ≡ 2(D− 3) e2Ω
(

V0

D− 2
+ (D− 2)

Ω′V′0
8 φ′0

)
. (59)

Hence, the spectrum contains non-negative squared masses for b ≥ 0, or equivalently

Ω′(z)
φ′0(z)

=
dA/dy
dφ0/dy

≥ − 8
γ(D− 2)2 , (60)

where we used V′0 = γ V0 > 0. This condition was verified for both the orientifold and
heterotic vacua in ten dimensions [25]. Substituting (18) in (60), one arrives at

1
ψ
≥ δ

(
ψ− 1

ψ

)
, (61)

which, using the differential equation for ψ, becomes ψ̇ ≥ 0. This is always true for both
the critical case of Section 3.1, in which ψ̇ = 1, and the supercritical cases of Section 3.2, as
can be verified from Equation (19).

The above argument suffices to conclude perturbative stability, at least at the two-
derivative EFT level. Even if this feature survives higher-derivative corrections, the vacua
are expected to be metastable at best [23,24,27–29]. Bubbles of nothing appear to be the best
candidates for a decay channel, but they have not been found yet in this case.

5.2. Decompactification Limit

At any rate, it is important to push this analysis slightly deeper: in addition to stability
properties, the masses of KK states encode other interesting physics. In particular, they
constitute an infinite tower of states, which becomes light in the decompactification limit.
According to the distance conjecture [80], this decay should be exponential in the field
excursion ∆φ in scalar field space, in the sense that

mKK(φ)

mKK(φ0)

∆φ→∞∼ e−O(1)∆φ . (62)

Let us now see how this occurs in the present setting. To begin with, recall that the Dudas–
Mourad geometries are characterized by a single free parameter ϕ0, which arises from
the D-dimensional profile of the dilaton. Because of our gauge choice B = − γ

2 φ, the
solution written in terms of the y coordinate depends on ϕ0 only additively in B(y) and
φ(y). Therefore, in the conformally flat coordinates of Equation (51) dz = eB−A dy scales
as e−

γ
2 ϕ0 , while ∂z scales as its reciprocal, As a result, upon substituting �A→ A′′ + m2 A

in Equation (53), all terms scale as eγϕ0 except m2 A. Hence, one can rewrite Equation (53)
in terms of the single free eigenvalue m2e−γϕ0 , which generically assumes O(1) positive
values. Thus, varying ϕ0 → ϕ, the same eigenvalue varies according to

m2(ϕ)

m2(ϕ0)
= eγ∆ϕ , (63)
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which corresponds to an exponential decay for ϕ→ −∞. This is indeed the decompactifi-
cation limit [69,93], as evident from Equation (30). In particular, combining Equation (30)
with Equation (63) shows that the Einstein-frame proper length L of the internal dimension
scales as 1

m as expected. Here, the O(1) constant of Equation (62) is fixed to γ
2 .

5.3. Absence of Moduli

According to the preceding discussion, one could be tempted to conclude that there is
an associated modulus in the (D− 1)-dimensional EFT, whose VEV gives back ϕ0. This is
actually not the case, since there is no normalizable zero-mode solution of Equation (53).
The potential closely resembles an infinite well of length L, the proper length of the internal
interval. Thus, one can expect at least the first few eigenvalues to be approximately
mn ≈ n π

L , with n > 0. Indeed, a numerical analysis of Equations (53) and (55) based on the
shooting method in the ten-dimensional orientifold models reveals that the first KK masses
mn occur at

m1 ≈ 0.97
π

L
, m2 ≈ 2.13

π

L
. (64)

Accordingly, the even (odd) profile Ψ1 (Ψ2) resembles the corresponding sinusoidal solution
of a quantum particle in a box. Of course, we do not expect this intuition to persist for
very massive KK states since the corresponding eigenfunctions would probe the deviation
of the potential from the infinite well more accurately. We have not been able to extract
eigenvalues with similar precision in the heterotic model due to numerical instabilites,
although the qualitative behavior is similar.

For completeness, we mention that additional indications that ϕ0 should not be taken
as a modulus come from the equations of motion. In fact, promoting ϕ0 to a spacetime-
dependent field ϕ(x) has the consequence of allowing a non-vanishing µy gravitational
equation. In any dimension, since A′ and φ′ have different functional forms in y, this
implies that

∂µ ϕ = 0 . (65)

Therefore, only a constant value for ϕ0 is allowed, ruling out any interpretation as a
dynamical modulus.

Despite the absence of moduli, the exponential vanishing of KK masses remains
physically significant: it is natural to expect ϕ0 to play a role akin to parameters such as the
number of branes in similar configurations. Some evidence in favor of this was found in [27],
where the Dudas–Mourad solutions were connected to a more general family of p-brane
solutions, and the free parameter in the extremal case is indeed connected to the number of
brane sources via a Dirac quantization condition. Accordingly, the scaling of Equation (63)
would resonate with generalized versions of the distance conjecture [4,94,95], perhaps one
that can encompass discrete parameters, such as the one put forth in [37].

5.4. On Cobordisms to Nothing

Let us conclude this analysis with a few speculative remarks. The solutions that we
have discussed in this paper feature yet another example of what has been dubbed “(local)
dynamical cobordism” [76–78], since spacetime ends in a singularity at finite distance.
This type of behavior has been connected to the distance conjecture and the cobordism
conjecture [72], which has recently received much attention [73,74,96] and connects topology
change to (Dai-Freed) anomalies [97,98].

It is conceivable that the infinite-distance scaling of the KK masses in Equation (63)
could be connected to the existence of an end-of-the-world (ETW) defect, as advocated
in [76–78]. At the D-dimensional level, one can clearly see the diverging field excursion,
and the appearance of the ETW defect seems to be universal. To wit, replacing the putative
8-brane source of the Dudas–Mourad geometry with general (charged or uncharged) p-
brane sources, the codimension-one ETW defect still appears, albeit wrapped around the
dimensions transverse to the p-branes [27]. This supports the idea that the ETW defect
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is an actual physical object, and indeed in the T-dual picture of [99], where one has more
transverse dimensions, a solution for the isolated ETW 7-brane was recently found [96].
While it is unclear whether a similar approach can be understood directly from our duality
frame, the classification of bordism groups stemming from [98] can probe the existence of
suitable 8-brane and 7-brane defects connected by T-duality5.

From the (D− 1)-dimensional perspective, the end of spacetime should manifest itself
as a domain wall to nothing. In order for this to be possible in all configurations of the
theory, the appropriate bordism group ought to vanish. It is unclear what this appropriate
structure could be6, but one can expect these arguments to remain valid in the absence
of supersymmetry, since they do not rely on it. This is particularly advantageous in the
settings that we have discussed in this paper, since it is not clear whether a fully stable
semiclassical configuration even exists7—a topological argument to establish or rule out
the consistency of these models could overcome this difficulty.

6. Conclusions

In this paper, we revisited and clarified several aspects of the Dudas–Mourad geometry.
In particular, we focused on dimensional reduction, which turns out to yield Einstein–Yang–
Mills theory at low energies. Furthermore, we showed that this setup contains no moduli.
However, the full geometry is a priori unreliable globally, due to the singularities at the
endpoints of the interval. We discussed a possible connection between this issue, the
triviality of cobordism classes and dynamical tadpoles.

The main upshot of our analysis is that the spontaneous compactification driven
by dynamical gravitational tadpoles leads to simpler EFTs, devoid of higher-form fields
and scalar moduli (and of course supersymmetry) at low energies. However, this type
of dimensional reduction, if at all reliable due to the issues discussed in Section 5.4, only
works when reducing from 10d to 9d. Additional compactifications are fraught with the
standard trade-off between scale separation and moduli stabilization, as we discussed
in Section 4. In this context, the spontaneous emergence of a privileged compact dimension
is somewhat reminiscent of the recent “dark dimension” scenario proposed in [100] (see
also [101,102]).

A workaround could be studying non-critical string theories applying the methods
of Section 3. It is nonetheless conceivable that string corrections would be relevant in
any scenario of this type. A cobordism-based kinematical approach could be instructive
in this respect: by identifying intrinsic properties of the putative end-of-the-world de-
fects responsible for the classical singularities, one could devise methods to extract more
reliable lessons from string-scale supersymmetry breaking. For instance, the approach
of [98] suggests examining the geometry from different (T-)dual frames, a direction initially
explored in [99,103] and recently revisited in [96]. Analyzing the scaling properties of
the singularities [27,76–78] in each frame could provide further insight into their stringy
nature. This would potentially guide investigations beyond the low-energy EFT, or show
an inconsistency of these backgrounds in string theory. If such an inconsistency were to
be found, braneworlds could provide an alternative to scale-separated compactifications.
In supersymmetric settings one can show how effective supergravity dynamics arises on
the worldvolume [104–106]. With (string-scale) supersymmetry breaking, however, one
naturally finds nucleating branes in metastable AdS vacua [27], yielding dS braneworld
cosmologies [107]. These provide the first known string construction of the dS bubble
scenario studied by [108–114] from a bottom-up perspective.
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Notes
1 Specifically, the presence of warping and singularities needs to be treated with care. See [88] for recent efforts in this direction,

albeit in a different context.
2 Fluctuations with l = 3 are marginally stable, since the eigenvalue exactly matches the B-F bound.
3 This has been discussed in [25] for ten-dimensional heterotic vacua with R-R fluxes.
4 We recall that the extent of the z direction is finite.
5 We thank Arun Debray for pointing this out to us.
6 See [74] for a possible connection to the Whitehead tower.
7 There are however some hints that these theories could survive in a stringy regime living at infinite distance [37]. Hence, there

could be a weakly coupled dual frame describing the physics.
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