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Abstract: We propose a new polymerization scheme for scalar fields coupled to gravity. It has the
advantage of being a (non-bijective) canonical transformation of the fields, and therefore ensures the
covariance of the theory. We study it in detail in spherically symmetric situations and compare to
other approaches.
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1. Introduction

“Polymerization” is a common procedure for constructing candidates for semi-classical
theories stemming from loop quantum gravity. The idea is that in the Hilbert space [1]
commonly used in loop representations of diffeomorphism invariant theories like general
relativity, the connection is not a well defined variable. However, its holonomy is. When
matter fields are present, or when one is working in situations with reduced symmetry,
some of the variables that are connections in the full theory may become scalars, requiring
point holonomies. Yet, to try to mimic the behaviors one would see in the full theory,
or to make the inclusion of matter compatible with the Hilbert spaces of interest, one
usually considers inner products in which certain variables are not well-defined, although
their exponentials are. To construct the equations of the theory, one therefore replaces the
variables in question by their exponentials, or, since one is interested in real variables, the
substitution tends to be of the form x → sin(kx)/k, where x is the variable in question
and k is known as the polymerization parameter. It is clear that in the limit k → 0, one
recovers the original classical theory from the “polymerized” one that attempts to capture
quantum corrections. The polymerization parameter k plays the role of the length of the
loop along which one would compute a holonomy if the variable in question had been a
connection. Sometimes the exponentiated quantity, in the case where the variable is not a
connection, is known as “point holonomy”. This type of construction has been used widely
in loop quantum cosmology [2–4] and also in spherically symmetric situations. It is also
understood as a non-standard representation of the canonical commutation relations and
can be applied in ordinary systems in quantum mechanics [5]. The use of point holonomies
has also been proposed in the full theory to represent scalar fields [6].

The use of polymerizations has been criticized for the lack of covariance. Since one is
typically working in a canonical context, the polymerization is applied to spatial variables.
The construction is generically slicing-dependent [7].

In this paper, we would like to propose a new polymerization procedure for scalar
variables and apply it to the case of a scalar field coupled to spherically symmetric gravity.
The novelty is that the polymerization procedure is a non-bijective canonical transformation
on the variables of classical general relativity coupled to a scalar field. As a result, its
application appears more compatible with covariance. At first, this may appear surprising.
If it is a canonical transformation, one is essentially dealing with the same theory. How
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could this be capturing non-trivial quantum corrections to the theory? The answer is that
the canonical transformation is non-invertible, and therefore the resulting theory is not
unitarily equivalent to the non-holonomized one [8–10]. The canonical transformation leads
to a theory that can be viewed as the semiclassical theory stemming from a non-standard
representation of the Weyl algebra. As we shall see, the construction for the scalar field is
general, but for the geometrical variables, we do not yet know a general polymerization
procedure. We will restrict ourselves to study in detail the polymerization in the context of
effective spherically symmetric gravity to make it concrete.

Recently, the effective theory resulting from a standard polymerization of a gauge
fixed theory of gravity coupled to a scalar field in spherical symmetry was studied [11]
to address the semiclassical corrections of gravitational collapse. This system had been
studied in classical general relativity by Choptuik [12]. We will show that the results of that
analysis do not change significantly with the polymerization proposed in this paper.

2. Spherically Symmetric General Relativity in New Variables

We recall the basics of spherically symmetric gravity minimally coupled to a massless
scalar field [13]. The classical variables are the triads in the radial and transverse directions
and their canonically conjugate momenta Ex, Eϕ, Kx, Kϕ. Their relations to the usual metric
variables are

ds2 = Λ2dx2 + R2dΩ2 (1)

with, Λ = Eϕ/
√
|Ex|, R2 = |Ex| and to the extrinsic curvatures Kxx = −sign(Ex)(Eϕ)2Kx/√

|Ex| and Kθθ = −
√
|Ex|Kϕ/(2β) with β the Immirzi parameter. Here, ds2 is the spatial

metric, the space–time metric is reconstructed in the usual way introducing a lapse N and
shift Nx.

The total Hamiltonian is

HT =
∫

dx
{

Nx
(
(Ex)′Kx − Eϕ

(
Kϕ

)′ − 8πPφφ′
)

+N

− Eϕ

2
√
|Ex|
− 2
√
|Ex|KϕKx −

K2
ϕEϕ

2
√
|Ex|

+

(
(Ex)′

)2

8
√
|Ex|Eϕ

−
√
|Ex|(Ex)′(Eϕ)′

2(Eϕ)2 +

√
|Ex|(Ex)′′

2Eϕ +
2πP2

φ√
|Ex|Eϕ

+
2π(|Ex|)3/2(φ′)2

Eϕ

)}
. (2)

where prime denotes ∂/∂x.
The Hamiltonian and diffeomorphism constraint satisfy the usual algebra with struc-

ture functions. This makes quantization difficult. However, redefining the shift and lapse
in the following way:

N̄x = Nx +
2NKϕ

√
|Ex|

(Ex)′
(3)

N̄ =
EϕN
(Ex)′

(4)

one finds that

HT =
∫

dx(N̄xDx + N̄H) (5)

With the diffeomorphism constraint

Dx = (Ex)′Kx − Eϕ
(
Kϕ

)′ − 8πPφφ′ (6)
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and Hamiltonian constraint

H =

√|Ex|


(
(Ex)′

)2

4(Eϕ)2 − 1− K2
ϕ



′

−
2Kϕ

√
|Ex|φ′Pφ

Eϕ +
2π(Ex)′P2

φ√
|Ex|(Eϕ)2 +

2π(|Ex|)3/2(Ex)′(φ′)2

(Eϕ)2 (7)

such that the latter has an Abelian algebra with itself. In the vacuum case, this paved the
way for the complete quantization of the model [14]. With the scalar field present, the
term involving the derivative interferes with the Abelianization involved in promoting
the algebra to a consistent quantum one. This led us in a previous paper [11] to consider
the polymerized version of a totally gauge fixed form of the theory following closely what
was done by Choptuik. The choice Ex = x2, Kϕ = 0 leads to a reduced theory where
only the scalar field needs to be polymerized. A question remains when one follows
this quantization procedure. Will different gauge and polymerizations choices lead to an
equivalent quantum theory?

3. A New Covariant Polymerization

We will apply the following canonical transformations for the scalar field, φ, the
curvature, Kϕ, and their canonical momenta, Pφ and Eϕ,

φ 7→ sin(kϕ)
k , Pφ 7→

Pϕ

cos(kϕ)

Kϕ 7→
sin(ρKϕ)

ρ , Eϕ 7→ Eϕ

cos(ρKϕ)

(8)

where k and ρ are the polymerization parameters for the field and curvature, respectively.
Canonical transformations in the spherically symmetric context have also been considered
in [15]. It should be noted that the canonical transformation is not bijective in all of phase
space. It is therefore a proper canonical transformation provided cos (ρKϕ) 6= 0. The
emergence of new physics is possible if one considers ranges where the transformation is
not invertible.

Applying the canonical transformation, we find that

H =

√
Ex(Ex)′(Ex)′′ cos2(ρKϕ

)
2(Eϕ)2 +

(
(Ex)′

)3
cos2(ρKϕ

)
8(Eϕ)2√Ex

−

√
Ex
(
(Ex)′

)2
(Eϕ)′ cos2(ρKϕ

)
2(Eϕ)3 −

√
Ex
(
(Ex)′

)2
ρ
(
Kϕ

)′ sin
(
ρKϕ

)
cos
(
ρKϕ

)
2(Eϕ)2

− (Ex)′

2
√

Ex

(
1 +

(
sin2(ρKϕ

)
ρ2

))
−

2
√

Ex sin
(
ρKϕ

)
cos
(
ρKϕ

)(
Kϕ

)′
ρ

(9)

−
2 sin

(
ρKϕ

)
cos
(
ρKϕ

)√
ExPϕ ϕ′

ρEϕ +
2π(Ex)′ cos2(ρKϕ

)
P2

ϕ√
Ex(Eϕ)2 cos2(kϕ)

+
2π
√

ExEx(Ex)′(ϕ′)2 cos2(kϕ) cos2(ρKϕ

)
(Eϕ)2 .

The diffeomorphism constraint is unchanged, therefore it is its algebra with itself and
the Hamiltonian. Moreover, one can check that the Hamiltonian remains Abelian with
itself,

{H(N̄(x)); H(M̄(y))} = 0. (10)

So the resulting theory has the same constraint algebra as in reference [14].
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4. Relation to Other Polymerized Approaches

As we mentioned, gravity with spherical symmetry coupled to a scalar field was
recently studied in the context of a semi-classical loop quantum gravity analysis of the
phenomena discussed by Choptuik [11]. In that work, we used the same gauge fixing as
Choptuik [12] had considered in his original analysis in classical general relativity. In it,
one takes the usual Schwarzschild coordinates for the exterior of a black hole, plus an
additional condition on the extrinsic curvature. In terms of our variables, this corresponds
to Ex = x2, Kϕ = 0. Let us see how the equations with the new polymerization we present
in this paper look in that gauge choice:

N′

N
− (Eϕ)′

Eϕ +
2
x
− (Eϕ)2

x3 = 0 (11)

(Eϕ)′

Eϕ − 3
2x

+
(Eϕ)2

2x3 − 2πx

( (
Pϕ

)2

x4 cos2(kϕ)
+
(

ϕ′
)2 cos2(kϕ)

)
= 0 (12)

ϕ̇ =
4πNPϕ

Eϕx cos2(kϕ)
(13)

Ṗϕ = −
4πNP2

ϕ

Eϕx
k sin[kϕ]

cos3(kϕ)
+

4πx2

Eϕ

[(
3NEϕ − xN(Eϕ)′ + N′Eϕx

Eϕ

)
ϕ′ cos2(kϕ)

+xNϕ′′ cos2(kϕ)− xNk
(

ϕ′
)2 cos(kϕ) sin(kϕ)

]
(14)

Kx =
−4πPϕ ϕ′

x
(15)

Comparing with the more traditional polymerization we considered in [11], the last
three equations are modified. The first term in the last equation is new and the cosines in
the denominator of the second and third equations were absent. These terms can potentially
make a significant difference in some regions of phase space, like close to singularities as
noted in reference [11].

To try to test this, we conducted numerical simulations like the ones in our previous
paper [11] to determine the scaling law of the mass of the final black hole formed by the
collapse of a scalar field as a function of a parameter in the initial data. Figure 1 shows the
comparison for the rather unnaturally large value k = 1 of the polymerization parameter.
As can be seen, it coincides with general relativity (k = 0). Of course, since the Choptuik
phenomena is determined by the exterior geometry of the black hole where the fields are
weak, it is perhaps not surprising that the polymerization yields the same result. On the
other hand, it provides evidence that the results found in our previous paper do not have
significant slicing dependence, as they differ little from the new polymerization, which
does not depend on slicings. It should be noted that, for small black holes, the Choptuik
phenomena do involve regions of large curvature immediately outside the horizon, and
results may therefore change upon polymerization.
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Figure 1. The scaling of the black hole mass observed first by Choptuik [12] for the collapse of
spherically symmetric massless scalar field. Here we depict it for general relativity (k = 0). The other
curve is for the polymerization parameter value k = 1, which in practice is a very exaggerated value,
in order to make any possible discrepancies with classical general relativity more visible. Here, γ is
the universal exponent for the mass law of the black hole (see [11]). As can be seen, both theories
agree. The dots are numerical results and the solid lines are least square fits.

5. Discussion

We have introduced a new polymerization for scalar fields coupled to gravity. This
can be viewed as a non-standard representation of the Weyl algebra, different than the one
usually considered in loop quantum gravity coupled to scalar fields. It has the advantage
that it is a canonical transformation from the original variables. That means that it preserves
the constraint algebra and the covariance of the theory, which previous choices did not.
As it is not-invertible in the whole of phase space, it still allows to have the usual novel
phenomena that loop quantizations introduce in regions where one expects general relativ-
ity not to be valid, like close to singularities. In particular, it will admit a representation
on a Hilbert space defined in terms of the Ashtekar Lewandowski measure [1]. Although
we have only explored the implications of the covariant polymerization in the context of
spherically symmetric scalar fields, it is possible that an analogue could be found for the
full theory. This will require further investigations.

The reader might be curious about the question of singularity resolution with the
proposed polymerization. We have not made an exhaustive analysis yet, but it appears
that the same ingredients that have led to the resolution of the singularity in spherical loop
quantum gravity in previous polymerizations (both the µ0 [14] and µ̄ [16] quantizations)
are present here. Namely, that the parameterized Dirac observable corresponding to the
metric becomes complex for radii smaller than a given radius. This requires removing
points from the spin network in the region where the classical singularity used to be to
ensure self-adjointness of the metric. Those ingredients are still present in the current
polymerization. In phase space, one essentially has a “bounce” at the hypersurface at which
Kϕ is maximum and the singularity cannot be reached. It should be noted that in previous
treatments, the constraints implied both variables were bounded, so the additional changes
implied here do not change things much in the quantum theory.

As was pointed in [17,18], the more balanced polymerization introduced in this pa-
per has the inconvenience of potentially introducing significant quantum corrections in
regions of small curvature where the extrinsic curvature takes its maximum allowed value.
However, in a full quantum theory of gravity, reference frames that require these types of
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curvatures will not be physically implementable since they require extrinsic curvatures
exceeding the Planck scale. Covariance should be checked within implementable reference
frames. In generally covariant theories, reference frames have to be defined in terms of
physical observables and all physical statements must be relational. This clearly limits
which reference frames can be implemented. The problem might also be addressed via
an improved quantization, as was the potential appearance of large corrections in regions
of low curvature in the original (“µ0”) version of loop quantum cosmology [19] and one
could cover the complete space-time with implementable reference frames. A related
proposal [20] considering a family of effective modified constraints that satisfy Dirac’s
deformation algebra claims to be exempt from these issues.

The Abelian Hamiltonian constraint given by our Equation (9) together with the
diffeomorphism constraint imply the effective level of the original set of constraints. They
can be derived from the Abelian set by substituting the rescaled Lagrange multipliers by
their expression in terms of the original ones. By considering the algebra of the original
constraints starting from the polymerized Poisson brackets that we proposed, it is easy
to prove that they satisfy the usual constraint algebra. As it has been proved in [21] the
general relativity constraint algebra with this polymerization implies the tensorial behavior
of the metric components given by Equations (13)–(16) of that paper. Thus, we recover
from our formulation the standard behavior of the metric components.

For this work, we considered a polymerization with a constant parameter. In the
future, we may consider the case in which the polymerization parameter depends on the
dynamical variables. This seems eminently feasible by applying the results of [22] of the
vacuum case.
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