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Abstract: This is mainly a review of an intense 15-year long collaboration between the authors on ex-
plicit realisations of compact Lie groups and their applications. Starting with an elementary example,
we will illustrate the main idea at the foundation of the generalisation of the Euler parametrisation of
SU(2) to any compact Lie group. Based on this, we will provide a very detailed reconstruction of the
possible Euler parametrisation associated with the so-called symmetric embedding. Then, we will re-
call how such constructions are related to the Dyson integrals, providing a geometrical interpretation
of the latter, at least in certain cases. This includes a short review on the main properties of simple
Lie groups, algebras, and their representations. Finally, we will conclude with some applications to
nuclear physics and to measure theory in infinite dimensions and discuss some open questions.
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1. Introduction

Everyone knows how the Euler parametrisation works for SUSUSU(2) or SOSOSO(3), but is there
a natural generalisation to higher dimensional Lie groups? The answer is positive for every
compact simple Lie group and indeed for any compact connected Lie group, see [1–10],
and specific standard constructions for orthogonal and unitary groups are well-known,
see for example [11–15]. Here, we want to illustrate the idea working with the compact
simple Lie group SUSUSU(3). The starting point is to look for a proper maximal Lie subgroup.
Proper means that it is neither the unit element nor the whole group. Maximal means that
it is not contained in a larger proper subgroup. For a generic given group GGG, there can
exist several maximal proper subgroups. They have been completely classified by Dynkin,
see [16]. However, we do not necessarily need to choose among all possible proper maximal
subgroups, just among the symmetrically embedded proper maximal subgroups. This
means what follows. Let GGG be a connected compact Lie group of dimension n and K a proper
maximal Lie subgroup of dimension k < d. Then, consider the respective Lie algebras.
Therefore, we can choose a linear basis {t1, . . . , tk} spanning kkk = Lie(KKK) and extend it to
a basis for the whole Lie(GGG) by adding the generators {p1, . . . , pn−k}. Let ppp be the linear
subspace of Lie(GGG) spanned by the generators pj. Then, Lie(GGG) = kkk⊕ ppp. We say that K is
symmetrically embedded in GGG if

[kkk, kkk] ⊆ kkk, (1)

[kkk, ppp] ⊆ ppp, (2)

[ppp, ppp] ⊆ kkk. (3)

The first relation is obviously true for every subgroup. The second relation states
that ppp is a space of representation for kkk (and then for KKK). The third relation can be roughly
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stated by saying that the elements of ppp are in some sense square roots of the elements
of kkk. However, its more important property is not that one. Indeed, first notice that GGG,
being compact, is a real group, so that kkk and ppp are real vector spaces. Now, the space
p̃pp = ippp, is again a real linear space, and the second relation above is invariant under the
replacement ppp 7→ p̃pp. The third relation ensures that the whole Lie algebra remains real
despite the multiplication by an imaginary unit. This way, with the above substitution, we
obtain a new real algebra and, after exponentiating, a new real group, which now will be
a non-compact group. However, this is not yet what we want to do; we just needed the
notion of symmetric embedding. This diminishes the possible subgroups to be considered
but in general does not individuate a unique choice for the subgroup we are looking for.

Let us now work with the explicit example of SUSUSU(3). Its Lie algebra consists of the
traceless 3× 3 anti-hermitian matrices of which a canonical basis is given by the (anti-
hermitian) Gell-Mann matrices:

λ1 =

0 i 0
i 0 0
0 0 0

, λ2 =

 0 1 0
−1 0 0
0 0 0

, λ3 =

 i 0 0
0 −i 0
0 0 0

,

λ4 =

0 0 i
0 0 0
i 0 0

, λ5 =

 0 0 1
0 0 0
−1 0 0

, λ6 =

0 0 0
0 0 i
0 i 0

, (4)

λ7 =

0 0 0
0 0 1
0 −1 0

, λ8 =
1√
3

 i 0 0
0 i 0
0 0 −2i

.

This is an algebra of rank 2, which substantially means that its maximal abelian
subalgebras (with some regularity properties made precise in Section 3) have dimension
2. These are the Cartan subalgebras and are all equivalent. An example is given by the
linear space generated by λ3 and λ8 that evidently commute, but we could also choose
the one generated by λ1 and λ8 or by λ2 and λ8. Let us fix the first choice, which is the
canonical one.

Now, this Lie algebra, sususu(3), contains two different symmetrically embedded proper
maximal Lie subalgebras, which, for the sake of simplicity for now, we will simply call
maximal subalgebras. The first one is generated by the four matrices, λ1, λ2, λ3, and λ8, that
identify a subalgebra of type uuu(2) = Lie(UUU(2)) of which the first three matrices generate
an sususu(2) subalgebra. The second maximal subalgebra is generated by λ2, λ5, and λ7, and
it is of type sososo(3). The reader can easily verify that both of these satisfy the conditions to
be symmetrically embedded maximal subalgebras. Of course, one can find an infinity of
other possible combinations of generators defining different maximal subalgebras, but he
will find that if symmetrically embedded, they are each equivalent to one of the two
prototypes above.

Notice that sususu(2) and sososo(3) are isomorphic algebras. Nevertheless, they are in two dif-
ferent representations since sususu(2) is substantially generated by the (anti-hermitian version
of the) Pauli matrices, whereas the second algebra is in the adjoint representation of sususu(2).
This means that in exponentiating sususu(2) we obtain SUSUSU(2), whereas exponentiating sososo(3),
we obtain SUSUSU(2)/Z2 ' SOSOSO(3) since the adjoint representation of SUSUSU(2) has kernel Z2. This
is the reason why we have to keep them distinguished. Moreover, sususu(2) is not maximal
since it is properly contained in uuu(2), whereas sososo(3) is maximal.

We will call uuu(2) the largest maximal subalgebra, whereas sososo(3) is the smallest maximal
subalgebra or also the split subalgebra. The same nomenclature extends to the corresponding
groups. In general, there are several maximal subalgebras, among which there is always the
smallest one (the split one) and the largest one. They are characterised by a rank, the rank
associated with the split algebra being the same as the rank of the whole algebra (in the
sense of Cartan). This rank is not the rank of the maximal subalgebra in the sense of Cartan,
but the rank of the quotient space. In order to understand what it means, let us go back
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to the general case of KKK ⊂ GGG. We know that there is an infinite freedom in choosing a
Cartan subalgebra in Lie(GGG) = kkk ⊕ ppp. However, for any fixed K, there always exists a
choice (and then infinite equivalent choices) for the Cartan subalgebra hhh of Lie(GGG) such
that the dimension

rGGG/KKK = dim(hhh ∩ ppp) (5)

is maximal. Here, rGGG/KKK ≤ r = rank(GGG) is called the rank of the symmetric space. Recall that
GGG is also a manifold and KKK a submanifold of it. The fact that KKK acts on GGG by multiplication
allows us to construct the quotient S = GGG/KKK, which also results to be a manifold of
dimension d = n − k. The elements of ppp represent tangent vectors on S on which the
isotropy group KKK (which fixes the points of S) acts via (2). More in general, GGG translates
the points of S by acting on itself ( for example, by left multiplication), and we can identify
the elements of ppp as left-invariant tangent vector fields generating such translations on S.
Relation (3) then states that the Lie bracket among two such fields is an infinitesimal element
of the isotropy group KKK, or, in more physical words, that two infinitesimal translations
composed in different orders differ by an infinitesimal “rotation”. For these reasons, one
says that S is a symmetric space, and this also justifies the name of symmetric embedding
we used for the maximal subalgebras (or subgroups).

Let us go back again to our example; sososo(3) is the split subalgebra of sususu(3) since we see
that λ3, λ8 selects a Cartan subalgebra all contained in ppp, so

rSUSUSU(3)/SOSOSO(3) = 2 = r. (6)

Instead, for uuu(2) it is not possible to find a Cartan subalgebra entirely outside it. It
results that

rSUSUSU(3)/UUU(2) = 1 < 2 = r. (7)

For example, we can take

λ4 ∈ ppp, and λ̃ =

√
3

2
λ3 −

1
2

λ8 ∈ kkk

as generators of a Cartan subalgebra with maximal dim(hhh ∩ ppp) = 1.
Now, we pass to the construction of the generalised Euler angles for SUSUSU(3). As we

will now see, there is not a natural choice like for SUSUSU(2), but we can construct an Euler
parametrisation for each maximal subgroup. However, the construction obtained starting
from the split maximal subgroup is in a sense the most faithful one to the original Euler
construction. We will call it the split Euler parametrisation.

1.1. Euler Parametrisation of SU(2)

Recall that the Euler parametrisation of SUSUSU(2) can be written, for example, in the form

SUSUSU(2)[φ, θ, ψ] = eφσ3 eθσ1 eψσ3 , (8)

where

σ1 =

(
0 i
i 0

)
, σ2 =

(
0 1
−1 0

)
, σ3 =

(
i 0
0 −i

)
, (9)

are the anti-hermitian versions of the Pauli matrices. We can think about

KKK[x] ≡ UUU(1)[x] = exσ3 (10)

as a parametrisation of the group UUU(1) ⊂ SUSUSU(2). It is the unique maximal symmetric
subgroup of SUSUSU(2). Of course, we could do the same with σ1 (ore any given σ ∈ sususu(2)),
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but we choose this for the way it appears in the Euler parametrisation and because only ψ
runs over a whole period, thus realising an entire UUU(1). This way, we can identify σ1 as the
generator of a Cartan subalgebra all contained in ppp according to the fact that we are in the
split case. With HHH[x] = exσ1 , we can write

SUSUSU(2)[φ, θ, ψ] = K̃KK[φ]HHH[θ]KKK[ψ]. (11)

Here, K̃KK means that we are using the same parametrisation as for K, but the range of
the parameter is reduced. This is due to the fact that KKK ∩HHH = Z2 is not trivial. Its generator
is KKK[π] = −I2. Thus, we have to quotient away from one of the two KKK in order to avoid
overcounting the points (since KKK[π] can be freely moved from one to the other copy of KKK).
Notice that HHH is the centraliser of HHH in GGG in our example.

Finally, notice that the Cartan group HHH = UUU(1) is an abelian torus of dimension 1 = r.
In order to guarantee to cover the whole group just once, the corresponding range of
the coordinates, however, does not have to cover the whole torus, just a part called the
fundamental region. First of all, we have to quotient it by KKK ∩HHH = Z2 since if g ∈ KKK ∩HHH,
then we have HHH[θ]KKK[ψ] = HHH[θ]g−1gKKK[ψ] = HHH[θ′]KKK[ψ′], and again, the parametrisation is
redundant. We can solve it by reducing HHH to HHH/(KKK ∩HHH), so we work with a half torus.
This, however, is not enough since there are elements in KKK that are not in HHH with respect to
which HHH is central; that is, gHHHg−1 ∈ HHH for such a g. These elements form the so-called Weyl
group W(GGG), which coincides with the group of Weyl reflections acting on the roots. This
means that we need to further reduce HHH by the factor W(GGG) in order to avoid redundancies.
In our case of rank 1, there is only a non-trivial reflection generating Z2. Thus we finally
obtain that for SUSUSU(2) we have to take ψ in the whole period, ψ ∈ [0, 2π], φ in one-half of
the period, φ[0, π], and θ in one-fourth of the period, θ ∈ [0, π/2].

One could repeat the reasoning by working with SOSOSO(3) with the usual 3× 3 matrices.
The main difference is that now KKK ∩HHH = I3 is trivial; therefore, we have only to quotient
with respect to the Weyl group, which is the same since the algebra does not change, so the
ranges are now ψ ∈ [0, 2π), φ[0, 2π], and θ ∈ [0, π/2].

One may argue that such an interpretation of the Euler angles looks much too sophis-
ticated and spoils the simplicity of the Euler parametrisation. This is of course true for
SUSUSU(2) and SOSOSO(3), but it becomes the opposite for higher dimensional groups, exactly the
general considerations that allow for obtaining a simple generalised Euler parametrisation
of compact Lie groups. Let us see how it works for our prototype example.

1.2. Split Euler Parametrisation of Su(3)Su(3)Su(3)

We now repeat what we have learned for SUSUSU(3) by choosing KKK = SOSOSO(3) as the
maximal subgroup. First, notice that

dimGGG = 8 = 2 · 3 + 2 = 2dimKKK + r

so that a parametrisation of the form

SUSUSU(3)[~x, y1, y2,~z] = SOSOSO(3)[~x]HHH[y1, y2]SOSOSO(3)[~z],

mimicking the Euler parametrisation for SOSOSO(3) is perfectly admissible. Here ~w = (w1, w2, w3),
and SOSOSO(3)[~w] means any parametrisation of SOSOSO(3), for example, the Euler one. We will
see that the above dimensional relation is not accidental, but it holds for all groups GGG
if KKK is the split maximal subgroup. It remains to individuate the discrete subgroups
Γ := HHH ∩ SOSOSO(3) and the Weyl group. As we will see studying the general case, it happens
that Γ = Zr

2 every time the maximal subgroup KKK is simply connected. This is not the case for
SOSOSO(3) = SUSUSU(2)/Z2, so that Γ = Z2 in this case. Its generator can be computed as follows.
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Fix in HHH (canonically isomorphic to its dual) the directions selected by the simple roots, see
Section 1.4.1. They correspond to y2 = 0 and to y2 = −

√
3y1, so select the elements

h1[y] = eyλ3 , h2[y] = ey(− 1
2 λ3+

√
3

2 λ8).

They both have period 2π. The generators of two possible Z2 are thus τ1 = h1[π] and
τ2 = h2[π]. However, τ1 is just the generator of the Z2 factor defining SOSOSO(3) = SUSUSU(2)/Z2,
so we obtain that τ2 is the only generator of Γ. This implies that we have to reduce the range
of the first SOSOSO(3) factor, that is of the ~x parameters according to the action of Γ on SOSOSO(3).
We are not interested in see exactly how it works since it is just a technical issue, useless
for our purposes. The interested reader can easily check out the details by hand. On the
torus HHH, we see that one has to reduce the ranges of y1 and y2 to half a period covering
one-fourth of the torus.

We know that it is not enough; we have to reduce it further to a fundamental domain
by dividing the quarter of torus into cells under the action of the Weyl group. One has that
W(SUSUSU(3)) = S3 is the permutation group of three elements, see [17]. It has cardinality six
and then will subdivide the quarter of torus into six fundamental regions, all related by Weyl
reflections. It is interesting to see how to individuate exactly such a fundamental region
since here is exactly the point of connection with the Dyson integrals, the second topic of
the present review. We postpone it to after a short discussion of the second parametrisation.

1.3. Non-Split Euler Parametrisation of Su(3)Su(3)Su(3)

The non-split case is a little bit more involved. There are many differences with respect
to the previous case. First, we do not have the whole Cartan torus at our disposition since
part of it is already contained in KKK = uuu(2). So, we must work only with the one-dimensional
sub-torus UUU(1)[y] = eyλ4 generated by λ4, the part of the Cartan staying out of KKK. We see
that now

dimGGG = 8 < 2 · 4 + 1 = 2dimKKK + rGGG/KKK.

Therefore, we cannot write the Euler parametrisation as before; otherwise we would
obtain an enormous redundancy, too many parameters! This is due to the fact that the
commutant of UUU(1)[y] is quite large since it contains the whole HHH. The second factor of
the two-dimensional torus HHH, which is UUU(1)′[z] = ezλ̃, commutes with UUU(1)[y] and can be
moved from one KKK factor to the other. This means that we can reduce the left KKK factor to

K̃KK = KKK/UUU(1)′. (12)

Thus, K̃KK has dimension three and we have

dimGGG = 8 = 3 + 4 + 1 = dim(KKK/UUU(1)′) + dimKKK + rGGG/KKK. (13)

The dimension fits correctly now, and we just have to take discrete subgroups into
account . The first one comes from the fact that UUU(1)[y]∩KKK = UUU(1)[y]∩UUU(1)′[z] = UUU(1)[π],
2π being the period of UUU(1)[y]. This was already taken into account in the above quotient,
but as in the previous section, this means that we have to quotient UUU(1)[y] by the Z2
generated by UUU(1)[π], thus reducing the period down to a semi-period. Finally, there is
again the action of the Weyl group on the half torus. The torus is one-dimensional, and the
Weyl group is the same as for SUSUSU(2) so that the range of y is further reduced to one-fourth
of the period.

We do not want to enter further into details, but two comments are in order. First,
in K̃KK = UUU(2)/UUU(1)′, the UUU(1)′ is not the same generated by λ8 in UUU(2). Thus, K̃KK is not
SUSUSU(2) and not even a group since UUU(1)′ is not normal in UUU(2). The second point is that in
more general examples, the commutant of the central torus for non-split forms is larger
than HHH and is in general a non-abelian group.
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1.4. Euler Parametrisation and Dyson Integrals

Let us now go back to the split parametrisation. We want to see how one can select the
fundamental region inside the torus. In order to do that, it is convenient to further improve
our knowledge of the details; we must analyse the structure in terms of the roots of the
algebra and other interesting ingredients.

1.4.1. The Roots Structure

We know that sususu(3) has eight roots, two of which vanish. The non-vanishing roots can
be easily computed, noting that if we define the six matrices

µ±1 =
1
2
(λ1 ± iλ2), µ±2 =

1
2
(λ4 ± iλ5), µ±3 =

1
2
(λ6 ± iλ7), (14)

we have

[λ3, µ±1 ] = ±2iµ±1 , [λ3, µ±2 ] = ±iµ±2 , [λ3, µ±3 ] = ∓iµ±3 , (15)

[λ8, µ±1 ] = 0, [λ8, µ±2 ] = ±i
√

3µ±2 , [λ8, µ±3 ] = ±i
√

3µ±3 . (16)

The fact that all values are imaginary is a consequence of the fact that we are working
with the compact form. In the dual basis λ∗3 , λ∗8 defined by λ∗i (λj) = iδij for i, j ∈ {3, 8}, the
roots have components

±α1 ≡ ±(2, 0), ±α2 ≡ ±(1,
√

3), ±α3 = ±(−1,
√

3), (17)

and belong to the vertices of a regular hexagon, see Figure 1. For example, α1 and α3
are a possible choice of simple roots. All other roots are linear combinations of these,
with non-negative or non-positive integer coefficients. In particular, α2 is the longest root.1

λ∗3λ∗3λ∗3

λ∗8λ∗8λ∗8

−α1α1α1

α1α1α1

α2α2α2

−α2α2α2

α3α3α3

−α3α3α3

Figure 1. The non-vanishing roots of sususu(3).

For the application we have in mind, it is useful to rewrite

λ1 = µ+
1 + µ−1 , λ2 = i(µ−1 − µ+

1 ), λ4 = µ+
2 + µ−2 , (18)
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λ5 = i(µ−2 − µ+
2 ), λ6 = µ+

3 + µ−3 , λ7 = i(µ−3 − µ+
3 ). (19)

We will return to this later.

1.4.2. Invariant Measure

The next instrument we need is the invariant measure over SUSUSU(3). On the Lie algebra,
it is defined as an invariant bilinear product by

η(a, b) = −1
2

Tr(ab), a, b ∈ sususu(3). (20)

It is a positive definite, and with respect to it, the Gell-Mann basis is orthonormal.
By “invariant”, we mean that it is invariant under the adjoint action of the group. Let
hhh ≡ h[x1 . . . , x8] be any parametrisation of SUSUSU(3). Then, J = hhh−1dhhh defines an sususu(3)-valued
left-invariant one form. We can write it in the form

J = Ja
b(x)λadxb. (21)

Inserting it in the invariant quadratic form η, we obtain an invariant metric ds2 =
η(J, J) over SUSUSU(3), which is

ds2 = Ja
b(x)Jc

d(x)δacdxb ⊗ dxd. (22)

This is like saying that the forms

Ja = Ja
b(x)dxb (23)

define a moving frame for the invariant metric; therefore, an invariant measure is simply
given by

dµSUSUSU(3) = |det(Ja
b)|

8

∏
i=1

dxi. (24)

Now, let us employ our split Euler parametrisation of SUSUSU(3) in the form

SUSUSU(3)[~x, y1, y2,~z] = K̃KK[~x]HHH[y1, y2]KKK[~z], (25)

where KKK is the Euler parametrisation of SOSOSO(3). For the moment, we will not care about the
action of the discrete subgroups. Compactly, for the invariant 1-form, we can write

J = KKK−1dKKK +KKK−1(HHH−1dHHH + HHH−1K̃KK−1dK̃KKHHH)KKK. (26)

Let us define the two 3× 3 matrices M and N as

Mαβ[~z] = η

(
KKK−1 ∂KKK

∂zβ
, λα

)
, α = 2, 5, 7, β = 1, 2, 3,

and

Nαβ[~x, y1, y2] = η

(
HHH−1K̃KK−1 ∂K̃KK

∂xβ
HHH, λα

)
, α = 1, 4, 6, β = 1, 2, 3.

It is a simple exercise to prove that

det(Ja
b) = det M det N. (27)
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Noticing that |det M|d3z is the invariant measure of SOSOSO(3), we obtain

dµSUSUSU(3) = dµSOSOSO(3)[~z] |det N[~x, y1, y2]|dy1dy2d3x. (28)

Now, JKKK[~x] = K̃KK−1dK̃KK is the invariant 1-form of SOSOSO(3) so that

K̃KK−1 ∂K̃KK
∂xβ

= ∑
α=2,5,7

(JKKK)α
βλα. (29)

Therefore,

Nββ̃ = ∑
α=2,5,7

(JKKK)α
βη(HHH−1λαHHH, λβ̃), β̃ = 1, 4, 6, (30)

and

det Nββ̃ = det[(JKKK)α
β]det Ñ, (31)

where

Ñββ̃ = η(HHH−1λβHHH, λβ̃), β = 2, 5, 7, β̃ = 1, 4, 6. (32)

Thus, we see that the measure os SUSUSU(3) takes the form

dµSUSUSU(3) = dµSOSOSO(3)[~z] dµSOSOSO(3)[~x] |det Ñ[y1, y2]|dy1dy2, (33)

and we are left with the calculation of det Ñ. This is the moment to use what we learned
about the roots structure and, in particular, expressions (18) and (19). Using the fact that
µ±α are eigenmatrices for the adjoint action of H, setting H = eh, we can write

e−hλ2eh = i(eα1(h)µ−1 − e−α1(h)µ+
1 ) = cosh α1(h)λ2 + i sinh α1(h)λ1.

In the same way, we can compute e−hλβeh for β = 5, 7 and obtain

Ñ = i

sinh α1(h) 0 0
0 sinh α2(h) 0
0 0 sinh α3(h)

. (34)

Finally, taking into account that αj(h) are purely imaginary, we obtain

|det Ñ| =
3

∏
j=1

sin |αj(h)|. (35)

If we introduce the “real” roots β j = −iαj, the invariant measure is thus

dµSUSUSU(3) = dµSOSOSO(3)[~z] dµSOSOSO(3)[~x]
3

∏
j=1

sin β j(h)dy1dy2. (36)

Essentially, this gives us all information on the fundamental region of the torus
variables; it is defined by the inequalities

0 ≤ βi(y1λ3 + y2λ8) = y1βi(λ3) + y2βi(λ8) ≤ π, i = 1, 2, 3. (37)
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Before passing to the last step, some comments are in order.
First, β1 and β3 are simple roots, and β2 = β1 + β3 is the longest root. Now, the simple
roots are linearly independent, and this implies that the linear map

~s : R2 −→ R2, si(y1, y2) := β2i−1(h[y1, y2]), i = 1, 2 (38)

is an invertible transformation of coordinates. Thus, we can use s1 and s2 as coordinates.
Notice that

dy1dy2 =
1√
3

ds1ds2. (39)

In the si coordinates, the range of the parameter is quite simple. They represent the
simple coroot s directions and are constrained in a square with side length π. The third
condition cuts the square along a diagonal. This is the tiling associated with the funda-
mental region. The choice of coordinates thus provides a universal characterisation of
the fundamental region. They can be used to determine the correct range in any other
coordinates system.

It is interesting to describe the fundamental region in terms of the original coordi-
nates. Using the explicit values of the simple roots, the equations relative to the simple
directions are

0 ≤ 2y1 ≤ π, 0 ≤ −y1 +
√

3 y2 ≤ π. (40)

This is the parallelogram in Figure 2.
The third condition selects only one-half of the parallelogram, the coloured one in

the figure. Notice that this is a small part of the range necessary to cover the whole torus.
The period of y1 is 2π, and the period of y2 is 2π

√
3/2 (since we have to quotient UUU(1)

by Z2), so the area covering the torus is 2
√

3π2. The area of the fundamental region is
π2/4

√
3. It is 24 time smaller! A factor 2 arises from Γ = HHH ∩ SOSOSO(3) = Z2. The remaining

factor 12 = 2 · 3! is a consequence of the fact that the Weyl group W ≡W(SUSUSU(3)) ≡ S3 has
six elements, whereas the last factor 2 arises from the combination of Γ and W, which do
not commute.

y1y1y1

y2y2y2

π
2
π
2
π
2

π
2
√

3
π

2
√

3
π

2
√

3

π√
3

π√
3

π√
3

Figure 2. The parallelogram is the range determined by the simple coroots direction only.
The coloured half is the fundamental region.
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1.4.3. The Dyson Integral

We now know the invariant measure of SUSUSU(3) and the range of parameters, so we can
compute the volume of SUSUSU(3). The measure (36) factorises in the product of the measures
of two copies of SOSOSO(3), one of which has to be quotiented with the action of Γ. If with ∆ we
mean the fundamental region, then we can write using the coordinates si:

Vol(SUSUSU(3)) =
1
2

Vol(SOSOSO(3))2 1√
3

∫
∆

sin s1 sin s2 sin(s1 + s2)ds1ds2.

Apart from a normalisation factor that is not relevant to specify here—we will give a
precise definition in the next section — the last integral is a generalised Dyson integral, which
we call ID. In this particular case, it is a quite simple integral and can be computed directly.
In general, as we will see, such a kind of integral is not easy to compute. Nevertheless,
from the above relation we can write

ID = 2
√

3
Vol(SUSUSU(3))
Vol(SOSOSO(3))2 . (41)

Therefore, we can compute ID without integration, if we know the volume of the
groups in some other way. Luckily, this can be computed quite easily; let us see how.

The matrices of SOSOSO(3) are the orthogonal 3× 3 matrices having determinant 1. This
means that the three vectors forming such a matrix also form an oriented orthonormal
system in R3. We can construct all of them as follows: fix the first row e1. The second one,
e2, must then be chosen in the plane orthogonal to e1, therefore along a circle. The angular
measure of possibilities is 2π. For each one of them, the third row is completely fixed by
orthonormality and orientation (determinant 1). It remains to vary e1 in all possible ways,
which means along a sphere in R3, with angular measure 4π. We thus deduce that the total
angular measure of SOSOSO(3) is 8π2. However, the invariant measure can also contain radial
rescaling. To determine them, notice that the operations rotating the vectors we have now
considered can be interpreted as compositions of the actions of the elements hi[x] = exλi ,
i = 2, 5, 7. Since η(λi, λj) = δij and ha[x] have period 2π for a = 2, 5, 7, η associates length
2π to the orbits and therefore,radius 1. Therefore

Vol(SOSOSO(3)) = 8π2. (42)

Similarly, the matrices of SU(3) are unitary with determinant 1. Their rows are an
oriented orthonormal basis in C3. Fixing the first row e1, we can choose the second one in
the C2 subspace orthogonal to e1 in any point of the sphere of modulus 1, which is an S3

having volume 2π2. After that, the third row is completely fixed. It remains to fix e1 on
a sphere of radius 1 in C3, which is an S5 with angular volume2 π3, so that the angular
volume of SU(3) is 2π5. As above, we can understand the radii rescaling by looking at
the orbits generated by the orthonormal basis. These are 2π for all but one matrix since
exλ8 has period 2

√
3π, and we have to quotient it by Z2. It corresponds to a radius

√
3/2 in

place of 1. Thus, considering a radial rescaling only along such direction, we obtain

Vol(SUSUSU(3)) =
√

3π5. (43)

Formulas of this kind have been found for every simple Lie group by Macdonald [18].
Applying the Macdonald’s formulas just obtained to the above expression for ID, we obtain

ID =
3π

8
. (44)

We invite the reader to verify that it is indeed the right result by directly computing
the double integral.

Our aim is to show that such a kind of connection between simple Lie groups and
generalised Dyson integrals exists for every compact simple Lie group and for every kind of
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Euler parametrisation starting from symmetrically embedded maximal proper subgroups.
The groups indeed provide a subclass of the largest family of Dyson integrals as generalised
by Macdonald (and proved by Opdam), defined in the next section. These are the ones
constructed starting not from general lattices, but from the reduced lattices associated with
symmetric spaces. It could be interesting to see if such geometrical analysis can be extended
to cover the whole family.

Our general constructions are presented in Sections 5–7, while Sections 2–4 contain
a detailed presentation of the well-known background material necessary to understand
our constructions.

2. Macdonald’s Conjecture

In this section, we provide a general description of the Dyson integrals and the
Macdonald’s conjecture. Our exposition is taken from un unpublished version of [1] that
can be found on arXiv at [arXiv:1207.1262 [math.GR]].

We summarize the basic steps at the origin of Macdonald’s conjecture following the
clear and punctual paper of P. J. Forrester and S. O. Warnaar [19], to which we refer for a
more extensive introduction. The story of Macdonald’s conjecture begins in the 1940s in the
paper of Atle Selberg “Über einen Satz von A. Gelfond” [20] where the author considered
what is now known as the Selberg integral:

Sn(α, β, γ) :=
∫ 1

0
· · ·

∫ 1

0

n

∏
i=1

tα−1
i (1− ti)

β−1 ∏
1≤i<j≤n

|ti − tj|2γdt1 · · ·dtn

=
n−1

∏
j=0

Γ(α + jγ)Γ(β + jγ)Γ(1 + (j + 1)γ)
Γ(α + β + (n + j− 1)γ)Γ(1 + γ)

. (45)

This integral is valid for complex α, β, and γ such that:

<(α) > 0, <(β) > 0, <(γ) > −min
{ 1

n
,
<(α)
n− 1

,
<(β)

n− 1

}
, (46)

corresponding to the domain of convergence of the integral. To limit the length of the paper,
Selberg did not present the proof of his claim there, but he included it three years later,
in 1944, in the work “Bemerkninger om et multiplet integral” [21]. Notice that the Euler
beta integral is itself a Selberg integral with n = 1.

For over thirty years, the Selberg integral was essentially unnoticed. The exception
was a study by S. Karlin and L. S. Shapley in 1953 [22], where they considered the spe-
cial case α = 1, β = 1, and γ = 2 in relation to the volume of a certain momentum
space. However, in the 1960s there were good reasons to make use of (45). F. J. Dyson
wrote a series of papers in the context of the statistical theory of energy levels of complex
systems [23–27]. A part of this series was written jointly with M. L. Mehta and published
in 1963. Here, random Hermitian matrices were used to model highly excited states of
complex nuclei. They considered systems with different symmetries described by matrices
with real complex or real quaternion elements. The ensembles of random matrices are
called Gaussian orthogonal (GOE), unitary (GUE), and symplectic ensembles (GSE). The
joint probability density function for the three ensembles can be computed explicitly as:

P(t1, . . . , tn) =
1

(2π)n/2Fn(β/2)

n

∏
i=1

e−t2
i /2 ∏

1≤i<j≤n
|ti − tj|β, (47)

where β = 1, 2, 4 for the GOE, GUE, and GSE, respectively, and Fn is the normalization

Fn(γ) :=
1

(2π)n/2

∫ ∞

−∞
· · ·

∫ ∞

−∞

n

∏
i=1

e−t2
i /2 ∏

1≤i<j≤n
|ti − tj|2γ dt1 · · ·dtn, (48)
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referred to as Mehta’s integral, see [28]. Here, tj varies in the space of admissible eigenvalues
for the given class of matrices. In [27], Mehta and Dyson evaluated Fn(β/2) for each of
the three special values of β. Combining this with the evaluations for n = 2 and n = 3 for
general β, led them to conjecture that

Fn(γ) =
n

∏
j=1

Γ(1 + jγ)
Γ(1 + γ)

. (49)

The conjecture (49) can be proved evaluating Mehta’s integral using the Selberg
integral; however, in 1963 the Selberg’s result was still unknown. The proof was finally
given in the late 1970s by Enrico Bombieri.

The considerations on the symmetries of the complex systems that led to considering
the three ensembles of Hermitian matrices can also be applied to unitary matrices [23].
Making this choice of matrices, one obtains what are referred to as circular orthogonal
ensemble (COE), circular unitary ensemble (CUE), and circular symplectic ensemble (CSE).
Their joint eigenvalues probability density function is given explicitly by:

P(θ1, . . . , θn) =
1

(2π)nCn(β/2) ∏
1≤i<j≤n

|ei θi − ei θj |β, (50)

where Cn is the normalization

Cn(γ) :=
1

(2π)n

∫ π

−π
· · ·

∫ π

−π
∏

1≤i<j≤n
|ei θi − ei θj |2γ dθ1 · · ·dθn, (51)

and β = 1, 2, 4 for the COE, CUE, and CSE, respectively. This has a quite simple physical
interpretation. Following [23], let us consider n charged particles moving freely on a unit
circle in a bidimensional world. With this, we mean that not only the motion of particles is
bound on a two-dimensional plane, but also the electrostatic field generated by the charges.
Therefore, if ei θj is the position of the j-th particle on the circle, assuming e to be the charge
of all particles, the total potential energy of the system is

φ(θ1, . . . , θn) = −e ∑
1≤i<j≤n

ln
∣∣∣ei θi − ei θj

∣∣∣. (52)

Considering it as a statistical ensemble at temperature T and factorising the kinematical
part, which is the usual one for a classical free gas, we obtain that their joint position
probability density function is given by

P(θ1, . . . , θn) =
1

(2π)nCn(e2β/2)
e−βeφ(θ1,...,θn), (53)

where, as usual, β = 1/κT, κ being the Boltzmann constant. After making φ explicit,
we obtain

P(θ1, . . . , θn) =
1

(2π)nCn(e2β/2) ∏
1≤i<j≤n

|ei θi − ei θj |e2β, (54)

whereas Cn(γ) is the same as in (51).
As for (48), the random matrix calculations give (51) in terms of gamma functions for

the three special values of β. The case n = 2 for general β can be related to the Euler beta
integral, and the case n = 3 gives a sum which is a special instance of an identity of Dixon
for a well-poised 3F2 series (cf. [19,29] for details). Using these results, Dyson made in [23]
the conjecture that:

Cn(γ) =
Γ(1 + nγ)

Γ(1 + γ)n . (55)
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Moreover, Dyson observed that when γ is a non-negative integer, say k, (51) can
be rewritten as the constant term (CT) in a Laurent expansion. This allows (55) to be
rewritten as

CT ∏
1≤i<j≤n

(
1− xi

xj

)k(
1−

xj

xi

)k
=

(kn)!
(k!)n . (56)

This “constant term identity” and the conjecture (55) were soon proved by J. Gunson
and K. Wilson [30] and later by I.J. Good [31]. R. Askey [32] observed that the Selberg
integral can be used to prove Dyson’s conjecture (55) directly.

The Macdonald’s conjecture [33] may be considered as a generalisation of the Dyson’s
conjecture (56). Let R be a reduced root system, eα denote the formal exponential corre-
sponding to α ∈ R, and k a non-negative integer. Then, Macdonald conjectured (cf. [33],
Conjecture 2.1) that the constant term in the polynomial

∏
α∈R

(1− eα)k (57)

should be equal to ∏l
i=1 (

kdi
k ), where the di are the degrees of the fundamental invariants of

the Weyl group of R and l the rank of R. Macdonald wrote this relation in an equivalent
form which will turn out to be useful later. Let GGG be a compact connected Lie group, TTT a
maximal torus of GGG, such that R is the root system of (GGG, TTT) and define:

∆(t) = ∏
α∈R+

(eα/2(t)− e−α/2(t)), (58)

where t ∈ T, the exponentials are regarded as characters of T, and R+ is a choice of positive
roots. Then, |∆(t)|2 = ∏α∈R(1− eα(t)) is a positive real-valued continuous function on T.
This function enters in Weyl’s integration formula∫

G
f (x)dx =

1
|W|

∫
T
|∆(t)|2 f (t)dt (59)

for any continuous class function f on GGG. In (59), dx and dt are the normalised Haar measure
on GGG and TTT, respectively, (

∫
G dx =

∫
T dt = 1). Thus, the conjecture can be rewritten as

(cf. [33] Conjecture 2.1’): ∫
TTT
|∆(t)|2kdt =

l

∏
i=1

(
kdi
k

)
. (60)

The equivalence of the two formulations follows from the fact that the integration
over T kills all but the trivial character or in other words selects the constant term in
|∆(t)|2k = ∏α∈R(1 − eα(t))k. An observation that further generalises the conjecture is
that (60) makes sense if the integer k is replaced by a complex number, s, with positive real
part, <(s) > 0. In this case, the right-hand side is replaced by

l

∏
i=1

Γ(sdi + 1)
Γ(s + 1)Γ(sdi − s + 1)

. (61)

In the same paper, Macdonald generalised the conjecture further (cf. [33], Conjecture
2.3). For this, let R be a root system, now not necessarily reduced, and for each α ∈ R let
kα be a non-negative integer such that kα = kβ if |α| = |β|. Then, the constant term in the
Laurent polynomial

∏
α∈R

(1− eα)kα (62)
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should be equal to the product

∏
α∈R

(∣∣∣〈ρk, α̌〉+ kα +
1
2 kα/2

∣∣∣)!(∣∣∣〈ρk, α̌〉+ 1
2 kα/2

∣∣∣)!
, (63)

where ρk =
1
2 ∑α∈R+ kαα, α̌ = 2α

|α|2 is the coroot corresponding to α, kα/2 = 0 if 1
2 α 6∈ R, and

〈, 〉 is the usual scalar product induced by the Killing form. When the kα are all equal, this
reduces to the previous conjecture.

The Macdonald conjecture was finally proved in a slightly more general form by
Opdam [34], considering kα a complex valued Weyl invariant function with a positive real
part. This is the content of Theorem 4.1 of [34]:

Theorem 1 (Macdonald–Opdam). Let R be a possibly non-reduced root system, and let k ∈ K
such that3 <(kα) ≥ 0, ∀α ∈ R. Then

∫
T

σ(k, t)dt = ∏
α∈R+

Γ(〈ρ(k), α̌〉+ kα +
1
2 kα/2 + 1)Γ(〈ρ(k), α̌〉 − kα − 1

2 kα/2 + 1)

Γ(〈ρ(k), α̌〉+ 1
2 kα/2 + 1)Γ(〈ρ(k), α̌〉 − 1

2 kα/2 + 1)
, (64)

where σ(k, t) = ∏α∈R+ |t α
2 − t−

α
2 |2kα , and T is the compact part in the “polar decomposition” of

the maximal torus.

The general proof of this theorem can be found in [34]. In the present article, we
will provide a proof of this theorem only for a subclass of such integrals admitting a
geometrical interpretation.

3. Compact Connected Lie Groups

In this section, we will review some facts about finite dimensional compact Lie groups,
which will be useful for concrete applications of the notions developed in the following
sections. The interested reader should consult [35,36].

3.1. Lie Groups and Lie Algebras
3.1.1. Lie Groups

For us4, a Lie group GGG is a finite dimensional smooth manifold endowed with the
structure of group compatible with the structure of manifold. This means that:

1. There is an associative product

◦ : GGG×GGG → GGG, (g1, g2) ◦(g1, g2) ≡ g1g2,

which is a smooth map between smooth manifolds;
2. There is a privileged point e ∈ GGG such that eg = ge = g, ∀g ∈ GGG, called the unit ele-

ment;
3. There is an inverse map

ν : GGG → GGG, g ν(g),

satisfying ν(g)g = gν(g) = e, ∀g ∈ GGG.

As usual, we will denote ν(g) = g−1 and call e the unit of the group. From the
definitions, it follows that e is unique as well as ν. Moreover, the implicit function theorem
implies that ν is smooth. In the infinite dimensional case, this must be assumed as a further
assumption since the implicit function theorem is no more valid in general.

The product provides a free transitive left action of the group on itself called the
left translation

L : GGG×GGG → GGG, (g1, g2) Lg1 g2 := g1g2,
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seen as a left action of g1 on g2. Notice that the same map defines a right action of g2 on g1
called right translation R, so that Lg1 g2 = Rg2 g1. “Transitive” means that for any pair of
elements g1, g2 ∈ GGG, there exists an element g ∈ GGG such that g2 = Lgg1, and “free” means
that such g is unique. Indeed, g = g2g−1

1 .

3.1.2. Lie Algebras

Looking at GGG as a manifold, it is natural to consider vector fields on it, which are
the sections of the tangent bundle over GGG. The set of all vector fields is denoted by
X (GGG) := Γ(GGG, TGGG). This is an infinite dimensional algebra endowed with a skew symmetric
product defined by the Lie brackets

[ , ] : X (GGG)×X (GGG)→ X (GGG), (X, Y) LYX,

where LYX is the Lie derivative of X along the direction of Y; [ , ] is antisymmetric,
[X, Y] = −[Y, X] and satisfies the Jacobi identity

[X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0, ∀ X, Y, Z ∈ X (GGG).

Any algebra with such a product is called a Lie algebra. However, we want to restrict
our attention to the subset of those vector fields that are compatible with the left translation.
Since for any g ∈ GGG, Lg : GGG → GGG is a diffeomorphism, the pushforward (Lg)∗ is well
defined on X (GGG). We say that X ∈ X (GGG) is left-invariant if (Lg)∗X = X for any g ∈ GGG.
Fixing a point h, we thus must have

X(h) = ((Lg)∗X)(h) = (Tg−1hLg)X(g−1h),

TpLg being the tangent map (or differential) of Lg in p. In particular, choosing g = h
we obtain

X(h) = (TeLg)X(e),

so that a left-invariant field is completely determined by its value in e. Thus, the set of
left-invariant fields, call it X L(GGG), is a finite dimensional vector space linearly isomorphic
to TeGGG. Moreover, one has that the Lie bracket among left-invariant vector fields is again
left-invariant so that X L(GGG), [ , ] is a finite dimensional Lie algebra. It is called the Lie
algebra of GGG; it is usually identified with TeGGG, and it is called ggg.

3.1.3. The Exponential Map

From a Lie group GGG, we can move to the corresponding Lie algebra ggg. We can also do
the opposite by means of the exponential map

ExpGGG : ggg→ GGG, X γX(1),

where γX is the unique solution of the Cauchy problem

γ̇(t) = X(γ(t)), γ(0) = e.

Theorem 2. Let GGG be a Lie group and ggg be the corresponding Lie algebra. Let X, Y, Z ∈ ggg, and
s, t ∈ R. Then, the exponential map ExpGGG satisfies

1. ExpGGG(0) = e;
2. ExpGGG(tX) = γX(t);
3. ExpGGG((t + s)X) = ExpGGG(tX)ExpGGG(sX);
4. ExpGGG(−X) = ExpGGG(X)−1;
5. ExpGGG(X + Y) = ExpGGG(X)ExpGGG(Y) if [X, Y] = 0;
6. ExpGGG defines a local diffeomorphism between an open neighbourhood of 0 in ggg and an open

neighbourhood of e in GGG;



Universe 2022, 8, 492 16 of 54

7. TeExpGGG : TeGGG → ggg is an isomorphism of vector spaces;
8. eve ◦ TeExpGGG : TeGGG → TeGGG is the identity map over TeGGG.

In the last point, eve : ggg→ TeGGG is the map evaluating a left-invariant vector field in e.
The exponential map is not surjective in general, but it is so for connected compact groups.
Obviously, it depends on GGG in the sense that we have to know GGG in order to compute ExpGGG.
Nevertheless, we will see that it behaves well with regard to representations, so that in a
sense it can be used to “realise” the group starting from the algebra.

3.2. Semisimple Lie Groups and Algebras

A special class of Lie algebras is given by semi-simple algebras.

Definition 1. A semi-simple Lie algebra Λ is a Lie algebra which has a dimension at least two and
that does not contain proper abelian ideals.

Recall that an ideal I of Λ is a vector subspace of Λ such that [a, j] ∈ I for all a ∈ Λ and
j ∈ I. “Proper” means that 0 $ I $ Λ, and “abelian” means that [i, j] = 0 for any i, j ∈ I.

Definition 2. A simple Lie algebra Λ is a Lie algebra which has a dimension at least two and that
does not contain proper ideals.

A simple algebra is also semi-simple, whereas any semi-simple algebra is the direct
sum of simple algebras in a unique way up to reordering of the simple factors. Similar
concepts can be defined for Lie groups:

Definition 3. A semi-simple Lie group GGG is a non-abelian Lie group which does not contain proper
abelian normal subgroups.

Recall that a normal subgroup HHH of a Lie group GGG is a Lie subgroup of GGG such that
ghg−1 ∈ I for all g ∈ GGG and h ∈ HHH. Proper means that e $ HHH $ GGG, and abelian means that
[h, k] ≡ hkh−1k−1 = e for any h, k ∈ HHH.

Definition 4. A simple Lie group GGG is a non-abelian Lie Group which does not contain proper
normal subgroups.

A simple group is also semi-simple, whereas any semi-simple group is the direct
product of simple groups in a unique way up to reordering of the simple factors and the
quotient of a finite normal subgroup.

Notice that a group GGG is (semi-)simple if and only if the corresponding Lie algebra ggg is.
It is also important to mention that by Lie subgroup of GGG, we mean a subgroup that is a Lie
group and is also a submanifold of GGG.

There is a simple way to characterise semi-simple groups, as we will see in Section 3.7.

3.3. Abelian Compact Lie Groups

It can be shown that n-dimensional abelian connected compact Lie groups must be
of the form GGG = Rn/L, where L is an n-dimensional lattice that is an abelian additive
subgroup of Rn isomorphic to Zn and discrete. So, it is topologically equivalent (and
diffeomorphic) to an n-dimensional torus

GGG ' Tn ' (S1)×n.

3.4. All Compact Lie Groups

We are now ready to consider an arbitrary compact Lie group.
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Theorem 3. Let GGG be a connected compact Lie group. Then,

GGG ' GGG0 × TTTs/∆,

with GGG0 a semi-simple subgroup, TTTs an abelian torus, and ∆ a finite subgroup.

Proof. (See [1,36]). Let us consider the corresponding derived group GGG′ of GGG, also called
the commutator group, which is the group generated by all the commutators in GGG that are
the elements of the form [g, h] = ghg−1h−1 (not to be confused with the Lie brackets). It is
easy to check that, by construction, GGG′ is a semi-simple group and that it is a normal Lie
sub-group of GGG. Let us put GGG0 := GGG′. Next, consider the center ZZZ of GGG, that is the subgroup
of those elements commuting with the whole GGG. Put TTTs := ZZZ0, the connected component of
ZZZ containing e. Then, consider the multiplication map

m : GGG′ ×ZZZ0 → GGG, (g, z) gz.

We claim that it is surjective. Indeed, first notice that since ZZZ0 is central, we have that

m((g, z)(g′, z′)) = m((gg′, zz′)) = (gg′)(zz′)

= (gz)(g′z′) = m((g, z))m((g′, z′)),

so m is an homomorphism. Moreover, by construction, GGG/GGG′ is abelian (it is called the
abelianisation of GGG), and, GGG′ being semi-simple, passing to the corresponding Lie algebras
we see that necessarily, with obvious notation,

ggg′ ⊕ zzz0 = ggg,

which implies that the differential of m is surjective. This implies that the image of m is
open. On the other hand, GGG′ and ZZZ0 are compact, and m is continuous so that the image of
m is compact and then closed. However, GGG is connected so that m is surjective.
Now, the kernel of m is defined by the set of elements (g, z) ∈ GGG′ ×ZZZ0 such that gz = e,
that are the elements of the form (g, g−1). This means that g ∈ GGG′ ∩ZZZ0 and so the kernel
of m is identified by the embedding of ∆ := GGG′ ∩ZZZ0 in GGG′ ×ZZZ0 via the map g 7→ (g, g−1).
This way, we have an exact sequence

e→ GGG′ ∩ZZZ0 → GGG′ ×ZZZ0 → GGG → e

so that

GGG ' GGG′ ×ZZZ0/∆.

On the other hand, GGG′ ∩ ZZZ0 is the center of GGG′. As we will see, the center of a semi-
simple Lie group is always a finite group, and we have

GGG ' GGG0 × TTTs/∆,

as claimed.

3.5. Cohomology of Compact Lie Groups

Any compact Lie group G contains a maximal torus Tr which corresponds to a maxi-
mal abelian subgroup. It is unique up to isomorphisms. Its dimension r is called the rank
of the group. Since GGG is a manifold, one can define the exterior bundle Λ∗GGG, whose sections
are the differential forms. In particular, Λ∗GGG = R⊕∑n

k=1 ΛkGGG, where n is the dimension
of GGG and ΛkGGG is the k-th external power of the cotangent bundle T∗GGG. If d is the external
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derivative and dk is its restriction to ΛkGGG, so that d0 is the usual differential on smooth
functions, then, to Λ∗GGG we have associated an elliptic complex

0 ↪→ C∞(GGG)
d0
→ T∗GGG d1

→ Λ2GGG d2
→ · · · dk−1

→ ΛkGGG dk
→ · · · dn−1

→ ΛnGGG dn
→ 0,

since Im dk−1 ⊆ Ker dk. As usual, Ker d are the closed forms, Im d are the exact forms.
The ring

H(GGG,R) :=
Ker d
Im d

= ⊕n
k=0Hk(GGG,R),

is the cohomology ring, and

Hk(GGG,R) = Ker dk

Im dk−1

is the cohomology (additive) group of order k. The cohomology of a compact connected Lie
group is characterised by the following theorem due to Hopf (see [36] for a modern proof):

Theorem 4. The cohomology of a connected compact Lie group GGG of rank r, over a field of charac-
teristic 0, is the same as the cohomology of a product of r odd dimensional spheres.

Indeed, we can say a little bit more;
we know that a connected compact Lie group has the form

GGG = GGG1 × · · · ×GGGp ×Tq/∆,

where GGGi, 1 ≤ i ≤ p, are simple, Tq is a torus, and ∆ a finite group. The cohomology group
is insensitive to the action of ∆. By means of the Künneth formula, the cohomology of a
product of spaces can be recovered by that of the factors via cup products so that we can
understand the whole cohomology from the one of the torus and the simple factors. GGGi has
rank ri, such that r = q + ∑

p
i=1 ri. The torus contributes to the cohomology, as usual, as the

product of q one-dimensional spheres. Therefore, the rest of the cohomology is determined
by that of GGGi. By the Hopf theorem, we know that H(GGGi,R) is that of a product of ri odd

dimensional spheres S2d(i)j −1, j = 1, . . . , ri. The numbers d(i)j are completely classified for
simple Lie groups and are called the fundamental invariant degrees. See below for their
complete list and clarification of the term.

3.6. Fundamental Group of Compact Lie Groups

Let us briefly discuss the fundamental group of a compact connected Lie group GGG. We
know that

GGG = GGG1 × · · · ×GGGp × TTTs/∆.

where the GGGi’s are simple, and ∆ = (GGG1 × · · · ×GGGp) ∩ TTTs is the intersection between the
torus and the simple components. In particular, ∆ is in the center of the product of the
simple components and is thus a finite group. Let us rewrite GGG = HHH/∆. Then, obviously,

π1(HHH) = π1(GGG1)× · · · × π1(GGGp)×Zs.

Now, since ∆ acts freely on HHH, we have that the map φ : HHH → GGG is a covering map so
that π1(GGG)/π1(HHH) = ∆.Therefore

π1(GGG) ' π1(GGG1)× · · · × π1(GGGp)×Zs × ∆.
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3.7. Representations

Since we are working with finite dimensional Lie groups, we will speak about finite
dimensional representations. Roughly speaking, a representation is a way of interpreting
a group as a group of transformations. As such, it does not only depend from the group
but also from the choice of the object to be transformed. A priori, there is no any reason
to fix a particular class of objects to be transformed. However, the simplest objects to be
considered are vector spaces. On a fixed vector space V, the group is expected to act as a
subgroup of the general linear group GL(V) (that is the set Aut(V) of automorphisms of
V, seen as a group with the composition law). In this case, we will speak about a linear
representation. If the vector space is real or complex and endowed with a scalar product, or
a symplectic structure, we can think to embed the group in the automorphisms of the given
structure so that we will deal with orthogonal, unitary, or symplectic linear representations,
and so on. If in place of vector spaces, we work with projective spaces, the representation
is not linear but projective, etc.

We will limit ourselves to the simplest case of linear representations.

Definition 5. A finite dimensional linear representation of a group GGG is a group homomorphism

R : GGG → GL(V),

where V is a finite dimensional vector space called the support of the representation. In particular,
gh R(g)R(h), and R(e) = IV , the identity map IV(v) = v for any v ∈ V.

Since Lie groups are strictly related to Lie algebras, it is interesting talso consider
linear representations of Lie algebras. To this end, let us first note that the set End(V) of all
endomorphisms of V becomes a Lie algebra if endowed with the Lie product [ , ]0 given by
the commutator: [A, B]0 := AB− BA. This algebra is called L(V), the linear algebra.

Definition 6. A finite dimensional representation of a Lie algebra Λ is a homomorphism of algebras

ρ : Λ→ L(V),

where V is a finite dimensional vector space, said the support of the representation. In particular,
ρ : [a, b] [ρ(a), ρ(b)]0 for any a, b ∈ Λ.

Given the relation between a Lie group and the corresponding Lie algebra, it is natural
to wonder if there is some relation between the respective representations. The answer is
given by the following well-known propositions:

Proposition 1. Let V be a finite dimensional vector space. Then, GL(V) is a Lie group of dimension
(dim V)2, and the corresponding Lie algebra is L(V).

Proposition 2. Let (R, V) be a linear representation of a Lie group GGG:

R : GGG → GL(V).

Then,

TeR : TeGGG ' ggg→ TIV GL(V) ' L(V)

is a linear representation of ggg. We will call it ρR.

Proposition 3. Let R, V be a linear representation of the Lie group GGG and ρR the corresponding
representation of the associated Lie algebra. Then, the diagram
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GGGOO

ExpGGG

GL(V)//R
OO
ExpGL(V)

ggg
ρR // L(V)

commutes.

These propositions relate representations of groups to representations of algebras. We
are interested in particular linear representations of groups. We want representations such
that the image of GGG in Aut(V) is a faithful realisation of GGG, and, in some sense, we would
like for it to be the smallest realisation.

Definition 7. The representation R, V of a group GGG is said faithful if R is injective.

This means essentially that we can identify GGG with its image in GL(V). For the second
notion we need, we recall that V′ ⊂ V is said to be invariant under GGG if R(g)v ∈ V′ for any
g ∈ GGG, v ∈ V′.

Definition 8. The representation R, V of a group GGG is said irreducible if V does not contain proper
invariant subspaces.

If V contains a proper irreducible subspace V′, then R|V′ , V defines a new representa-
tion that is “smaller” than R, V. In this sense, an irreducible representation is the smallest
(non-trivial) one.

3.7.1. The Adjoint Representations

Given a group, its linear representations are not natural since in order to define them
one has to introduce an extra structure, the one of linear space, which is not at all present in
the definition of the group. For an algebra, particular representations could arise from the
naturally underlying linear structure in the algebra itself. For a Lie group GGG, these things
go together since it has associated a natural vector space, TeGGG, isomorphic to ggg. In order to
construct this natural representation, we start with the conjugation map associated with a
given point g ∈ GGG:

cg : GGG → GGG, g ghg−1.

This map is a homomorphism. To it, we can associate the map

Adg := Tecg : TeGGG → TeGGG,

called the Adjoint map associated with g. It is clear that Adg is an automorphism of ggg, such
that Ade = Iggg and Adg1g2 = Adg1 ◦ Adg2 . Thus, the map

Ad : GGG → GL(ggg), g Adg

defines a representation of GGG with support ggg, called the Adjoint representation. As above, it
also defines a representation of ggg over itself, called the adjoint representation

ad : ggg→ L(ggg), a ada,

where

ada : ggg→ ggg, b [a, b].
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3.7.2. Simple Algebras and the Cartan Criterion

The fact that the adjoint representation is natural does not guarantee that it is faithful
or irreducible, so, despite its naturalness, it may not be useful to characterise the group (or
the algebra). The kernel of ad is

Ker ad = {a ∈ ggg : ada(b) = 0 ∀b ∈ ggg},

so that it is an abelian ideal. A sufficient (but not necessary) condition for it to be the
set {0} is that ggg is semi-simple. In this case, the adjoint representation is thus faithful.
This makes semi-simple algebras interesting since they can be recovered by looking at
their natural representation. Suppose it is reducible. Then, we immediately obtain that
the proper invariant subspace g′g′g′ is in fact a proper ideal so that ggg is not simple but only
semi-simple. This is what makes simple algebras so special; they can be reconstructed from
their own natural representation in an irreducible way. Things are a little bit more subtle
for the groups, as we will se below for the case of compact forms.

A first byproduct of the adjoin representation is the following characterisation of
semi-simple Lie algebras (and groups): on the Lie algebra one can define a symmetric
bilinear form

K : ggg× ggg→ K, (a, b) Tr(ada ◦ adb),

where K = R or C if the algebra is real or complex, respectively. The form K is called the
Killing form of ggg.

Theorem 5. A Lie algebra ggg is semi-simple if and only if its Killing form K is non-degenerate.

Proving that the non-degeneracy is a sufficient condition is a quite simple exercise.
The converse requires the introduction of more sophisticated structures, which are not
relevant for our purposes.

3.8. Roots and Classifications

In this section, we will concentrate on simple Lie algebras, briefly recalling the ingredi-
ents leading to their classifications. We are interested in real groups and algebras, but the
simplest starting point is with complex algebras.

3.8.1. Classification of Complex Simple Lie Algebras

A simple Lie group GGG of rank r contains a maximal torus Tr, whose Lie algebra is a
maximal abelian subalgebra of ggg, usually called the Cartan subalgebra and denoted with
H. The elements of H have vanishing Lie product, which means that the corresponding
operators, defined by the adjoint representation, commute. Moreover, as linear operators
over ggg, they are diagonalisable. Since they commute, they are all simultaneously diagonal-
isable, thus having common eigenvectors. This means that a basis of vectors gi ∈ gggi exists
such that

adhgi = λi(h)gi

for any h ∈ H. We have explicitly shown the dependence of the eigenvalue from h. Since
adhgi = [h, gi], λj depends linearly on H so that any j, λj defines a linear functional over H
that is an element of the dual space H∗. These linear eigenfunctionals are called the roots
of the algebra. Notice that these are not necessarily all distinct, and the corresponding
eigenspaces can have dimensions larger than one. For example, the elements of H are
obviously eigenvectors corresponding to the zero eigenvalue, and one then understands
that the Cartan subalgebra is indeed the eigenspace corresponding to the vanishing root.
The vanishing root is thus degenerate with a degeneration index r. However, by using that
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the Killing form, it must be non-degenerate, and the algebra has a finite dimension. One
can show quite easily that ([35])

• For any non-vanishing root λ ∈ H∗, also kλ is a root if and only if k = 0,±1;
• The number of non-vanishing roots is at least 2r;
• If λ is a non-vanishing root, then its corresponding eigenspace has dimension one;
• If α and β are two non-vanishing roots and a, b are in the corresponding eigenspaces,

then either [a, b] = 0 and α + β is not a root or α + β is a root and [a, b] 6= 0 belongs to
the corresponding eigenspace;

• The eigenspaces gggα and gggβ of the roots α and β are mutually orthogonal with regard to
the Killing form unless α + β = 0.

In particular, it follows that the Killing form restricted to the Cartan subalgebra is
non-degenerate, and therefore, it defines a natural isomorphism between H and its dual
H∗. Using this and the (semi) simplicity of the algebra, one can further show that the set of
roots generates H∗ over C and that, in particular, they are in rational dependence in the
sense that after fixing any given choice of a basis of roots in H∗, all the remaining roots are
linear combinations of the elements of the basis with coefficients in Q. In particular, this
means that the set of roots spans an r-dimensional real subspace of H∗, which is called the
real form H∗R. Let KH be the restriction to H of the Killing form. Let

φ : H → H∗, λ KH(λ.·)

be the corresponding isomorphism. Then, we can induce a bilinear form over H∗

( | ) : H∗ × H∗ → C, (α, β) KH(φ
−1(α), φ−1(β)),

which, by construction, is symmetric and non-degenerate. However, one can say more;
when restricted to the real form, ( | ) is also positive definite and thus defines a Euclidean
structure over H∗R. From now on, we will always refer to this restriction.

Theorem 6 (Cartan). Let α and β be two non-vanishing roots of a semi-simple Lie algebra. Then,

pαβ = 2
(α|β)
(α|α) ∈ Z,

and

Butwα(β) = β− 2
(α|β)
(α|α) α

is also a root.

Obviously, the same holds true interchanging α and β. The linear map

wα : H∗R → H∗R, β β− 2
(α|β)
(α|α) α

is called the Weyl reflection. Geometrically, it is a reflection through the hyperplane
orthogonal to α. The set of wα, when α varies among all roots, by composition generates a
discrete subgroup of the isometry group of H∗R, called the Weyl group of ggg.

Cartan’s theorem is the key for the classification of all (complex) simple Lie algebras.
Indeed, it is possible to prove the existence of a (non-unique) basis of roots for H∗, called
a simple root system, such that any other root is a combination of the basis with only
non-negative or non-positive integer coefficients. The elements of such a basis are called
simple roots and allow for separating the roots in positive and negative roots in an obvious
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way. From this, it follows that the scalar product on two simple roots must be non-positive.
Note that

pαβ pβα = 4 cos2 θαβ,

where θαβ is the angle between the roots α and β defined by the Euclidean scalar product
( | ). From Cartan’s theorem, it then follows that the possible values of the scalar products
among roots are such that 4 cos2 θαβ = 0, 1, 2, 3, 4. In the case it is zero, there are no relations
among the lengths, and in the case it is four, then the two roots are collinear, a case already
considered, thus not interesting. In the other cases, one also notices that

pαβ

pβα
=
‖β‖2

‖α‖2 .

Therefore, the angles and rates of length among simple roots are constrained, and such
constraints can be used to completely determine all possible root systems up to equivalences.
When a root system is given, the action of the Weyl group generates all the remaining
roots associated with a semi-simple algebra, and this allows us to reconstruct the whole
algebra. This is the way one classifies simple Lie algebras. Indeed, pαβ associated with a
given simple root system are the components of a matrix called the Cartan matrix. It has
the following properties:

• The diagonal elements are al ltwo, whereas the non-diagonal elements are non-positive
integers;

• pαβ is zero if and only if pβα is zero;
• The root can be ordered so that the non-vanishing elements below the diagonal are −1.

Moreover, if the algebra is semi-simple, all roots relative to a simple block are orthog-
onal to the ones of any other block so that the corresponding Cartan matrix is a block
diagonal. Thus, to classify simple algebras, one has to classify all the Cartan matrices that
cannot be block-diagonalised via reordering of the roots. This can be performed using the
method of Dynkin diagrams, where to each simple root one associates a dot, and two dots
α and β are connected by a number nαβ = pαβ pβα of lines oriented from the longer to the
shorter root. These diagrams are in biunivocal correspondence with the Cartan matrices,
and in particular, a diagram corresponds to a simple algebra if and only if it is connected.

All possible Dynkin diagrams are depicted in Appendix A. They correspond to the
following classical complex matrix algebras (with commutator as Lie bracket):

• slslsl(n,C) of rank n− 1, n ≥ 2 of traceless n× n complex matrices;
• sososo(2n + 1) of rank n, n ≥ 2 of (2n + 1)× (2n + 1) antisymmetric complex matrices;
• spspsp(2n) of rank n, n ≥ 2 of (2n)× (2n) symplectic complex matrices;
• sososo(2n) of rank n, n ≥ 3 of (2n)× (2n) antisymmetric complex matrices;

and the five exceptional complex algebras

• ggg2, the linear algebra generated by the derivations acting on the octonionic algebra O;
• fff4, the Lie algebra associated with the isometry group of the octonionic projective

plane OP2;
• eee6, the Lie algebra associated with the isometry group of the complex octonionic

projective plane (C⊗O)P2;
• eee7, the Lie algebra associated with the isometry group of the quaternionic octonionic

projective plane (H⊗O)P2;
• eee8, the Lie algebra associated with the isometry group of the bi-octonionic projective

plane (O⊗O)P2.

We refer to [37] for recalling the definitions of octonions and octonionic planes.
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3.8.2. Classification of Real Simple Lie Algebras

A little bit more involuted is the classification of real Lie algebras since for any com-
plex Lie algebra there are more possible real forms, inequivalent real algebras whose
tensorization by C gives the considered complex simple algebra. For example, slslsl(2,C) can
be obtained by complexification of slslsl(2,R) or of sususu(2), the Lie algebra of anti-Hermitian
matrices. We are not interested in report here how exactly all real forms associated with a
complex form can be obtained since we are mainly interested in those real forms which
exponentiate to a compact group, the so-called compact form. Nevertheless, since it will be
of use in the next section, we illustrate here the main steps leading to the classification of
real forms.

We will show the existence of two important real forms, the second one being the
compact form. Let α1, . . . , αn be the positive roots of ggg, where r + 2n is the dimension of the
algebra. We know that they generate H∗R on R, so we can choose a real basis h∗i , i = 1, . . . , r
of H∗R such that any root has a real coefficient with regard to it. It is easy to see that with
regard to this choice, the Killing form is a positive definite over H. Indeed, given h ∈ H,
we fix a basis h1, . . . , hr in H and let gs, s = 1, . . . , n the eigenvectors for the positive roots,
and g−s the ones for the negative roots. With respect to this basis, we then find that

K(h, h) = ∑
s
(αs(h)2 + (−αs(h))2) > 0. (65)

In particular, we can always fix an orthonormal basis hi of H. Moreover, we can
normalise g−s such that K(gs, g−s′) = δss′ , which, together with K(hi, hj) = δij, are the only
non-vanishing products. In particular, one can always choose gs (and g−s′ ) so that [gs, gt] is
a real combination in the algebra. From this, it follows that the chosen generators define a
real subalgebra of ggg. An interesting basis of this real subalgebra is given by

hi, i = 1, . . . , r, λ±s =
gs ± g−s√

2
, s = 1, . . . , n.

This basis is orthogonal, with

K(hi, hi) = K(λ+
s , λ+

s ) = 1, K(λ−s , λ−s ) = −1.

This real Lie algebra is not compact ([36]).

Proposition 4. Let GGG be a finite dimensional connected simple Lie group. Then, GGG is compact if
and only if the Killing form on the corresponding Lie algebra is negative definite.

We can obtain the compact form from the above real algebra by noticing that, if kkk is
the subalgebra generated by the {λ−s } and ppp the subspace generated by the remaining
elements, then

[kkk, kkk] ⊆ kkk,

[kkk,ppp] ⊆ ppp,

[ppp,ppp] ⊆ kkk.

This can be rephrased by saying that kkk is symmetrically embedded in ggg. It is a maximal
compact subalgebra of ggg, and indeed, it can be shown that in the specific case of the real
algebra we have just constructed, kkk is the smallest possible maximal subalgebra in this sense.
There exist smaller maximal subalgebras (not properly contained in proper subalgebras of
ggg), but they are not symmetrically embedded. Using the property of maximal embedding,
we see that the generators

h̃i = ihi, i = 1, . . . , r, λ̃+
s = iλ+

s , λ̃−s = λ−s , s = 1, . . . , n, (66)
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also define a real Lie subalgebra of ggg, but now

K(h̃i, h̃i) = K(λ̃+
s , λ̃+

s ) = K(λ̃−s , λ̃−s ) = −1,

so that we obtained the compact real form.
This way, we have constructed two real forms: the compact form and a non-compact

form with the smallest possible symmetrically embedded maximal compact subgroup.
These are related by a simple trick. We considered the map σ : ggg → ggg, such that kkk  kkk,
ppp ippp, that can be easily extended to a linear map. To it, we can associate the linear map
θ = σ2. It has the property that θ2 is the identity and K(θ(a), θ(b)) = K(a, b). Moreover,
Kθ(a, b) = K(a, θ(b)) is negative definite over kkk⊕ ppp, and kkk and ppp are eigenspaces for θ with
eigenvalues +1 and −1, respectively. It turns out that any real form is associated with such
a map: any linear involution θ : ggg → ggg, θ2 = 1, which is a K-isometry, is called a Cartan
form. It determines a real form as a real space gggθ = kkk+ ppp on which Kθ defined as above is
negative definite, and the decomposition is K-orthogonal. It is immediate to verify that the
positive eigenspace kkk is a maximal compact subalgebra symmetrically embedded.
The reader interested in the details should read for example the book [38].

3.9. Root Systems

One interesting fact we have recalled in the previous sections is that simple algebras
are associated with roots, which in general are generated by integer combinations of a
fundamental system of simple roots. Therefore, the roots are in general a subset of the
lattice linearly generated by the Z-span of the simple roots system. A one-dimensional
eigenspace is associated with each non-vanishing root. We will say that such roots have
weight one. The vanishing root has weight equal to the linear dimension of the lattice.
Recall that if α is a root, then kα is also a root if and only if k = 0,±1. Combined with
Cartan’s theorem, this shows that the roots associated with any simple algebra define a
crystallographic reduced root system. We will see in the next section that more general
root systems, crystallographic but non-reduced, can be associated with the real forms (or,
equivalently, to the associated symmetric spaces).

3.10. Compact Forms

We have seen how complex finite dimensional simple Lie algebras are completely
classified by the Dynkin diagrams. Any such diagram completely identifies a simple Lie
algebra over C. The same is not true for the real forms, but it becomes true if we restrict
our attention to compact real forms. Nevertheless, the unicity is again lost if we pass to the
group; to a given Dynkin diagram, there can correspond a number of connected simple
compact Lie groups all having the same (simple compact real) Lie algebra. We will call
these the compact forms of the group.

The compact forms can all be determined as follows.

Proposition 5. Let ggg be the simple compact form algebra associated with a given Dynkin diagram.
Then, there exists a unique compact connected and simply connected Lie group G̃̃G̃G whose associated
Lie algebra is ggg.

See [35]. Any other compact group GGG associated with ggg can be obtained from G̃̃G̃G. Recall
that G̃̃G̃G has finite center Z (cf. [35], Proposition 23.11, p. 200). Let Γk, k = 1, . . . , m be all
possible subgroups of Z, which of course are a finite number. In particular, we assume
Γ1 = Id, Γm = Z. Then,

GGGk = G̃̃G̃G/Γk, k = 1, 2, . . . , m, (67)

are all possible compact forms associated with the given Dynkin diagram. Notice that

φk : G̃̃G̃G → GGGk
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is a covering, and since Γk acts freely, we have π1(GGGk) = Γk.

3.11. Realizations

Each compact group admits at least a faithful linear representation (cf. [35], Theorem
4.2, p. 26). Let us call (Rk, Vk) such a representation for GGGk (in particular (Ad,ggg) is faithful
for GGGm). It induces a faithful representation (ρi, Vi) of ggg, so that the following diagram
is commutative:

GGGkOO
expGGGk

Aut(Vk)//Rk

OO

Exp

ggg
ρk // End(Vk)

GGGk being compact, it follows that Rk is injective and continuous, and Aut(Vk) is
T2. Hence, GGGk and Rk(GGGk) are homeomorphic ([39], Theorem 8.8) and have the same
fundamental group5. Therefore, we can construct a realisation of the desired compact
form just by exponentiating the matrices associated with the Lie algebra ggg via the suitable
representation ρk induced by the faithful representation Rk of GGGk. We will call ρk a GGGk-
faithful representation. Thus, we realise the desired compact GGG form by working with the
suitable GGG-faithful representation of the corresponding Lie algebra.

Now, let HHH be a symmetrically embedded subgroup of GGG. If (ρ, V) is a GGG-faithful
representation of ggg, then ρ will decompose into a direct sum of representations of the Lie
algebra hhh of HHH among which at least one is surely HHH-faithful.

4. Compact Symmetric Spaces

In this section, we provide a short survey on compact symmetric spaces and gener-
alised root systems. The reader that wants to enter the details is referred to [35,38,40].

4.1. Globally Symmetric Spaces

A symmetric space is an analytic Riemannian manifold, that is, a manifold endowed
with an analytic structure and an analytic metric such that each of its points is an isolated
fixed point for an involutive isometry. This is an isometry whose square is the identity.
We will not give a detailed account of the consequences of this definition; we will just
give a short intuitive description of compact symmetric manifolds at the level necessary
for the applications in the next sections. Let GGG be a finite dimensional compact Lie group
and KKK ⊂ GGG a proper Lie subgroup of GGG. With ggg and kkk ⊂ ggg, we indicate the corresponding
Lie algebras. Let ppp be a linear complement of kkk in ggg (if G is semi-simple, we can take the
orthogonal complement with regard to the Killing form). We say that KKK is symmetrically
embedded in GGG if the corresponding Lie algebras satisfy

[kkk, kkk] ⊆ kkk, (68)

[kkk,ppp] ⊆ ppp, (69)

[ppp,ppp] ⊆ kkk. (70)

Notice that ppp is not a subalgebra unless it is abelian. In order to understand the
meaning of these relations, let us pass to the groups. The point is that, generically, a globally
symmetric manifoldM has the form

M = GGG/KKK, (71)

where KKK is symmetrically embedded in GGG. Of course

dimM = dimGGG− dimKKK = dimppp. (72)

Roughly speaking, thinking of elements of a Lie algebra as left invariant vector fields,
we can look at ppp as defining at any point the tangent space toM, obtained cutting out the
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quotiented directions kkk from ggg. However, it is more interesting to think about the fields as
infinitesimal generators of the natural action of GGG overM = GGG/KKK. Indeed, obviously the
action of KKK overM leaves its points fixed and can then be identified with the isotropy group
ofM. In contrast, ppp represents the infinitesimal translations ofM since they generate shifts
from a point to a different one. In this view, (69) simply represents the action of the isotropy
group on translations. Interestingly, (70) shows that translations usually do not commute
since their commutator gives rise to a transformation under the isotropy group. This is to
say that the manifold M is curved. We can clarify further what we just said by considering
the case GGG is a simple group.

4.2. A Little Bit of Differential Geometry

The main characteristic of the case when GGG is simple is that it is essentially endowed
by a natural metric, the Killing metric K. First, recall that any Lie group GGG is endowed with
the Maurer–Cartan 1-form jjj, a ggg-valued left invariant 1-form, defined by

jjj(X) = Xe (73)

for every left invariant vector field X over GGG, jjj does satisfy the Maurer–Cartan equation

djjj +
1
2
[jjj, jjj] = 0, (74)

where [, ] is the Lie product combined with the wedge product, as usual. To see this, it is
sufficient to evaluate djjj on a pair of left invariant fields X, Y. Using the Cartan formula

djjj(X, Y) = X(jjj(Y))−Y(jjj(X))− jjj([X, Y]) = −jjj([X, Y]), (75)

where in the last step, we used that jjj(X) = Xe and jjj(Y) = Ye are constants. Now,

jjj([X, Y]) = [X, Y]e = [Xe, Ye] = [jjj(X), jjj(Y)] =
1
2
[jjj, jjj](X, Y), (76)

which proves the above equation.
For a compact simple Lie group, jjj is related to the bi-invariant metric ds2 over GGG by

ds2 = −λ2K(jjj⊗ jjj), (77)

where λ is a real normalisation constant. Since GGG is compact, the minus sign ensures strict
positivity. Set n = dimGGG, k = dimKKK and choose an orthonormal (with regard to the metric
−λ2K) basis τi, i = 1, . . . , n of ggg = Lie(GGG), assuming that the first k elements are a basis for
kkk = Lie(KKK) so that the remaining ones generate ppp. We will use first Latin indices a, b, c, d
running from 1 to k and Greek indices α, β, γ, δ running from k + 1 to n.

As discussed in the next section, it can be shown that the generic element of the
(compact) group can be written in the form

GGG = PPPKKK, (78)

where PPP = exp(ppp), KKK = exp(kkk). Therefore, PPP = GGG/KKK is a good representative for the
quotient space. Let us consider the restriction of jjj to PPP

jjjPPP = jjj|PPP. (79)

Notice that ggg = ppp⊕ kkk is an orthogonal direct sum with respect to the Killing metric.
Accordingly, we can write

jjjPPP = jjj‖PPP ⊕ jjj⊥PPP , (80)
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where jjj‖PPP takes value in ppp, while jjj⊥PPP takes value in kkk. It follows that

dσ2 = −λ2K(jjj‖PPP ⊗ jjj‖PPP) (81)

defines a positive definite metric over PPP. Since K is bi-invariant, the metric is well defined
under the left action of KKK. Using the Maurer–Cartan equation and (68), (69), and (70), we
immediately obtain

djjj‖PPP = −[jjj⊥PPP , jjj‖PPP]. (82)

It is now convenient to introduce the structure constants of the algebra relative to a
given basis τA, A = 1, . . . , N by

[τA, τB] = cAB
CτC, (83)

where the usual summation convention is adopted. Because (68)–(70), we have that the
non-vanishing structure constants are

cab
c, cαβ

c, cαb
γ = −cbα

γ. (84)

Thus, Equation (82) can be rewritten as

djjjα
PPP = −cbβ

αjjjb
PPP ∧ jjjβ

PPP. (85)

Now, since the basis we have chosen is orthonormal with regard to the metric −λ2K,
we have that

dσ2 = jjjαPPP ⊗ jjjβ
PPP δαβ, (86)

so that jjjαPPP can be thought as a vielbein. Comparing with the structure equation

djjjα
PPP = −ωα

β ∧ jjjβ
PPP, (87)

we obtain the following expression for the spin connection

ωα
β = caα

βjjja
PPP. (88)

We can also compute the curvature tensor Ωα
β = dωα

β + ωα
γ ∧ω

γ
β,

Ωα
β =

1
2

jjjγ
PPP ∧ jjjδPPPcγδ

acβa
α, (89)

which means

Ωα
βγδ = cγδ

acβa
α. (90)

Notice that

K(τα, τβ) = Tr(adτα ◦ adτβ
) = cαa

γcβγ
a, (91)

which means that our choice of λ is such that

−λ2cαa
γcβγ

a = δαβ, (92)
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which is always possible for a compact simple Lie group. It immediately follows that the
Ricci tensor has components, with regard to the vielbein,

Rαβ = Ωγ
αγβ =

1
λ2 δαβ, (93)

so that

RRR = Rαβ jjjαPPP ⊗ jjjβ
PPP =

1
λ2 ds2. (94)

Thus, M = GGG/KKK is an Einstein manifold with scalar curvature

R =
n
λ2 . (95)

4.3. Real Forms, Subgroups, and Lattices.

We know essentially all about the geometry of the quotient space once we have selected
the subgroup KKK symmetrically embedded in GGG. It remains to understand how many of
such subgroups can be found in a given compact simple Lie group. This problem can be
completely solved by passing, as usual, to the corresponding Lie algebras, as Shôhô Araki
did in [40].

We will not report the details of the derivation, which can be found in [40], but just the
result of the classification. Before doing so, we just provide a rough idea on what to expect,
once again based on our simple example SUSUSU(3). We have seen that in that case there are two
maximally symmetric embedded subgroups, one split and the other non-split . The split
one is characterised by having a Cartan subalgebra of rank two all in the complement of the
proper subalgebra. The non-split case instead has the property that the minimal possible
dimension for the intersection between the Cartan subalgebra and the proper maximal
subalgebra is one. The two Cartan subalgebras are generated by λ3 and λ8 in the first case
and by λ4 and λ̃ in the second case. Diagonalizing the adjoint action of the two systems,
we obtain the same hexagonal pictures as usual and, therefore, the same two-dimensional
lattices. Now, recall that we are interested in the quotient space. After quotienting, both
λ3 and λ8 survive, and the corresponding lattice is the same as for the whole Lie algebra.
In the non-split case, instead, only the λ4 component survives, and the lattice is projected
down to a one-dimensional lattice as shown in Figure 3.

The root system, consisting of the green dots in the figure and generating a one-
dimensional lattice, is very different from the previous one. It contains double roots, and
there are also roots of the form kα with k 6= 0,±1; that is, there are also the cases k = ±2
and k = ±1/2. This is not a proper root system. This root system characterises the non-split
quotient, while the split one is characterised by the root system of the starting algebra.
The allowability of these two root systems is related to the complexification properties of
the Lie algebra of SUSUSU(3). In both cases, it happens that the map ι : ppp 7→ ippp, where i is the
imaginary unit, transforms the compact form into a non-compact real algebra (with the
same complexification of the compact form). On the other hand, this property is strictly
related to the symmetry of the embedding since ι(ggg) is real if and only if (68)–(70) are
all satisfied.

To classify all symmetric spaces is therefore equivalent to classify the maximal proper
compact subgroups of the compact form, which is equivalent to classify all admissible ι
mappings, which is equivalent to classify all possible real forms, which, finally, is equivalent
to classify all admissible corresponding lattices. The reader interested in the details can
see [35].
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Figure 3. The non-vanishing roots of the non-split quotient.

We now briefly describe a few more instruments necessary to describe the final result
in a compact form: the Satake diagrams. They are the analogue of Dynkin diagrams,
but now for classifying the non-compact real forms (indeed, they work also on more
general fields). First, notice that all groups we are working with are in fact algebraic groups
over R. The algebraic closure of R is C, and the Galois group of the extension C/R has just
two elements (which are the identity and the conjugation, the only automorphisms of C that
leave R invariant). Now, consider a non-compact real form of the group. One first looks for
the maximal split torus (with respect to C), which is a maximal torus with respect to the
property to be isomorphic to (C∗)` for some `, when viewed over R̄ = C; ` is the R-rank of
the torus. Let us call T` the split torus. It is just generated by the maximal component of
the Cartan subalgebra in the orthogonal complement to the maximal compact subalgebra.
Thus `; is the rank of the associated symmetric space. With Tr, we indicate the maximal
torus of the complexification GGGC of the group; r is the rank of the group. Assuming GGGC

simple, after choosing a fundamental system of roots in Tr, we can draw the corresponding
Dynkin diagram. From it, we can obtain the Satake diagram as follows. Some of the roots
in the diagram vanish when computed in T`. The corresponding dots in the diagram are
filled in black. Next, the Galois group acts on the Dynkin diagram identifying some pairs of
the white dots. The “surviving” white part of the diagram, with the suitable identifications
drawn as arrows, determines the allowed root systems identifying the real form.
These root systems are not necessarily reduced. Recall that a root systemR is a finite subset
of a finite dimensional real vector space, with positive scalar product (|), satisfying the
following two condition. For any pairs of non-vanishing elements α, β ∈ R,

1. The numbers

pα,β = 2
(α|β)
(β|β) (96)

are integers;
2. α− pα,ββ ∈ R.

R is said to be “reduced” if for a given non-vanishing α ∈ R, the only non-vanishing
elements inR of the form kα are for k = ±1. This is what happens for the root system of
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a simple group. Most of the properties of such a root system follow from the above two
properties but not the condition to be reduced. Indeed, from the first condition, we see
that, if α ∈ R is different from zero, then both pkα,α = 2k and pα,kα = 2/k must be integers.
This is possible only for k = ±1, k = ±2, k = ±1/2. In particular, if 2α is a root, then α/2 is
not, and vice versa. Therefore, if there are two parallel roots of different length, they are
naturally called the "shorter" root and the "longer" root. When the only coefficients are
k = ±1, the root is called shorter, and the longer root is said to have zero multiplicity.

We are now ready to draw all possible Satake diagrams and classify all real forms (for
the details see [35,40]). For the Dynkin diagrams, we refer to Appendix A.

Non-Compact Real Forms

The compact forms of rank r are the sususu(r + 1,R) special unitary algebras. There are
four kind of Satake diagrams.

AI. The diagrams coincide with the Dynkin diagrams and correspond to the split real
forms. The lattice is the same as the one of the algebra. There are only shorter roots
with multiplicity one. They correspond to the algebras sl(r + 1,R), consisting of the
(r + 1)× (r + 1) traceless matrices with real entries and have r(r + 1) compact directions
corresponding to the subalgebra of (r + 1)× (r + 1) antisymmetric matrices. They generate
the symmetrically embedded maximal compact subalgebra (MCS) so(r + 1) of r + 1
dimensional rotations.

AII. These diagrams exist for rank r = 2n− 1, n > 1.

α1 α2 α3 α4 α5 α2n−2 α2n−1

A2n−1A2n−1A2n−1

The corresponding lattice is of Dynkin type An−1 with only shorter roots having multiplicity
four. The algebra is sususu∗(2n). It is obtained from the compact form by selecting the maximal
subalgebra uspuspusp∗(2n) and applying the ι involution to its orthogonal complement. The MCS
is uspuspusp∗(2n).

AIIIa. These are defined for rank r = n− 1, n = p + q with 1 < p < q.

α1 α2 αp αp+1 αp+2

Ap+q−1Ap+q−1Ap+q−1

αp+q−1 αp+q−2 αq αq−1 αq−2

The corresponding lattice is of Dynkin type Bp. The long roots of Bp have shorter multi-
plicity two and longer multiplicity zero. The short roots of Bp have shorter multiplicity
2(q− p) and longer multiplicity 1. The algebra is sususu(p, q), the Lie algebra of special complex
transformations leaving invariant a hermitian scalar product with signature (p, q). The
MCS is sss(uuu(p)⊕ uuu(q)). Obviously sususu(q, p) ' sususu(p, q).

AIIIb. These are defined for rank r = 2p− 1, p > 1.
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α1 α2 αp−1

A2p−1A2p−1A2p−1

α2p−1 α2p−2 αp+1

αp

The corresponding lattice is of Dynkin type Cp. There are only shorter roots. The long
roots of Cp have multiplicity two and the short roots have multiplicity one. The algebra is
sususu(p, q), with MCS sss(uuu(p)⊕ uuu(p)).

AIV. Exist for rank n > 1.

α1 αn

AnAnAn

α2 α3 αn−2 αn−1

The corresponding lattice is of Dynkin type A1. There is a shorter root of multiplicity
2n− 2 and a longer root of multiplicity 1. The algebra is sususu(1, n), the Lie algebra of complex
Lorentz transformations. The MCS is sss(uuu(1)⊕ uuu(n)). Obviously sususu(n, 1) ' sususu(1, n).

BI. Exist for rank n > 1, 2 ≤ p ≤ n.

α1 α2 αp αp+1 αn−2 αn−1 αn

〉BrBrBr

The corresponding lattice is of Dynkin type Bp. There are only shorter roots. The short
roots of Bp have multiplicity 2(n− p) + 1, while the long ones have multiplicity 1. The
algebra is sososo(p, q), p + q = n + 1, the Lie algebra of linear special transformations leaving
invariant a scalar product with signature (p, q). The MCS is sososo(p) ⊕ sososo(q). Obviously,
sososo(q, p) ' sososo(p, q).

BII. Exist for rank n > 1.

α1 α2 αn−2 αn−1 αn

〉BrBrBr

The corresponding lattice is of Dynkin type A1, with only a shorter root of multiplicity
2n− 1. The algebra is sososo(1, 2n), the Lie algebra of the Lorentz group in odd spacetime
dimensions larger than three. The MCS is sososo(2n). Obviously sososo(2n, 1) ' sososo(1, 2n).

CI. Exist for rank n > 2.
The Satake diagram is the same as the Dynkin diagram for Cn, and the lattice is

of Dynkin type Cn, with only shorter roots of multiplicity one. The algebra is spspsp(2n),
the symplectic algebra. The MCS is uuu(n).
CIIa. Exist for rank n > 2, 0 < p < n/2.
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α1 α2 α3 α2p α2p+1 αn−1 αn

〈CnCnCn

The corresponding lattice is of Dynkin type Bp. Its long roots are only shorter with multi-
plicity 4, while the short roots are both shorter with multiplicity 4n− 8p and longer with
multiplicity 3. The algebra is uspuspusp(2p, 2q), p + q = n, the Lie algebra of transformations pre-
serving a symplectic form with signature (p, q). The MCS is uspuspusp(2p)⊕ uspuspusp(2q). Obviously,
uspuspusp(2q, 2p) ' uspuspusp(2p, 2q).

CIIb. Exist for rank 2n, n > 1.

α1 α2 α3 α2n−2 α2n−1 α2n

〈CnCnCn

The corresponding lattice is of Dynkin type Cn. Its roots are only shorter, the short ones with
multiplicity four, while the long ones with multiplicity three. The algebra is uspuspusp(2n, 2n).
The MCS is uspuspusp(2n)⊕ uspuspusp(2n).

DIa. They exist for rank n ≥ 4.
The Satake diagram is the same as the Dynkin diagram for Dn, and the lattice is of Dynkin
type Dn, with only shorter roots of multiplicity one. The algebra is sososo(n, n). The MCS is
sososo(n)⊕ sososo(n).

DIb. Exist for rank n > 2.

α1 α2 α3 α4 αn−3 αn−2 αn

αn−1

DnDnDn

The corresponding lattice is of Dynkin type Bn−1. It has only shorter roots, the long ones
with multiplicity one, while the short ones with multiplicity two. The algebra is sososo(n−
1, n + 1), with MCS sososo(n− 1)⊕ sososo(n + 1). Of course, sososo(n + 1, n− 1) ' sososo(n− 1, n + 1).

DIc. Exist for rank n > 2, 1 < p < n− 1.

α1 α2 αp αp+1 αn−3 αn−2 αn

αn−1

DnDnDn

The lattice is of Dynkin type Bp with only shorter roots, the long ones with multiplicity 1,
while the short ones with multiplicity 2(n− p). The algebra is sososo(p, q), p + q = n. The MCS
is sososo(p)⊕ sososo(q). Of course, sososo(q, p) ' sososo(p, q).

DII. Exist for rank n > 2.
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α1 α2 αn−3 αn−2 αn

αn−1

DnDnDn

The corresponding lattice is of Dynkin type A1. It has only a shorter root with multiplicity
2n− 2. The algebra is sososo(1, 2n− 1). The MCS is sososo(2n− 1).

DIIIa. Exist for rank 2n + 1, n > 1.

α1 α2 α3 α2n−3 α2n−2 α2n−1 α2n+1

α2n

D2n+1D2n+1D2n+1

The associated lattice is of Dynkin type Bn. The long roots are only shorter with multiplicity
four. The short roots are shorter, with multiplicity four and longer with multiplicity one.
The algebra is so∗so∗so∗(4n + 2) and is obtained from the compact form by selecting a maximal
uuu(2n + 1) and applying the map ι to its orthogonal complement. The MCS is uuu(2n + 1).

DIIIb. Exist for rank 2n, n > 1.

α1 α2 α3 α2n−4 α2n−3 α2n−2 α2n

α2n−1

D2n+1D2n+1D2n+1

The corresponding lattice is of Dynkin type Cn. There are only shorter roots of which the
short ones have multiplicity four, and the long ones have multiplicity one. The algebra is
so∗so∗so∗(4n) and is obtained from the compact form by selecting a maximal uuu(2n) and applying
the map ι to its orthogonal complement. The MCS is uuu(2n).

EI. It is of type E6.
The Satake diagram is the same as the Dynkin diagram for E6, and the lattice is of Dynkin
type E6, with only shorter roots of multiplicity one. The algebra is eee6(6). The MCS is uspuspusp(8).

EII. It is of type E6.

α1

α2

α3

α4

α5

α6

E6E6E6
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The corresponding lattice is of Dynkin type F4. There are only shorter roots of which the
short ones have multiplicitytwo, and the long ones have multiplicity one. The algebra is
eee6(2). The MCS is uspuspusp(2)⊕ sususu(6).

EIII. It is of type E6.

α1

α2

α3

α4

α5

α6

E6E6E6

The corresponding lattice is of Dynkin type B2. The long roots are only shorter with
multiplicity six. The short roots have shorter components with multiplicity eight and
longer components with multiplicity one. The algebra is eee6(−14). The MCS is uuu(1)⊕ sososo(10).

EIV. It is of type E6.

α1 α2 α3 α4 α5

α6

E6E6E6

The corresponding lattice is of Dynkin type A2, with only shorter roots of multiplicity eight.
The algebra is eee6(−26). The MCS is fff4.

EV. It is of type E7.
The Satake diagram is the same as the Dynkin diagram for E7, and the lattice is of Dynkin
type E7 with only shorter roots of multiplicity one. The algebra is eee7(7). The MCS is sususu(8).

EVI. It is of type E7.

α1 α2 α3 α4 α5 α6

α7

E7E7E7

The corresponding lattice is of Dynkin type F4, with only shorter roots, the long ones of
multiplicity one and the short ones of multiplicity four. The algebra is eee7(−5). The MCS is
sususu(2)⊕ sososo(12).

EVII. It is of type E7.
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α1 α2 α3 α4 α5 α6

α7

E7E7E7

The corresponding lattice is of Dynkin type C3, with only shorter roots, the long ones of
multiplicity one and the short ones of multiplicity eight. The algebra is eee7(−25). The MCS is
uuu(1)⊕ eee6.

EVIII. It is of type E8.
The Satake diagram is the same as the Dynkin diagram for E8, and the lattice is of Dynkin
type E8, with only shorter roots of multiplicity one. The algebra is eee8(8). The MCS is sososo(16).

EIX. It is of type E8.

α1 α2 α3 α4 α5 α6 α7

α8

E8E8E8

The corresponding lattice is of Dynkin type F4, with only shorter roots, the long ones of
multiplicity one and the short ones of multiplicity eight. The algebra is eee8(−24). The MCS is
sususu(2)⊕ eee7.

FI. It is of type F4.
The Satake diagram is the same as the Dynkin diagram for F4, and the lattice is of Dynkin
type F4, with only shorter roots of multiplicity one. The algebra is fff4(4). The MCS is
uspuspusp(6)⊕ uspuspusp(2).

FII. It is of type F4.

α1 α2 α3 α4

〉F4F4F4

The corresponding lattice is of Dynkin type A1, with only shorter roots of multiplicity eight.
The algebra is fff4(−20). The MCS is sososo(9).

G. It is of type G2.
The Satake diagram is the same as the Dynkin diagram for G2, and the lattice is of Dynkin
type G2, with only shorter roots of multiplicity one. The algebra is ggg2(2). The MCS is sososo(4).

All these real forms can be obtained by the corresponding compact form, selecting the
right proper maximal subalgebra and multiplying the complementary generators by i.

5. Generalised Euler Angles

Here we define the generalised Euler parametrisation following [1].

5.1. The General Strategy

The Euler angles for compact simple Lie groups have been provided in [2–5,8–10,14,15].
We have already shown the basic idea in the introductory section; however, let us discuss
the general strategy once again.

Let GGG be a compact Lie group andggg ' Lie(GGG) some matrix realisation of the Lie algebra,
supporting a faithful representation of GGG ' expggg. Let HHH be a maximal symmetrically
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embedded proper subgroup of GGG. We know that there is a non-compact real form GGG′ whose
maximal compact subgroup is HHH and that there is a one to one correspondence between
maximal symmetrically embedded proper subgroups of GGG and its real forms. In particular,
when GGG′ is the split form, we will call HHH the maximal compact subgroup of GGG or MCS. The
MCS has the property

dim GGG = 2h + r, (97)

where h = dim HHH, and r is the rank of GGG. In this case, the Euler parameterization of GGG takes
the form

GGG[~x; ȳ;~z] =HHH[~x]TTTr[ȳ]HHH[~z], (98)

TTTr[ȳ] = exp(y1c1 + . . . + yrcr), (99)

~x =(x1, . . . , xh),

ȳ =(y1, . . . , yr),

~z =(z1, . . . , zh),

where HHH[~x] is any parametrization of HHH, and c1, . . . , cr is a basis for a Cartan subalgebra ccc

complementary to Lie(HHH) in ggg. The ci can always be chosen so that yi is periodic. However,
if we allow the coordinates ȳ to cover all periods and ~x,~z such to describe the whole HHH,
then we obtain a redundant parametrization for two reasons.

First, the intersection ΓΓΓ = HHH ∩ TTTr is a non-trivial finite group. We will see that
ΓΓΓ ' (ZZZ2)

r if GGG is simply connected, or to one of its proper subgroups otherwise. Therefore,

HHH[~x]TTTr[ȳ]HHH[~z] = HHH[~x]γ−1TTTr[ȳ]γHHH[~z],

for any γ ∈ ΓΓΓ. We can write

HHH[~x]γ−1 = HHH[~̃x], (100)

which shows that we must reduce the range of the coordinates ~x with regard to the action
of ΓΓΓ.

The second origin of redundancies is the fact that the Weyl group WWW acts non-trivially
on t ∈ TTTr

t 7→ w−1tw ∈ TTTr, (101)

for any w ∈ WWW.6 This redundancy can be resolved by also reducing the range of the
coordinates ~y. As we will see, this problem can be completely characterised in terms of
the highest root of GGG. A suitable linear change of variables si = ∑r

j=1 Aijyj will allow us to
express the right range of coordinates as the set of inequalities

0 ≤ n1s1 + . . . + nrsr ≤ π, 0 ≤ si ≤ π, i = 1, . . . , r, (102)

where (n1, . . . , nr) are the coefficients of the highest root α̃ with regard to a basis of simple
roots, α̃ = n1α1 + . . . + nrαr.

This construction is easily extended to non-MCS subgroups HHH maximally symmetri-
cally embedded in GGG.

Notice that we cannot limit ourselves to work with simple groups. Let GGG0 be a compact
connected semi-simple Lie group, GGG0 ' GGG1 ×GGG2 × · · · ×GGGn, with GGGi, i = 1, . . . n simple
Lie groups, uniquely determined up to permutations. Take HHH ' HHH1 × HHH2 × · · · × HHHn
with HHHi a maximal Lie subgroup symmetrically embedded in GGGi. HHH is connected (see [38],
Chapter VI, Theorem 1.1). In general, HHHi is not simple, nor semi-simple, but it has the
form HHHi ' HHH0,i × TTTsi /∆i, where HHH0,i is semi-simple, TTTsi is an abelian torus, and ∆i a finite
subgroup. Since our aim is to construct the Euler parameterisation of GGG0 relative to the
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subgroup HHH, and then apply the same procedure to HHH inductively, we are forced to consider
the more general case

GGG ' GGG0 × TTTs/∆, (103)

with GGG0 as before, TTTs an abelian torus, and ∆ a finite subgroup. We have already seen in
Section 3 that this is the general form of any connected compact Lie group. Obviously,
the parametrisation of GGG from GGG0 is quite elementary, so we will assume

GGG ≡ GGG0. (104)

Notice that HHH is symmetrically embedded in GGG, but is not maximal, unless GGG is simple.
Of course, it is sufficient to understand the last case.

5.2. MCS Euler Parametrisation

As we just said, in order to realise the Euler parametrisation it is sufficient to know
how to parametrise its semi-simple part and, indeed, its simple components. Therefore,
we will assume, without loss of generality, that GGG is a compact connected semi-simple Lie
group. We want to construct a Euler parametrisation of GGG relative to a specific choice of the
corresponding subgroup HHH. In this section, we will assume that HHH is MCS, meaning that HHHi
is an MCS subgroup of GGGi for all i. Let ggg and hhh be the Lie algebras of GGG and HHH, respectively.
In the MCS case, we can fix a Cartan subalgebra ccc of ggg such that ccc∩ hhh = 0, so that the Euler
parametrisation of GGG with regard to HHH takes the form

GGG = (H′H′H′/ΓΓΓ)TTTrHHH, (105)

where H′H′H′ is a copy of HHH, and ΓΓΓ = HHH ∩ eccc is a finite subgroup of the maximal torus that will
be specified later.

The problem of parameterising HHH and H′H′H′ is then the same as for GGG, with the caveat
that they will not be semi-simple, and can be obtained inductively. In order to obtain a
(almost everywhere) one to one parametrisation of GGG, beyond individuating Γ, we have to
just,determine the right range for the angles of the toric part

TTTr[ȳ] = exp(y1c1 + . . . + yrcr). (106)

We will show that the range for the y’s is independent from the starting GGG-faithful
representation R but depend only on the Adjoint representation. In other words, the details
discriminating among the different compact forms of GGG will depend only from the period-
icities of the S1 factors entering the paramtrisations and the action of the finite subgroups.
Furthermore, since GGG ' GGG1×GGG2× · · · ×GGGn, we can parametrise each factor independently.
Therefore, without loss of generality, we focus on the case when GGG is simple. In particular,
then, HHH is maximal in GGG.

For the algebra, we can write

ggg = hhh⊕ ppp = hhh⊕ ccc⊕ p′p′p′, (107)

with dimhhh = dimp′p′p′ = h and dim ccc = r. Here, the prime just indicates that p′p′p′ is relative to
the copy HHH′ of HHH. Let gggCCC be the complexification of ggg. We can write gggCCC = ΛΛΛ− ⊕ ccc⊕ΛΛΛ+,
where ΛΛΛ± is the direct sum of the root spaces ΛΛΛ±α such that α is a positive root. We can
select two convenient bases for gggCCC: The Weyl basis

{ci}r
i=1 ∪ {λαa ∪ λ−αa}h

a=1, (108)
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where λα indicates the eigenvector corresponding to the root α, and the αa are the positive
roots; the compact basis

{ci}r
i=1 ∪ {ta}h

a=1 ∪ {pb}h
b=1, (109)

where ta and pb generate hhh and p′p′p′, respectively, and are chosen so that adta and adpb are
diagonalisable, and the decomposition is Killing orthogonal. Of course, only the second
one is a real basis for the compact algebra ggg. It satisfies the following relations:

[ta, tb] ∈ hhh, [ta, ci] ∈ p′p′p′, [ta, pb] ∈ p′p′p′,

[ci, cj] = 0, [ci, pb] ∈ hhh, [pa, pb] ∈ hhh. (110)

These follow directly from the symmetric properties of the embedding. In particular,
ad-invariance of the Killing form K implies

K([ta, ci], cj) = K(ta, [ci, cj]) = 0, (111)

so that [ta, ci] ∈ p′p′p′.
There is a simple relation between the Weyl basis and the compact basis. Using the

Weyl unitary trick, we obtain from ggg a new real form with basis

t̃a = ta, c̃j = icj, p̃b = ipb. (112)

This is the split form ggg(r), with signature r. The operators adc̃j are represented by
symmetric matrices since ad-invariance and symmetry of the Killing form give

K([c̃i, p̃a], t̃b) = −K( p̃a, [c̃i, t̃b]), (113)

and the form is negative definite over the t̃b and positive definite over the complementary
space. Therefore, adc̃j can be diagonalised, with real eigenvalues, by means of real combi-
nations of the vectors t̃a, p̃b. It follows that an eigenvector corresponding to a non-zero root
α must have the form λα = tα + ipα, with tα ∈ hhh and pα ∈ ppp, with both tα and pα non-zero.
Indeed, [c, λα] = α(c)λα for all c ∈ ccc implies

[c, tα] = iα(c)pα, [c, pα] = −iα(c)tα, (114)

so that tα = 0 or pα = 0 would imply α(c) = 0 for any c ∈ ccc.
In conclusion, the relation between the Weyl basis and the compact basis is

λαa = ta + ipa, λ−αa = ta − ipa, a = 1, . . . , h. (115)

The possibility to orthonormalise the compact basis follows from the fact that
〈λα, λβ〉 6= 0 if and only if α + β = 0.

Now, let us go back to the Euler parametrisation. We can write

GGG[~x, ȳ,~z] = e∑h
a=1 xata e∑r

i=1 yici e∑h
b=1 zbtb ≡ (H′H′H′/ΓΓΓ)TTTrHHH. (116)

Now, we can compute the invariant measure on BBB = GGG/HHH. Referring to the previous
section, it is clear that it is simply given by

dµBBB[~x; ȳ] =
√

det(dσ2) = |det JJJ‖PPP|. (117)

A short calculation gives

dµBBB[~x;~y] = |det J(~x,~y)|
h

∏
α=1

dxα

r

∏
i=1

dyi, (118)
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where J is the h× h matrix with components

Jα
β := K

(
TTTr−1H′H′H′−1 ∂H′H′H′

∂xα
TTTr, pβ

)
. (119)

Now, H′H′H′−1dH′H′H′ =: JHHH is the left invariant one form for the HHH subgroup in the
H′H′H′ parametrisation,

JHHH = Jα
HHHtα = JHHH

α
βtαdxβ (120)

Thus,

dµBBB[~x;~y] = dµHHH [~x]det M
r

∏
i=1

dyi, Ma
b := 〈e−ccctaeccc, pb〉. (121)

Now, ta = (λαa + λ−αa)/2 so that

e−ccctaeccc = cosh(αa(ccc))ta + i sinh(αa(ccc))pa. (122)

Since the roots are real on c̃i, if we define~αa ≡ (α1
a, . . . , αr

a) with αi
a = αa(c̃i), we obtain

αa(ccc) = −i ∑r
i=1 αi

ayi ≡ −i~αa ·~y. Then,

det M =
h

∏
a=1

sin(~αa ·~y). (123)

Thus, the invariant measure takes the form

dµGGG[~x;~y;~z] = dµHHH [~z]dµHHH [~x]
h

∏
a=1

sin(~αa ·~y)
r

∏
i=1

dyi. (124)

The range of the z coordinates is such to cover the subgroup HHH, whereas the range
Ry for the y coordinates is defined by the conditions 0 ≤ ~αa ·~y ≤ π, and the range for
the x coordinates is such to cover H′H′H′/ΓΓΓ. In particular, as a consequence of Equation (122),
the range for the yi’s depends on the adjoint representation and not on the particular
GGG-faithful representation we are considering.

When HHH is simply connected, it is easy to see that ΓΓΓ ' ZZZr
2. Indeed, the elements of

ΓΓΓ = HHH ∩ eccc are the elements of eccc whose square is the identity in HHH (see [38], section VII,
Theorem 8.5). Since the basis c1, . . . , cr of ccc can be chosen so that etci has period T, ΓΓΓ is
generated by e

T
2 ci that proves our claim. In particular, |ΓΓΓ| = 2r.

When HHH is not simply connected, this is not true in general and Γ is isomorphic to
a proper subgroup of ZZZr

2. Indeed, if Φ : H̃HH −→ HHH is the universal covering map, then
Γ ' Φ(ZZZr

2).
The range of the coordinates ~y can be made more explicit as follows. Choose a

fundamental system of simple roots αj1 , . . . , αjr . We define coordinates ỹi, i = 1, . . . , r by

ỹi := ~y ·~αji . (125)

The Jacobian of this transformation can be computed by noticing that

dỹ1 ∧ . . . ∧ dỹr = V0

r

∏
i=1

‖αji‖
2

2
dy1 ∧ . . . ∧ dyr, (126)
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where V0 is the volume of the parallelogram defined by the simple coroots α̌ji . The third
factor in (124) becomes

h

∏
a=1

sin(~αa ·~y)
r

∏
i=1

dyi =
2r

V0 ∏r
i=1 ‖αai‖2

h

∏
j=1

sin(~nj · ~̃y)
r

∏
i=1

dỹi, (127)

where~nj are the integer coordinates of the positive roots with regard to the simple roots.
For the simple roots, we obtain the relations 0 ≤ ỹi ≤ π, which fix the coordinates in a
hypercube. The other conditions 0 ≤ ~na · ~̃y ≤ π determine a tiling of the hypercube by
the hyperplanes ~nj · ~̃y = kπ, with k integer. In particular, there is a unique highest root
α j̃ = ∑r

s=1 ñsαas , such that ñs ≥ ns
j for all j and s. This means that all the inequalities

defining the tiling reduce just to the one defined by the highest root:

0 ≤ ~̃n · ~̃y ≤ π (128)

inside the hypercube. This is sufficient since all the pieces of the tiling are equivalent,
being related by the Weyl transformations. So, Equation (128) defines the range R̃y of the
parameters ~̃y and, therefore, the range Ry for the parameters ~y.

5.3. The Non-Split Case

Again, we can assume for GGG to be simple. Since we do not require HHH to be MCS, in this
case we have

l := Rank(GGG/HHH) < Rank(GGG) = r. (129)

This means that the largest possible intersection between a Cartan subalgebra ccc of ggg
and the complement of hhh in ggg has dimension l. Choosing the Cartan subalgebra ccc with this
property, we have

ccc =ccch ⊕ cccp, cccp := ccc∩ ppp, dim cccp = l, (130)

ccch :=ccc∩ hhh, dim ccch = r− l. (131)

Let kkk be the Lie algebra of the normaliser KKK of cccp in HHH be, that is the largest Lie
subalgebra of hhh commuting with cccp, dimK = k. Thus, we can write hhh =: kkk ⊕ h̃̃h̃h and
ppp =: cccp ⊕ p̃̃p̃p, in such the way that

ggg = (kkk⊕ h̃̃h̃h)⊕ (cccp ⊕ p̃̃p̃p). (132)

hhh is symmetrically embedded, and [kkk, cccp] = 0 implies

[h̃̃h̃h, cccp] ⊆ p̃̃p̃p, [p̃̃p̃p, cccp] ⊆ h̃̃h̃h. (133)

Now, fix a basis τ1, . . . , τr−l for ccch, and σ1, . . . , σl for cccp. We can represent the roots as
the simultaneous eigenvalues of the operators

(adτ1 , . . . , adτr−l ; adσ1 , . . . , adσl ).

The eigenvectors of the roots αhhh,a, a = 1, . . . , k − s, of the subalgebra kkk are in the
complexification of kkk and, in particular, in the kernel of adσi , i = 1, . . . , l. This means
that the last l components are zero. These are all the non-vanishing roots having this
property; all the other ones have necessarily at least some non-vanishing elements in the
last l components. The corresponding set of roots, say αppp,b, b = 1, . . . , 2q, where q is the
number of positive roots, is not reduced. This means that each root αppp,b has multiplicity
mb, and ∑

q
b=1 mb = h− k. In conclusion, we obtain a decomposition of the restricted root

system, Rppp = R+
ppp ⊕ R−ppp , similar to the one of the group the main difference with regard

to the case of a MCS subgroup is that now Rppp is not a reduced root lattice system, and
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generically each root α is characterised by a multiplicity mα ≥ 1. A complete classification
is given in [40], see also [38].

Now, let us proceed as in the previous section. First, we fix an orthonormal basis of ggg

B = {τ1, . . . , τr−l , g1, . . . , gk−r+l} ∪ {t1, . . . , th−k} ∪ {h1, . . . , hl} ∪ {p1, . . . , ph−k},

where {τ1, . . . , τs, g1, . . . , gk−s} is an orthonormal basis for kkk, the ta generate h̃̃h̃h, and the pb
generate p̃̃p̃p. The generalised Euler parameterisation for GGG is

GGG[~x;~y;~z] = e∑h−k
a=1 xata e∑l

i=1 yihi HHH[z1, . . . , zh], (134)

where HHH can in turn be parametrised in the same way, but it is irrelevant here. The range of
the z coordinates must be chosen to cover exactly once the whole subgroup HHH. As before,
we can compute the invariant measure that comes out to be

dµGGG[~x;~y;~z] = dµHHH [~z] dµHHH/KKK[~x]
q

∏
a=1

sinma(~αppp,a ·~y)
l

∏
i=1

dyi, (135)

where ~αppp,a := (α1
ppp,a, . . . , αl

ppp,a), a = 1, . . . , q are the last l components of the positive αpppa,
corresponding to the eigenvalues of the adhi

only. After choosing a basis of l simple roots,
~α1, . . . ,~αl in R+

ppp , it follows that the range for the coordinates ~y is given by

0 ≤~αi ·~y ≤ π, 0 ≤
l

∑
i=1

ni~αi ·~y ≤ π, (136)

where ∑l
i=1 ni~αi is the longest reduced root.

6. Euler versus Dyson

Now we concentrate on the geometrisation of the Dyson integrals.

6.1. The Split Integrals

Inspired by (127), let us consider the integral

I =
∫

R̃y

h

∏
j=1

sin(~nj · ~̃y)
r

∏
i=1

dỹi. (137)

Since all pieces of the tiling are equivalent, we can rewrite it in terms of an integral
over the whole hypercube Cπ = {~̃y|0 < ~̃yi < π, i = 1, . . . , r}. Since

∫
R̃y

r

∏
i=1

dỹi =
πr

r! ∏r
i=1 ñi

, (138)

we see that the hypercube is divided in r! ∏r
i=1 ñi parts, and we can write

I =
1

r! ∏r
i=1 ñi

∫
Cπ

h

∏
j=1
| sin(~nj · ~̃y)|

r

∏
i=1

dỹi. (139)

If we introduce the change of variables 2~̃y = ~γ, we finally obtain

I =
1

2h−rr! ∏r
i=1 ñi

∫
C2π

∏
α∈R

(1− e~nα ·~γ)
1
2

r

∏
i=1

dγi. (140)
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The integral

J 1
2

:=
1

(2π)r

∫
C2π

∏
α∈R

(1− e~nα ·~γ)
1
2

r

∏
i=1

dγi, (141)

is a particular case of the Macdonald integrals appearing in [33], Conjecture 1, which we
report here for simplicity, for any root lattice R:

Conjecture 1. For all s ∈ C with Re(s) > 0,

Js =
1

(2π)r

∫
C2π

∏
α∈R

(1− e~nα ·~γ)s
r

∏
i=1

dγi,=
r

∏
i=1

Γ(sdi + 1)
Γ(s + 1)Γ(sdi − s + 1)

. (142)

Actually, it is a particular case of Theorem 1.
From (140) we can write

J 1
2
=

2h−rr! ∏r
i=1 ñi

(2π)r I. (143)

On the other hand, (124) implies

∫
Ry

h

∏
a=1

sin(~αa ·~y)
r

∏
i=1

dyi =
Vol(GGG) |ΓΓΓ|
Vol(HHH)2 , (144)

where |ΓΓΓ| is the cardinality of ΓΓΓ. Using (126), we see that the left-hand side of (144) is just

2r

V0 ∏r
i=1 ‖αai‖2 I. (145)

Combining all things, we finally obtain

J 1
2
=

2hV0r! ∏r
i=1(ni‖αji‖

2)

πr
Vol(GGG)

Vol(HHH)2
|ΓΓΓ|
2r , (146)

where the volumes can be computed by means of Macdonald’s formula [18]. This formula
proves Conjecture 1 for s = 1

2 and for all the reduced simple lattices. For these cases, we
thus have a geometric interpretation of the Dyson integrals.

6.2. The Non-Split Integrals

We can obtain more general results by considering the non-split case of the Euler
parametrisation. Define

Jppp{kα} :=
1

(2π)r

∫
C2π

∏
α∈Rppp

(1− e~nα ·~γ)kα

r

∏
i=1

dγi, (147)

with kα as in Theorem 1. Its value is indeed provided by Theorem 1.
We can repeat exactly the same reasoning as above, but referring to Section 5.3 to obtain

the formula

Jppp{mα
2 }

=
2h−k|~α1 ∧ . . . ∧~αl |l! ∏l

i=1 ni

πl
Vol(GGG)Vol(KKK)

Vol(HHH)2 , (148)

where mα are the multiplicities of the roots in the lattice correspondent to the associated
symmetric space. Compared with Theorem 1, with the invariant functions kα = mα/2, this
expression provides the right value for the generalised Dyson integrals Jppp{mα

2 }
. This proves
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Macdonald’s conjecture ([33], conjecture 2.3) for kα = mα
2 and for the lattices associated

with all the irreducible symmetric spaces.
The ingredients to verify the formulas are given in [1], Table 1.

7. Open Questions and Further Applications

Here, we describe a non-symmetric embedding [5].

7.1. Non-Symmetric Embeddings

The results presented up to now are based on the choice of a proper maximally
symmetrical embedded subgroup of a compact simple Lie group. However, given a
connected compact Lie group GGG, there are several maximal proper subgroups that are non
symmetrically embedded in GGG. We want now to show a very explicit example based on [5].

7.1.1. The Group GGG2 and Its Lie Algebra

Consider the oriented Fano triangle (Figure 4).

eee1

eee2 eee3

eee4

eee5 eee6

eee7

Figure 4. The Fano triangle.

It is composed of seven oriented lines: the three sides of the triangle, the three heights,
and the circle. Each line must be thought of as if it were an oriented circle. The side lines
are oriented so that the boundary of the triangle looks clockwise oriented. The heights are
oriented from the vertex to the base. The circle is oriented clockwise. The triangle defines
the octononic algebra. Octonions are the vectors of the eight-dimensional real vector space
generated by the basis eeeµ, µ = 0, . . . , 7. They form a non-associative algebra with real unit
eee0 ≡ 1 and seven imaginary units eeej, j = 1, . . . , 7 satisfying eeeieeej + eeejeeei = −2e0δij and the
products defined by the R-bilinear extension of the multiplication rules among imaginary
units, given by the Fano triangle as follows: if i 6= j, eeeieeej = ±eeek where eeek is the third element
on the line selected by the pair eeei, eeej. The sign is positive if the order ijk is concordant
with the orientation of the circle corresponding to the selected line and negative otherwise.
For example, eee2eee7 = eee5 and eee2eee4 = −eee6. The space OOO of real octonions is endowed
with an R-linear conjugation ooo 7→ ōoo that changes sign to the imaginary components. It
satisfies ōooooo′ = ōoo′ōoo. This induces a Euclidean scalar product (|) : O×O → R defined by
(ooo|ooo′) = 1

2 (ōooooo′ + ōoo′ooo). With respect to it, the basis of units is orthonormal.

Definition 9. The group of automorphisms of O is called GGG2.

We want to prove that GGG2 is a 14-dimensional manifold that, indeed, is an SUSUSU(3)
fibration over S6. To this aim, we first describe octonions as follows. Let~aR,~aI ∈ R3 and
set~eee ≡ (eee1, eee2, eee3) ∈ O3. For any ~v ∈ K3, we will write ~v ·~eee := v1eee1 + v2eee2 + v3eee3, K = R,O.
Moreover, for c ∈ K, we define c~v = (cv1, cv2, cv3) and ~vc = (v1c, v2c, v3c). Finally, we will
identify eee0 ≡ 1.

With this notation, any octonion can be written as

aaa = α0 +~α ·~eee, (149)
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where

α0 = a0 + a4eee4, ~α =~aR +~aIeee4, a0, a4 ∈ R,~aR,~aI ∈ R3. (150)

We will consider the identification C ' R⊕Reee4. We notice that with this identification
C-numbers do not commute with octonions. If we also define the C-scalar and C-vector
products in C3 by

(~α|~β)CCC :=~aR ·~bR +~aI ·~bI −~aI ·~bReee4 +~aR ·~bIeee4, (151)

(~α× ~β)CCC :=~aR ×~bR −~aI ×~bI +~aI ×~bReee4 +~aR ×~bIeee4, (152)

where× is the usual vector product in R3, then we can write the product of two octonions as

aaabbb = α0β0 + α0~β ·~eee + β0~α ·~eee− (~α|~β)C + (~α× ~β)C ·~eee. (153)

Let Φ ∈ SUSUSU(3) a special unitary transformation on C3. It extends to an action on
octonions by

Φ(aaa) := α0 + Φ†(~α) ·~eee, (154)

where Φ† is the adjoint of Φ. It follows from (153) that Φ(aaabbb) = Φ(aaa)Φ(bbb), it is sufficient
to notice that, by definition of unitary map, (Φ(~α)|Φ(~β))C = (~α|~β)C, and since det Φ = 1,
(Φ(~α) × Φ(~β))C = Φ((~α × ~β)C). This means that Φ is an automorphism of O so that
SUSUSU(3) ⊂ GGG2. It is vice versa, if Φ is an automorphism that fixes eee4. It follows from (153)
that it must have the above form and, therefore, it is in SUSUSU(3).

Let us consider a generic imaginary unit, that is an element εεε ∈ O satisfying ε2 = −1.
A simple calculation shows that

εεε =
7

∑
j=1

ε jeeej, (155)

with

ε ≡ (ε1, . . . , ε7) ∈ S6 = {x ∈ R7|
7

∑
j=1

x2
j = 1}. (156)

Therefore, if [, ] is the commutator in O, we have7

[eee4εεε, eee4] = 2εεε, (157)

which is equivalent to

Adexp( x
2 eee4εεε)(eee4) = cos x eee4 + sin x εεε. (158)

Now, suppose Ψ ∈ GGG2. It follows that Ψ(eee4)
2 = Ψ(eee2

4) = −1, so that εεε = Ψ(eee4) is an
imaginary unit. Therefore,

Adexp(− π
4 eee4εεε) ◦Ψ(eee4) = eee4 (159)

so that Adexp(− π
4 eee4εεε) ◦Ψ ∈ SUSUSU(3). This implies that

Ψ = Adexp( π
4 eee4εεε) ◦Φ (160)

with Φ ∈ SUSUSU(3). Thus, the elements of GGG2 are parametrised by SUSUSU(3) and by ε ∈ S6. Since
dim(SUSUSU(3)) = 8, it follows that dim(GGG2) = 14 and we have proved:
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Proposition 6. GGG2 is an SUSUSU(3) fibration over S6.

We are now ready to compute the Lie algebra. Its elements are derivations acting on
the seven-dimensional space generated over R by the imaginary units. Indeed, if Ψt is a
one parameter family of automorphisms of O such that Ψ0 = id (the identity), then the
corresponding Lie algebra element is

D =
d
dt

∣∣∣∣
t=0

Ψt, (161)

and from

Ψ(ooo1ooo2) = Ψ(ooo1)Ψ(ooo2) (162)

it follows

D(ooo1ooo2) = D(ooo1)ooo2 + ooo1D(ooo2). (163)

In particular, D(1) = 0 so we obtain a seven-dimensional representation.
A basis for the algebra is given by the eight generators of Lie(SUSUSU(3)), plus six non-trivial
generators of the form adeee4εεε, that we can fix choosing εεε ≡ eeej, j 6= 4. For the Lie algebra of
SUSUSU(3), we choose the Gell-Mann matrices given in (4). Each of them acts on the elements
~v = ~x + eee4~y ∈ C3 in the obvious way, with i replaced by eee4. In order to obtain the seven-
dimensional action, we have to consider the embedding C3 ↪→ R7 given by

~x + eee4~y 7−→ (x1, x2, x3, 0, y1, y2, y3). (164)

This gives us the 7× 7 matrices Λ1, . . . , Λ8. The remaining are obtained by considering
the adjoint actions σi : eeej 7→ [eee4eeei, eeej], i 6= 4, j = 1, . . . , 7, and then normalising the matrices
so that Tr(ΛaΛb) = −4δab, a, b = 1, . . . , 14. We suggest the reader compute the simple roots,
starting from the matrices in Appendix B, for example, by choosing the Cartan subalgebra
generated by the matrices Λ2 and Λ12 and verify that the corresponding Dynkin diagram
is exactly the one of GGG2 given in Appendix A.

Let ggg, kkk, and ppp, respectively, be the Lie algebra of GGG2, of SUSUSU(3) and its complement.
Thus, kkk is spanned by Φλi ≡ Λi, i = 1, . . . , 8, while ppp is spanned by Ψeee4eeej ≡ Λ f (j), where
j = 1, 2, 3, 5, 6, 7 and f (j) = 9, 10, 11, 12, 13, 14, respectively. We now show that SUSUSU(3) is
maximal but not symmetrically embedded. First, notice that obviously the algebra satisfies
the relations

[kkk, kkk] ⊆ kkk, (165)

[kkk,ppp] ⊆ ppp. (166)

The first relation is obvious; the second one follows from the ad-invariance of the
Killing form and the orthogonality of the decomposition. The second relations mean that ppp
is a representation space for SUSUSU(3). As a representation of Lie, (SUSUSU(3)) we have

ppp = 333⊕ 3̄33. (167)

To prove it, it is sufficient to compute the 6× 6 matrices representing the adjoint action
of Λ3 and Λ8 on ppp and to diagonalise them simultaneously in order to compute the weights.
We leave this as an exercise for the reader. It results that 333 is generated by iΛ9 + Λ14,
iΛ10 + Λ13, iΛ11 + Λ12, and 3̄33 by the complex conjugates. Since these are the only two
possible invariant subspaces and are not real, it follows that any proper real subalgebra of
ggg containing kkk cannot exist. This shows maximality.
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Now, we prove that

[ppp,ppp] * kkk. (168)

To this end, notice that ppp is generated by the maps σi defined above, i 6= 4. If [σ1, σ2] ∈ kkk,
then we would have [σ1, σ2](eee4) = 0. However, since σi(eee4) = 2eeei, and eee4eee1 = eee7, 4444eee2 = eee6,
we obtain

[σ1, σ2](eee4) = 2(σ1(eee2)− σ2(eee1)) = 2([eee7, eee2]− [eee6, eee1]) = −2eee5. (169)

In conclusion, we have shown that SUSUSU(3) is maximal in GGG2 but not symmetrically
embedded, and GGG2/SUSUSU(3) ' S6.

7.1.2. A Euler Parametrisation of GGG2

Now, we show that despite the non-symmetric immersion, we can construct the Euler
angles with respect to SUSUSU(3). To this aim, we will follow [5]. We know that we can
parametrise SUSUSU(3) with respect tu UUU(2) by writing it in the form

SUSUSU(3)[x; y;~z] = UUU(2)[x]eyΛ4SUSUSU(2)[~z], (170)

where x = (x1, . . . , x4), ~z = (z1, z2, z3), SUSUSU(2) is generated by Λ1, Λ2, Λ3, and UUU(2) =
SUSUSU(2)×UUU(1)/Z2, with UUU(1) generated by Λ8. The strategy is to find an element of ppp that
commutes with the SUSUSU(2) and whose commutators with the remaining matrices of SUSUSU(3)
generate a basis for the whole ppp. Looking at Appendix B, we see immediately that Λ12
commutes with Λ1, Λ2, and Λ3 and, indeed, it does the job.
Therefore, our ansatz is that GGG2 can be parametrised as

GGG2 = UUU(2)[x]eyΛ4 ewΛ12SUSUSU(3)[x̃; ỹ;~̃z]. (171)

In order to prove it, the last step consists of proving that with a suitable choice of the
parameters x, y, and w, the quotient GGG2/SUSUSU(3), parametrised by UUU(2)[x]eyΛ4 ewΛ12 , cover
the sphere S6 exactly once.

Let

Σ = UUU(2)[x]eyΛ4 ewΛ12 . (172)

The metric on the quotient GGG2/SUSUSU(3) can be computed from Jσ := Σ−1dΣ, projecting
out the components tangent to SUSUSU(3). This gives the “reduced current” J‖Σ, from which we
obtain the metric on the quotient

dσ2 = −1
4

TrJ‖Σ ⊗ J‖Σ. (173)

The factor − 1
4 is just to compensate the normalisation of the matrices Λa. The remain-

ing details are just a direct and quite tedious calculation. As there is nothing to learn, we
will not report the details of the calculations here, which can be found in [5].

7.2. Open Questions

The above considerations suggest some interesting questions.
First, we have seen that it is possible to construct generalised Euler angles even start-

ing from a non-symmetric embedding. It seems that the condition [kkk,ppp] ⊆ ppp is sufficient.
However, it must be noted that such a rule is quite general, also for non-maximal subgroups.
So, we wonder if maximality plays a role. It is important to note that maximal proper
subgroups, symmetrically embedded or not, can be computed following the strategies
developed in [16]. There, for example, all SUSUSU(2) subgroups are classified, and, in partic-
ular, every simple compact group contains a maximal SUSUSU(2) subgroup. It is not easy to
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imagine how a generalised Euler parametrisation with respect to SUSUSU(2) could work for
simple groups of high dimension. Nevertheless, it would be interesting to investigate the
possibility to define generalised Euler parametrisations of a given group GGG with regard to
all possible maximal proper subgroups, including the smallest ones.

Related to the previous question, there is the second one: does the Euler parametrisa-
tion with respect to a non-symmetrically embedded maximal subgroup originate a more
general kind of Dyson integrals? We have seen that the symmetric Euler parametrisation is
related to the Dyson integrals associated with the lattices corresponding to the compact
symmetric spaces. For the non-symmetrical case, we do not have naturally associated
lattices, an, therefore, we have not any hint to understand how to associate Dyson integrals.
The condition of symmetry of the embedding seems to be crucial for better understanding
the geometry underlying the invariant measures. It would be interesting to deepen our
understanding about the geometry of all maximal embeddings.

Of course, it has not been possible to investigate such questions with the simplest
example of SUSUSU(3) since its only proper maximal subgroups are SUSUSU(2) and SOSOSO(3), which
are both symmetrically embedded. It necessarily requires work with examples of higher
dimensions, such as GGG2, SUSUSU(4), and SOSOSO(5). Working out these examples very explicitly
could suggest general rules sufficient to understand the general case.

7.3. Applications

There are several obvious applications of generalised Euler parametrisation of groups;
the original motivation of the general program was for numerical applications in Lattice
Gauge Theories and other numerical simulations in non-perturbative constructions. How-
ever, here we want to briefly illustrate a couple of applications that are less standard and in
a sense unexpected a priori.

The Problem of Measure Concentration

The phenomenon of concentration of measure is well explained by Levy in [41], where
it is shown that if we consider a family of spheres in Rn+1 of fixed radius, parametrised by
the dimension n and endowed with the Lebesgue measure, then, with the increasing of the
dimensions, the measure concentrates along the equator. This can be understood intuitively
as follows. In Rk, consider a filled ball of radius R. Its Lebesgue volume is V = KRk where
K is a constant, depending on k, but irrelevant here. If we now take a crust of thickness dR
on the surface of the ball, its volume will be approximatively dV = KkRk−1 dr. Therefore,

dV
V
≈ k

dR
R

. (174)

If we keep the radius R fixed and the thickness dR, independently of how small dR is,
for k large enough, the quotient on the right-hand side stops to be infinitesimal, and the
approximation is no longer valid. In other words, it will appear that the whole volume
concentrates on the crust. If we imagine to be in the center of the ball, it will appear to
us that all volume is uniformly smeared in the farthest region around us. After a short
meditation, this is not so much surprising; the measure is uniform and distributed in a
larger number of angular directions as the dimensions increase. Now, if in place of being in
Rk we are in Sk, in a sense, the farthest region from us is the equator with regard to which
we are in a pole, in the sense that the volume of the boundary of a ball essentially depends
on the minimum between the radius of the ball and the radius of its complement.

This phenomenon of concentration of the measure is important because it is also
related to the existence of fixed points under the action of infinite dimensional groups on a
manifold (or a set), see [42]. Indeed, already in the above example we can understand the
measure on the spheres as induced by the action of the rotation groups SO(k + 1) and their
invariant measure.

These facts suggest that indeed one can try to understand infinite dimensional proper-
ties of measure and geometry by studying them at arbitrary finite dimension n, for example,
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for classical series of Lie groups and their quotients, see [43]. In this regard, the generalised
Euler parametrisation allows us to construct both the invariant metric and the correspond-
ing invariant measure for the Lie group explicitly, but also for the quotient spaces thereof,
in terms of simple trigonometric functions. The easiest constructions one can do are the
symmetric spaces associated with the classical Lie series. These have been studied in [43],
showing that one can extend the elementary direct calculations of Levy in [41] to all se-
quences of symmetric spaces. For example, if one considers SU(n + 1)/U(n) = CPn, what
happens is that the invariant8 measure on CPn concentrates on the hyperplane at infinity,
the “analogous” of the equator for the spheres, but now of real co-dimension two. It would
be interesting to extend these results to non-symmetric quotients.

7.4. Applications to Nuclear Physics.

In principle, nuclear physics is expected to be deducible as a low energy limit of
quantum chromodynamics (QCD). However, at the nuclear energies QCD is very far from
the perturbative regime, and actually there are not deductions of nuclear phenomena
directly from first principles but just by means of effective models (with the exclusion of
few effects). A good effective model, initially for describing mesons, was introduced in the
1950s by Skyrme [44–47]. Surprisingly, this model effectively described not only mesons
but also baryons, despite not containing fermions a priori.

In (3 + 1) dimensions, the action of the Skyrme model with group G is

S[U] =
∫

d4x
√
−g
[

K
4

Tr
(

LµLµ +
λ

8
RµνRµν

)]
, (175)

Lµ =U−1∂µU, Rµν = [Lµ, Lν], U(x) ∈ G,

where K and λ are positive coupling constants, and g is the determinant of the spacetime
metric. The equations of motion are obtained by variation of the Skyrme field, which is
a map

U : R1,3 −→ G.

We assume that G is a compact semi-simple Lie group. After choosing a basis {Ti} for
the Lie algebra g = Lie(G), we can write

Lµ =
dim(G)

∑
i=1

Li
µTi.

Despite the Lagrangian and the equations of motion appearing to be quite simple,
they resisted analytic approaches and numerical studies to obtain information for several
years. However, for several reasons it is of a certain relevance to also determine some
explicit analytical properties of the solutions. Only recently, the first achievements in
this direction have been completed for G = SU(2), allowing for determining several
interesting properties of the matter described by Skyrmions with finite energy density
in a finite volume and with non-spherical symmetries, see e.g., [48–54]. Notice that the
difficulty was not to find explicit solutions, but to find explicit solutions having a non-trivial
topological charge

B =
1

24π2

∫
V

Tr(L ∧ L ∧ L), (176)

where V is the spatial region occupied by the Skyrme field at any fixed time t, L = U−1dU,
and Tr is the trace over the matrix indices. This quantity is always an integer and represents
the baryon number associated with the solution. Therefore, non-zero B corresponds to
solutions containing B baryons. A deeper analysis showed that the key strategy for allow-
ing the determination of explicit solutions with baryons was a suitable parametrisation
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of U, together with guessing a good ansatz for the space–time dependence. After under-
standing this, it was quite natural to employ generalised Euler angles to try finding new
solutions with the Skyrme field taking value in an arbitrary compact simple Lie group. This
program has been successfully applied recently, see [6,7,55]. Interestingly, what resulted
is that assuming the generalised Euler parametrisation with a simple linear dependence
of the angles leads to solutions that suitably describe lasagna phases of nuclear matter.
Assuming instead the exponential parametrisation, and keeping for the exponent a linear
dependence on the space–time coordinates, gives solutions that describe spaghetti states.
The knowledge of the explicit analytic expression of the solution allowed us to compute
different physical properties of them, including the calculation of the shear modulus for
the lasagna states and a phase transition between spaghetti and lasagna states. Much more
interesting analysis using this strategy are matters of current research.
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Appendix A. Simple Lie Algebras

Complex simple Lie algebras are classified by Dynkin diagrams. There are four
classical series

α1 α2 α3 α4 α5 αr−1 αr

ArArAr

α1 α2 α3 α4 αr−2 αr−1 αr

〉BrBrBr

α1 α2 α3 α4 αr−2 αr−1 αr

〈CrCrCr

α1 α2 α3 α4 αr−3 αr−2 αr

αr−1

DrDrDr
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and five exceptional cases

α1 α2

〉G2G2G2

α1 α2 α3 α4

〉F4F4F4

α1 α2 α3 α4 α5

α6

E6E6E6

α1 α2 α3 α4 α5 α6

α7

E7E7E7

α1 α2 α3 α4 α5 α6 α7

α8

E8E8E8

Appendix B. Matrices of Lie(GGG2)

The matrices of Lie(ggg2) as computed in Section 7.1.1:

Λ1 =



0 0 0 0 0 −1 0
0 0 0 0 0 0 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0


, Λ2 =



0 1 0 0 0 0 0
−1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −1
0 0 0 0 0 1 0


,

Λ3 =



0 0 0 0 0 0 −1
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −1 0 0 0 0 0
1 0 0 0 0 0 0


, Λ4 =



0 0 0 0 −1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −1
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0


,

Λ5 =



0 0 1 0 0 0 0
0 0 0 0 0 0 0
−1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −1
0 0 0 0 0 0 0
0 0 0 0 1 0 0


, Λ6 =



0 0 0 0 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0


,
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Λ7 =



0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 −1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0


, Λ8 =

1√
3



0 0 0 0 0 0 −1
0 0 0 0 0 −1 0
0 0 0 0 2 0 0
0 0 0 0 0 0 0
0 0 −2 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0


,

Λ9 =

√
2
3



0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 −1 0
−1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0


, Λ10 =

√
2
3



0 0 0 0 −1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 −1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 −1 0 0 0 0


,

Λ11 =

√
2
3



0 0 0 0 0 1 0
0 0 0 0 0 0 −1
0 0 0 1 0 0 0
0 0 −1 0 0 0 0
0 0 0 0 0 0 0
−1 0 0 0 0 0 0
0 1 0 0 0 0 0


, Λ12 =

√
2
3



0 1 0 0 0 0 0
−1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 −1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 −1 0


,

Λ13 =

√
2
3



0 0 −1 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 −1
0 0 0 1 0 0 0
0 0 0 0 1 0 0


, Λ14 =

√
2
3



0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 −1 0 0 0 0 0
0 0 0 0 0 0 −1
0 0 0 0 0 1 0
0 0 0 0 −1 0 0
0 0 0 1 0 0 0


.

Notes
1 That is, it is the sum of simple roots with largest possible non-negative coefficients.
2 recall that the surface of a sphere S2d−1 of radius 1 is 2 πd

(d−1)!
3 The vector space K ' Cn is the space of all complex valued Weyl invariant functions on R, m equals the numbers of conjugacy

classes of roots in R and elements of K are called multiplicity functions on R. The notation kα denotes the evaluation of k ∈ K on
α ∈ R.

4 in general no requirements are done on the dimensions.
5 We are grateful to S. Pigola for explaining us these points.
6 Indeed, on TTTr there is the adjoint action of the normalizer NNN: TTTr → (TTTr)NNN ⊆ TTTr. Moreover, NNN/TTTr = WWW is the Weyl group.

Since the invariant measure restricted to the torus is just dµTTTr = ∏r
i=1 dsi, we see that the action of the Weyl group sends TTTr

isometrically onto itself. Thus, the cube is divided in equivalent sectors by the Weyl group action. The maximal number of
such sectors is thus |WWW|, the cardinality of the Weyl group. More precisely, the adjoint action σ : TTTr 7→ (TTTr)WWW is a surjective
homomorphism over TTTr, with a non-trivial kernel given by Kerσ ' ΛWWW /ΛRRR, the quotient between the weight lattice ΛWWW with
regard to the root lattice ΛRRR. This lattice is isomorphic to the center ZZZ of the (covering) group. Then, we find that the number of
cells in the cube is ν = |WWW|

|ΛWWW /ΛRRR | =
|WWW|
|ZZZ| . We will see another way to compute the number of cells.

7 Notice that we cannot use associativity in general, but the reader can check that aaa(bbbccc) satisfies associativity if two among aaa, bbb, ccc
are equal. For example if associativity would be true we would have [eee4eee1, eee2] = (eee4eee1)eee2 − eee2(eee4eee1) = (eee4eee1)eee2 − (eee2eee4)eee1 =
(eee4eee1)eee2 + (eee4eee2)eee1 = eee4(eee1eee2 + eee2eee1) = 0, which is wrong since eee4eee1 = eee7 and [eee7, eee2] = −2eee5.

8 with respect to the action of SU(n + 1).
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