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Abstract: Probing the polarization of gravitational waves (GWs) would provide evidence of graviton,
indicating the quantization of gravity. Motivated by the next generation of gravitational wave
detectors, we make an attempt to study the possible helicity coupling of structured lights to GWs.
With the analog between gravitational fields and the generic electromagnetic media, we present a
4-vector optical Dirac equation based on the Maxwell theory under the paraxial approximation. It is
found that twisted lights propagating in a gravitational field can be viewed as a non-Hermitian system
with PT symmetry. We further demonstrate that the coupling effect between angular momentums
of the GWs and twisted lights may make photons undergo both dipole and quadrupole transitions
between different orbital-angular-momentum (OAM) eigenstates and lead to some measurable optical
features, including the central intensity brightening and macroscopic rotation of the intensity pattern
for twisted lights. The former is spin-independent, while the latter is a spin-dependent phenomenon,
both of which can be viewed alternatively as the spin-orbital-Hall effect of structured lights in the
GWs and can serve as an indicator of the particle nature of GWs.

Keywords: gravitational wave; graviton; Maxwell theory; Dirac equation; spin–orbit interaction:
light; structured light

1. Introduction

The detection of gravitational waves (GW) by the LIGO interferometer fulfilled exper-
imental verification of the last prediction from the linearized Einstein theory of general
relativity [1,2]. In the low-energy regime, the canonical quantization of linear perturbations
around the Minkowski background yields a massless spin-2 particle called a graviton [3].
Though we believe that long-range gravity is mediated by the graviton, its existence has
never been justified experimentally due to its extraordinary weakness. Actually, measuring
a graviton is to make sense of the particle nature of GWs according to wave–particle duality
at the quantum level, namely, recognizing some particle features by direct or indirect
detections [4]. One theoretical possibility was suggested to detect a single graviton by
the emission and absorption of gravitons [5,6] and has been revisited by considering the
transition between discrete quantum states with different angular momentums [7].

Moreover, the direct detection of gravitational waves by the advanced LIGO interfer-
ometer and the advanced Virgo interferometer marks the beginning of the era of gravita-
tional wave astronomy [8–10]. These discoveries stimulate the great efforts devoted to de-
velop more advanced optical detection technology. With upgrading to the next-generation
interferometers, it is expected to move to design sensitivity and observe ever-increasing
numbers of GW sources. The next generation of a GW laser-interferometric GW detector
will be upgraded to have unprecedented sensitivity by minimizing various technical noises.
One limiting noise arises from mirror thermal noise produced by the Brownian motion
of particles in coatings and substrates. Besides physically cooling a mirror, an alternative
solution is to change the mode shape of the laser beam inside the interferometer, e.g.,
resonating the higher-order Laguerre Gauss (LGl

p) modes in the detector arm cavities to
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smooth out the thermal noise fluctuations over a bigger portion of the mirror surface [11].
A well-developed technology has made it possible to produce higher-order LG modes with
high power output and high mode purity, as required in GW detection [12,13]. Therefore,
it would be crucial to understand the wave mechanics of the higher-order LG modes
interacting with the passing gravitational wave.

Though wave theory offers a complete classical description of optical phenomena in
nature, in most application situations, the typical wavelength of light is much less than the
inhomogeneous length scale of the medium, the geometric optics approximation is valid,
and the correspondence principle allows us to make a simple analysis in the context of the
Hamiltonian dynamics of particles, which can be induced from the dispersion relationship
associated with the wave equation. On the other hand, the Maxwell theory encodes intrinsic
degrees of freedom—the polarizations associated with rotating electric and magnetic fields,
corresponding to the two spin states of photons. In addition, lights can possess two types
of orbital angular momentums (OAM)—the intrinsic OAM from the twisted wavefront of
structured lights and the extrinsic orbital angular momentum from helical optical paths
in inhomogeneous media. It has been realized that the interplay between various optical
OAMs—spin–orbit interactions of light (SOI)— will lead to a variety of optical phenomena
on subwavelength scales [14–17]. The important manifestation of the SOI phenomena is the
spin-Hall effects in inhomogeneous media arising from the spin–extrinsic OAM interaction,
indicating how the intrinsic polarization degrees of freedom affect the light trajectories
beyond the geometric optics approximation [18–25].

For light propagation in a gravitational field, the curved space background can be
transformed into a linear optical medium, whose optical properties characterized by the
effective dielectric tensor are fully specified by the spacetime geometries. A typical example
is the deflection of light in gravitational fields; this phenomenon can be illustrated by the
correspondence between the refractive index and the scalar gravitational potential. Again,
a rotating gravitational field exhibits the optical activity attributed to the vortical dragging
vector, corresponding to gyrotropic materials [26–29]. By this analog, the gravitational
spin-Hall effect can be easily understood for lights propagating in curved spacetime [30–33].

The motivation for this work is two-fold. First, the next generation of GW detectors
may provide more information about the polarization modes of GWs. This paper is to
explore the spin-orbital-Hall effect of structured light due to GWs, which may potentially
reveal more polarization structures of GWs and allow for testing the theory of gravity
beyond GR and justifying the particle nature of GWs. Secondly, it would be interesting to
seek an alternative mechanism for detecting GWs in the polarization space, which requires
a full vector-wave analysis of structured light coupling with GWs on subwavelength scales.

However, it is noted that the current approach for the spin-Hall effect of light is
based on the geometrodynamics of spinning particles [20–24], which is not applicable to
dealing with structured lights with intrinsic OAMs propagating in an inhomogeneous
medium. In this case, full vectorial-wave mechanics is required to describe the behavior of
polarized structured lights. In this work, based on the four-vector optical Dirac equation
developed by Feng and Wu [34], we investigate the spin-Hall effect of light in GWs,
seeking an alternative method to detect GWs. The paper is organized as follows. The
optical Dirac equation of paraxial light in linearized gravitational fields is presented in
Section 2. We further discuss the dipole and quadrupole interactions of structured light
with GWs in Section 3. In Section 4, we present perturbation analyses of the GWs’ signals in
two numerical experiments and discuss their physical implications. Finally, we summarize
the paper and give concluding remarks in Section 5.

2. Optical Dirac Equation of Paraxial Light in Gravitational Fields

Let us adopt the following 3+1 decomposition, e.g., [35], defining the spatial metric by

γij = gij, γij = gij − g0ig0j/g00 (1)
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and the 3D dragging vector g as

gi = −g0i, gi = g0i/g00, (2)

The electromagnetic vectors are identified by

Ei = Fi0, Bi =
1

2
√

γ
εijkFjk (3)

Di = F0i/N , Hi =
1
2
√

γεijkFjk/N (4)

where N =
√
−g00, and γ is the determinant of γij. These definitions lead us to the

Maxwell equation in a noncovariant form

∇× E = −
(
√

γB)t√
γ

, ∇ · B = 0 (5)

∇×H =
(
√

γD)t√
γ

, ∇ ·D = 0 (6)

in which D and B are related to E and H by the constitutive equations,

D = N (E + g× B) (7)

B = N (H + D× g) (8)

In linearized gravitational wave theory, gµν = ηµν + hµν, |hµν| � 1, the spacetime
background can be approximated adiabatically by an irrotational gravitational field. Thus,
N = 1, g = 0, the electric field E and magnetic field B are related to the auxiliary fields
D and H simply by the local constitutive equation Di = γijEj, Bi = γijHj. Formally, for
a light beam propagating in a gravitational wave, the gravitational field is equivalent
to an optical medium with the permittivity and permeability tensors obeying a simple
equality relationship with the spatial metric γ = {gij}, ε−1 = µ−1 = γ, which actually
corresponds to the spin-degenerate condition in photonic topological insulators [36]. Since
the wavelength of light is much less than that of GW, the GW is further assumed to be
a static gravitational field. We define a 6-vector, F = (D, iB)T , in this way, the Maxwell
equation becomes a Schrödinger-like compact form

i
∂F
∂t

= σx ⊗ [(k · s) · γ]F (9)

As having been discussed by Feng and Wu [34], the Maxwell equation in generic
media can be converted to a non-Hermitian γ5-extended Dirac theory for massive fermions.
Central to this approach is to perform vectorial analysis on the helicity basis spanned
by the transverse basis e± with respect to a given direction, which can be aligned with
the propagation direction of the incident light, e.g., without a loss of generalities, taking
the z-axis. In this case, the helicity basis satisfies (ez · s)e± = ±e±. The transversality
condition places a constraint on the polarization states of photons, implying the field
equation, Equation (9), is reducible. It is noted that, under the paraxial approximation, the
longitudinal components can be explicitly derived from the transverse condition, and the
electromagnetic 6-vector F can be reduced to four independent components. Introducing
the vector wavefunctions

Ψ± = D⊥ ± iσ3B⊥ (10)

with the transverse components D⊥ = (D+, D−)T and B⊥ = (B+, B−)T in the helicity
space and combining Ψ+ and Ψ− to form a 4-vector Ψ = (Ψ+, Ψ−)T we can arrive at the
following optical Dirac equation,

i
∂

∂t
Ψ = (βm̂ + βα · p̂)Ψ (11)
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in which the effective mass term is

m̂ = (1 + Q0)k̂z +
1 + q0

2kz
k̂2
⊥ − q · k̂⊥ (12)

and the momentum components are given in the helicity basis through p̂ · σ = p+σ+ +
p−σ− + pzσz and σ± = 1

2 (σx ± iσy),

p± = Q±2k̂z − 2Q±1k̂± +
1 + q0

kz
k̂2
±, pz = 0, (13)

where Q0 ≡ 1
2 (h11 + h22) and q0 = h33 are the monopoles, q = {Q+1, Q−1}T is the

dipole momentum with the components Q±1 = (h13 ∓ ih23)/
√

2, and the quadrupoles
Q±2 = 1

2 (h11 − h22)∓ ih12. The effective momentums, Equation (13), only have surface
terms in the transverse plane. It can be seen that Equation (11) describes a non-Hermitian
system with PT symmetry [37–39] and is similar to the Jackiw–Rebbi model in topological
insulators [40,41]. The only difference between the optical Dirac equation, Equation (11),
and the Dirac equation for a spin-1/2 particle is an extra β operation appearing on the
momentum term in the former.

Under the geometric optics approximation, keeping the leading term ∼O(kz) in
Equation (11) yields the energy-eigenvalue equation

λ2 + |Q+2|2 = (1 + Q0)
2 (14)

where ω = λkz. Equation (14) has two solutions with positive and negative energies.
Since the anti-particle of a photon is itself, a photon with negative energy and helic-
ity can be regarded as a mirror photon with positive energy and opposite helicity. Ac-
cording to Equation (14), its solution can be parameterized by λ = (1 + Q0) cos θQ,
Q±2 = |Q±2|e±φQ = (1 + Q0) sin θQe±φQ . Accordingly, the positive energy eigenstates
with opposite helicities are written as

|+〉 =


cos

θQ

2
0
0

− sin
θQ

2
e−iφQ

; |−〉 =


0

cos
θQ

2
− sin

θQ

2
eiφQ

0

 (15)

We consider the positive-energy solutions to Equation (11) only, which can be written
by a linear superposition of the two helicity eigenstates in Equation (15),

Ψ = (ϕ+|+〉+ ϕ−|−〉)e−iωt+ikzz (16)

We define 2-spinor Φ = (ϕ+, ϕ−)T , and we obtain the optical Schrodinger equation

i(1 + Q0)
∂Φ
∂z

= −1 + q0

2kz
∇2
⊥Φ + V(r⊥)Φ (17)

with the complex optical potential

V(r⊥) = −q · k⊥ + σ3
1 + q0

2λkz

[
Q−2k̂2

+ −Q+2k̂2
−
]

(18)

where only the terms of the linear order of O(hij) are kept as in the linearized gravity theory,
clearly, the above equation takes a form similar to the simplest optical model describing the
paraxial propagation of light in an inhomogeneous dielectric medium with a complex re-
fractive index [42,43], whereas here, it is emulating a two-component quantum system. The
potential from Equation (18) consists of two parts, the real part gives a dipole interaction,
while the imaginary part is a non-Hermitian quadrupole interaction corresponding to the
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optical gain or loss of the medium. On the other hand, the Hamiltonian equation, (17), has
been actually decoupled into two independent scalar equations, implying that the spin-up
and spin-down states evolve independently, and thereby, no helicity transition occurs. The
helicity-dependent quadrupole coupling is an anti-Hermitian conjugate of each other for
the spin-up and -down states, which ensures the PT symmetry of the optical fields and
leads to optical chirality.

On a flat space, the optical potential on the right side of Equation (17) vanished due to
the spacetime perturbations, and thus Equation (17) reduces to the familiar paraxial equa-
tion, which could have family solutions of structured light with OAMs. In the cylindrical
coordinates, the paraxial equation has a set of solutions of the Laguerre–Gaussian modes

LGl
n(ρ, z) =

al
n

w(z)

(√2ρ

w(z)

)|l|
L|l|n

( 2ρ2

w(z)2

)
exp

[
− ρ2

w(z)2

]
· exp

(
i
kρ2

2R

)
exp (ilφ) exp (−iϕ(z)) (19)

where n and l are the radial and the azimuthal indices, the order of the model is given
by N = 2n + |l|, the constant al

n = (2n!/π(n + |l|)!)1/2, w(z) is the width of mode, R the
radius of the wavefront curvature, and the Gouy phase factor ϕ(z) = (N + 1) tan−1(z/zR),
zR = 1

2 kw2
0, here w0 = w(z = 0) is the beam waist.

3. Dipole and Quadrupole Interaction of Photons and Gravitational Waves

In metric gravity theory, GWs are allowed, at most, to have six polarization modes,
including two tensor types (spin-2), two vector types (spin-1) and two scalar types (spin-
0) [44,45]. The dipole momentum q in Equation (18), HD = −q · k⊥ is associated with the
vector-type excitation. If the incident vector eg of GWs is at a given direction of {θg, φg}
in the spherical coordinates with respect to the propagating direction ek of the light beam,
Einstein’s theory only allows for the existence of the tensor polarizations of plus (+)
and cross (×),

q = h+(eg · ek)[(eg · ek)ek − eg] + h×(eg × ek) (20)

In the case of the incident GW propagating parallel with the light beam, the dipole is
identically zero, q = 0, as given in the TT gauge. This dipole interaction consists of two
contributions, one is ∝ h+(eg ·k⊥), and the other is ∝ h×[eg · (ek×k⊥)]. The former is from
the GW polarization coupled with the OAM density flow of photons So ∝ Im[E∗ · (∇E)],
and the latter is from the spin density flow Sc ∝ Im[∇× (E∗ × E)] [46].

In the ’helicity basis’, the dipole interaction can be alternatively written by

HD = i
[
Q−1∇+ + Q+1∇−

]
(21)

where
iQ± = − 1√

2
sin θg(h× ± i cos θgh+)e−iφg

The complex differential operators ∇± in the cylindrical coordinates become

∇± =
1√
2
(∇x ∓ i∇y) =

1√
2

e∓iφ(∂ρ ±
1
ρ

Lz) (22)

where Lz = −i∂φ is the orbital angular momentum operator in the z-direction. It is noted
that, for the eigenstates Lz|l〉 = l|l〉, ∇± act as the ladder operators to lower/raise OAMs
by one unit. Thus, the dipole interaction will make the initial l mode produce two extra
modes with the OAM number of l − 1 and l + 1. For the LG modes, |n, l〉 = LGl

n(ρ, z),
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it is not difficult to work out the following ladder relationships for the lowering and
raising operators,

∇±|n,±l〉 = kw
[√

n + l|n,±(l − 1)〉+
√

n + 1|n + 1,±(l − 1)〉
]

(23)

∇∓|n,±l〉 = kw
[√

n + l + 1|n,±(l + 1)〉 −
√

n|n− 1,±(l + 1)〉
]

(24)

where kw = 1/w0, l > 0 and± signs are taken in the meantime on both sides of the equations.
The imaginary part in the complex potential Equation (18) is the helicity-dependent

quadrupole interaction. In Einstein gravity, the quadrupole moment can be expressed
explicitly as

Q±2 =
[1

2
h+(1 + cos2 θg)∓ ih× cos θg

]
e∓i2φg (25)

which are two tensor types associated with the spin-2 excitations, i.e., gravitons. Physically,
this quadrupole interaction could be understood as the coupling effect between the helicity
of GWs and OAM of twisted lights, which will cause photons to undergo quadrupole
transitions by decreasing and increasing the OAMs of two quantum units simultaneously.
For the quadrupole coupling Q−2∇2

+, the photon will lose two units of OAMs by emitting
a graviton, and conversely, the coupling Q+2∇2

− will cause the photon to gain two units
of OAMs by absorbing a graviton. Due to the helicity dependency of the quadrupole
interaction, the resulting extra helicity modes would have opposite signs for right and left
circularly polarized lights, i.e., an overall phase difference of π. Actually, this chirality is due
to the ’time-reversal symmetry breaking’ [47]. Recall that, in classical electromagnetism, this
breaking is always attributed to the axial property of the magnetic field vector, i.e., even inP
and odd in T , and is manifested by a classical example of the Faraday rotation, in which the
polarization plane of a light beam will acquire a rotation angle in a magnetic field aligned
with the propagating direction of lights. As we will demonstrate later, this quadrupole
coupling effect will also exhibit a new optical activity for polarized twisted lights.

In addition, it should be emphasized here that there exists additional rotation freedom
from the GW polarization around eg, with respect to which the polarizations {h+, h×}
are defined. Performing a rotation in the transverse plane e′⊥ = R(ψ)e⊥, (R is a rotation
transformation with an angle ψ), we have {h′+, h′×}T = R(2ψ){h+, h×}T .

4. Perturbation Analysis and Numerical Experiments

In the following, we will present two typical ideal experiments to demonstrate the
optical features induced by the dipole and quadrupole interaction between structured
lights and gravitational waves. We can apply the perturbation theory to solve Equation (17).
Since the Laguerre–Gaussian modes form a complete and orthonormal set with respect to
the mode indices n and l in the polar plane {ρ, φ}, we can make a decomposition such that

ϕ±(z) = ∑
m,k

ξ±m.k(z)|m, k〉 (26)

Substituting this expansion of Equation (26) into Equation (17), we have

i
dξ±n,l(z)

dz
= ∑

m,k
〈n, l|H±|m, k〉ξ±mk (27)

where
H± ≈ i

[
Q−1∇+ + Q+1∇−

]
± 1

2kz
[Q−2∇2

+ −Q+2∇2
−] (28)

in which only linear terms in O(hij) are kept. ξ±n,l(z) can be obtained by directly integrating
the summation in Equation (27) along the propagating distance z.
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Dipole Interaction—Let us consider an incident beam of the Hermite–Gauss mode HG10,
which can be written by a superposition of two LG modes with the opposite OAMs, l = ±1,

|in〉 = HG10 =
1√
2
(|0,+1〉LG + |0,−1〉)LG

The linear perturbation analysis yields the extra four modes due to the dipole interaction,

|out〉 = |in〉+
√

2Q1kwL cos γ
[
|0, 0〉LG + |1, 0〉LG

]
(29)

−Q1kwL
[
e−iγ|0,+2〉LG + eiγ|0,−2〉LG

]
with

Q1 =
1√
2

sin θg

√
h2
+ cos2 θg + h2

×, (30)

tan β =
h+
h×

cos θg, γ = φg − β (31)

where L is the optical length of the detector. For each LG±1
0 mode, it carries h̄ of OAM per

photon and has a well-known donut-like intensity profile. Due to the dipole interaction, the
induced mode involves one by lowering the OAM of one unit and, consequently, gives rise
to the vortex-free Gaussian-like beams of |0, 0〉LG and |0, 1〉LG modes, producing a bright
spot in the center. There are two other high-order modes with l = ±2, each acquiring
an extra phase factor but with opposite signs, and thus making a global rotation of the
intensity pattern by angle α in Equation (31). It is noted that the rotation angle made by
the gravitational wave depends on the strain ratio of the cross and plus components—a
macroscopic quantity that can be recognized easily if the corresponding signals resulting
from GWs are detectable.

In Figure 1, we illustrate the central intensity brightening and pattern rotation resulting
from the dipole effect with an ideal numerical experiment that displays various intensity
patterns in different optical-arm orientations. Experimentally, combing the data obtained
from the different photodetectors in this network with the theoretical predictions allows
for a more accurate estimation of the GW’s physical properties and places more constraints
on various gravitational theories.
Quadrupole Interaction—Since quadrupole interaction is a Hermitian conjugate for oppo-
site spin orientations, we consider a superposition of two Laguerre–Gaussian modes with
opposite OAMs of quantum number ±(l = 2) and with opposite circular polarizations,

|in〉 = Fl0(r⊥, z) ·
[
|↑〉ei2φ + |↓〉e−i2φ

]
/
√

2 (32)

where |↑〉 = (1, 0)T , |↓〉 = (0, 1)T are two 2-vectors for the spin-up and -down states,
respectively, and the notation for the LG modes |n,±l〉LG = Fln(r⊥, z)e±ilφ have also been
used. The input beam expressed by Equation (32) is an optical vortex with nonuniform
polarization, which can be generated by using liquid–crystal converters [48] or spatially
varying dielectric gratings [49]. Applying the linear perturbation analysis, we can find an
extra vortex-free optical field produced by the GW’s tensor modes,

|out〉 = |in〉+ 1√
2

Q2kzL
( kw

kz

)2
(F00 + 2F01 + F02)

[
|↑〉eiγ + |↓〉e−iγ

]
−
√

3Q2kzL
( kw

kz

)2
F04

[
|↑〉ei(γ+4φ) + |↓〉e−i(γ+4φ)

]
(33)
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where

Q2 =
√

h2
+(1 + cos2 θg)2/4 + h2

× cos2 θg

tan δ =
2 tan β

(h+/h×)2 + tan2 β
, γ = 2φg + δ (34)

where β is given by Equation (31). As indicated in Equation (33), the output beam includes
an extra term due to the quadrupole interaction. As a result, the new mode becomes a
linear polarization beam with a relative rotation angle γ and has a Gaussian-like trans-
verse intensity profile, exhibiting both the central intensity brightening and changes in
polarization states. Similar to the dipole effect, the output modes also include high-order
modes with l = ±4, and the corresponding intensity pattern will be rotated by an angle
γ that depends on both the GW’s parameters and the direction angle of the lights. We
demonstrate the quadrupole effect in Figure 2, where the input light field is assumed to be
a single mode |0, 2〉 with right-circular polarization.

Figure 1. Demonstration of the dipole signal in the GW polarization experiment. We first set up
a laboratory coordinate system; the coordinate origin is located at the light source, a network of
photodetectors is uniformly placed on the circle centered on the origin, the radius of the circle is L,
the xy plane is the plane where the photodetectors are located, and its normal direction points to the
zenith, set to the z-axis. In our ideal numerical experiment, we make use of eight detectors; the angle
between any two adjacent arms is thus 45◦. The split light beams injected from the light source are
sent to each photodetector along the arms. The incident GW is assumed in the direction of θg = 45◦,
φg = 0◦, and the strains is set to h×/h+ = 1 fixed at θg = 90◦, φg = 0◦ in the TT gauge. Adopting the
Hermite–Gauss mode HG10, which is a superposition of two LG modes with the opposite OAMs,
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l = ±1, |in〉 = HG10 = 1√
2
(|0,+1〉LG + |0,−1〉)LG, the additional dipole signal under the influence

of GWs is composed of the vortex-free mode
√

2kwLQ1 cos γ
[
|0, 0〉LG + |1, 0〉LG

]
and the vortex

modes kwLQ1
[
e−iγ|0,+2〉LG + eiγ|0,−2〉LG

]
where the complex dipole momentum has been written

as Q±1 = Q1e±iγ. Given the GW’s strains and incident direction, Q1 and γ vary with the azimuthal
angle of the optical arms. The diagram presents the false color intensity profile of the input (at the
center) and output (the surrounding frames) light beams, indicating both the central brightening
and global rotation of intensity patterns. The normalized transverse intensity pattern for an incident
HG10 mode (upper left), and output excess mixed modes in different angles of α = 0◦, (upper right)
α = 45◦ (lower left) and α = 90◦ (lower right).

Figure 2. The quadrupole signal in the GW polarization experiment. The laboratory coordinate
system is the same as that described in Figure 1. The incident GW is assumed in the direction of
θg = 30◦, φg = 0◦, and the strains are set to h×/h+ = 1. The input light beam adopts the LG mode
|in〉 = |0, 2〉, whose transverse intensity profile is plotted in the upper right panel. The quadrupole

interaction leads to the extra OAM modes |extra〉 = 1√
2

kLzQ2(kw/kz)2
[
e−iγ(|0, 0〉+ 2|1, 0〉+ |2, 0〉)−

√
3eiγ|0, 4〉

]
. Given the GW’s properties, Q2 and γ are functions of the direction angle φ of optical

arms. In the lower-left panel, γ(φ) are plotted for different incident polar angles as indicated by the
legends. Moreover, the right section (2 × 3 frames) illustrates the false color intensity profiles of
the extra modes (upper) and the interference pattern between the input mode and the extra modes
(lower), at different azimuthal angles of optical arms, from left to right corresponding to 45◦, 135◦,
and 225◦ respectively.

Since the SAM of photons stays unchanged during the quadrupole transition, the
changes in OAMs can be attributed to the helicity-2 gravitons. Taking account of the
T breaking corresponding to the optical gain or loss, the net effect of the quadrupole
process can be interpreted by either emitting or absorbing on-shell gravitons. Given the
extreme weakness of the gravity, the momentum or energy transfer is hardly measured
by the available technology, however, the precision quantum optical measurements make
it possible to detect the AM transfer from gravitons to photons, and hopefully unveil the
quantum nature of the gravitation.

5. Discussion

We summarize the paper and make some concluding remarks as follows. Based on the
four-vector optical Dirac equation developed by Feng and Wu [34], we investigate a twisted
light beam propagating in gravitational waves. We found that the spin–orbit coupling
effect between GWs and structured lights will make photons undergo both dipole and
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quadrupole transitions between different orbital-angular-momentum (OAM) eigenstates,
the former being spin-independent and the latter spin-dependent. These coupling effects
will produce some measurable optical features in the 2-dimensional intensity distribution
of twisted light, significantly the central intensity brightening and macroscopic rotation of
the intensity pattern. Moreover, for the spin-dependent quadrupole interaction, it can make
the twisted photons with the opposite OAMs and SAMs lose their OAMs and produce
a linearly polarized Gaussian light beam, which can be regarded as an alternative spin–
orbital Hall effect of light. It offers a possible new way to realize precision measurements
of gravitational waves and enables us to explore the polarization modes in 2-dimensional
intensity space and extract more information about the physical properties of gravitational
waves than the current interferometry experiments.

This paper is focused on gravitational waves in Einstein’s gravity, which only has two
polarization modes—cross and plus modes. Obviously, our method can be generalized
directly to extended metric gravity theories (e.g., [50–54]), in which there are additional
polarization modes, including breathing, longitudinal, vector-x, and vector-y. Depending
on various incident-angle responses, these modes will exhibit different features in the
2-dimensional intensity distributions, which will allow us to test and discriminate between
a variety of gravitational theories.

Finally, we note that the newly found dipole and quadrupole interactions only ex-
ist beyond the plane wave approximation and have been omitted in previous studies,
e.g., [55,56]. Therefore, including these coupling effects must be important for precisely
quantifying the wave behaviors of the higher-order LG modes in optical cavities for the
next generation of GW detectors. As demonstrated in this paper, our approach based on
the four-vector optical Dirac equation could provide a first-principle field theory method
to study the vector-wave mechanics of structured lights in gravitational fields and can be
extended to even more generic optical media.
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