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Abstract: This paper is devoted to the dual superconductor model of confinement in the 4D Yang–Mills
theory. In the first part, we consider the latter theory compactified on a torus, and use the dual
superconductor model in order to obtain the Polchinski–Strominger term in the string represen-
tation of a Wilson loop. For a certain realistic critical value of the product of circumferences of
the compactification circles, which is expressed in terms of the gluon condensate and the vacuum
correlation length, the coupling of the Polchinski–Strominger term turns out to be such that the string
conformal anomaly cancels out, making the string representation fully quantum. In the second part,
we use the analogy between the London limit of the dual superconductor and the low-energy limit
of the 4D compact QED, to obtain the partition function of the dual superconductor model away
from the London limit. There, we find a decrease of the vacuum correlation length, and derive the
corresponding potential of monopole currents.

Keywords: effective-string description of confinement; models of the non-perturbative Yang–Mills
vacuum; color confinement; Yang–Mills theory; finite-temperature effects in quantum field theory;
magnetic monopoles; Wilson loop

1. Introduction

Dual superconductor is known to be one of the earliest and well established models
of quark confinement in QCD [1,2] (for a review, see [3]). It suggests a model for the
Yang–Mills vacuum which is based on the condensate of a magnetically charged Higgs
field. The corresponding dual Abelian Higgs model (DAHM) represents a 4D relativistic
generalization of the Landau-Ginzburg theory of dual superconductivity. This scenario
of confinement is fully supported by the dedicated lattice simulations [4,5]. One has to
realize, though, that the monopole condensation provides confinement of only the diagonal
degrees of freedom, through the violation of the Abelian Bianchi identities. In this sense,
the dual-superconductor model differs from the Yang–Mills theory, where confinement
(of both diagonal and off-diagonal degrees of freedom) does not require violation of either
Abelian or non-Abelian Bianchi identities. That is, in the dual superconductor, confinement
is described in terms of a field dual to that of the dual vector boson, i.e., an antisymmetric-
tensor field hµν which couples to a world sheet bounded by the contour of the ’t Hooft
loop (for a review, see [6]). Unlike the gauge-field strength tensor, the field hµν contains an
additional term ∝ εµνλρ, i.e., hµν = ∂µBν − ∂νBµ + εµνλρ∂λ ϕρ, which violates the Abelian
Bianchi identities. This term yields the tensor structure (δµλδνρ − δµρδνλ) in the correlation
function 〈hµν(x)hλρ(y)〉, which, in turn, yields confinement. (The same is true for com-
pact QED [7].) Rather, the non-Abelian field-strength tensor Fa

µν does not contain a term
εµνλρ∂λ ϕa

ρ, and yet the correlation function 〈Fa
µν(x)Fb

λρ(y)〉 contains the tensor structure
(δµλδνρ − δµρδνλ) [8,9] (for a review, see [10]). Consequently, in the non-Abelian case, one
can still fix a certain gauge, e.g., the Fock–Schwinger gauge which expresses Aa

µ in terms of
Fa

µν (to obtain the propagator 〈Aa
µ(x)Ab

ν(y)〉with the confinement effects, which can further
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be used in the non-local Nambu–Jona-Lasinio model [11] corresponding to QCD with light
quarks in the Gaussian approximation), whereas this is no longer possible in a confining
Abelian theory like the dual superconductor or compact QED.

The fundamentally important problem for the description of confinement is the con-
struction of a string represenation of the Wilson loop in the Yang–Mills theory, or of the
’t Hooft loop in DAHM (for a review, see e.g., [6]). The partition function of DAHM, in the
London limit, admits such a representation in terms of closed dual Abrikosov–Nielsen–
Olesen strings. Indeed, as the dual Higgs field has singularities at the cores of those strings,
one can unambiguously reformulate the integration over the phase of the Higgs field in
terms of the integration over the strings’ world sheets. Moreover, it turns out that the
Jacobian, corresponding to this change of variables in the functional integral, yields the
Polchinski–Strominger term [12] with such a coefficient that the string conformal anomaly
(for a review, see [13]) gets cancelled out in 4D rather than 26D [14]. While this is certainly
a successful approach to the construction of a fully quantum string representation of the
DAHM partition function, it remains unclear whether, in the Yang–Mills theory, a repre-
sentation of the Wilson loop in terms of an integral over open-string world sheets can be
constructed in a similar way. The main obstacle in this way is the identification, in the
Yang–Mills integration measure, of those degrees of freedom that can be related to the
string’s world-sheet coordinates. In a recent paper [15], an alternative approach has been
proposed, where the Polchinski–Strominger term emerges from the quartic cumulant in the
cumulant expansion of the Wilson loop. That has been done in the 3D Yang–Mills theory at
finite temperature, with the correlations between the elements of the string’s world sheet
modeled by those of the London limit of DAHM, which can be calculated analytically.
The corresponding finite-temperature compactification of the theory is important for the
generation of the Polchinski–Strominger term and the cancellation of the string conformal
anomaly at a certain temperature, which turns out to be approximately twice smaller than
the deconfinement critical temperature. In the first part of the present paper, this approach
will be generalized to the case of the 4D Yang–Mills theory compactified on a torus, so that
it can, in particular, become applicable to the zero-temperature theory in a space with two
compact spatial dimensions.

In the second part of the paper, another DAHM-related issue will be addressed, which
is the calculation of the correlation length in that theory away from the London limit. In this
way, an analogy between the dual representations of the London limit of DAHM and
the low-energy limit of 4D compact QED turns out to be helpful, because of the known
Higgs-induced corrections to the 3D compact QED, which take place when the latter theory
emerges from the 3D Georgi–Glashow model. In the Summary section, some concluding
remarks will be presented.

2. Quantum-String Representation of the Wilson Loop in the Yang–Mills Theory
Compactified on a Torus

Let us consider the Yang–Mills theory compactified on a torus, which is, e.g., the case
if this theory is compactified on R3 × S1 [16] and further taken at finite temperature [17],
or just in the continuum limit of a lattice version of the theory with periodic boundary
conditions (for a review, see e.g., [18]). In such a compactified version of the Yang–Mills
theory, we are interested in the string representation of a Wilson loop corresponding to
a static quark and an antiquark separated along one of the non-compact dimensions (as
opposed to the so-called torelon, which is a closed string emerging in case when that
dimension is compact [19]). Let us further model the confining part of the two-point
correlation function of gluonic field strengths by the corresponding expression for the dual
field strengths in the London limit of DAHM, which reads [20,21] (for a review, see [22])
〈Fµν(x)Fλρ(0)〉conf = (δµλδνρ − δµρδνλ)D(x), where D(x) = m4

4π2
K1(m|x|)

m|x| . Here, m = gmη is
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the mass of the dual vector boson, with gm being the magnetic coupling constant, and η
being the v.e.v. of the dual Higgs field. Note that D(x) = m2Dm(x), where:

Dm(x) =
m

4π2
K1(m|x|)
|x| (1)

is just the massive-boson propagator, which obeys the equation (−∂2 + m2)Dm(x) = δ(x),
and Kν(x) henceforth denotes a Macdonald function, which is a modified Bessel function
of the second kind. Due to the compactification, we further have x2 = R2 + (αn)2 + (βn′)2.
Here, R is a 2D vector in the non-compact dimensions, α and β are the circumferences of
the two circles which are forming the torus, and n and n′ are the winding numbers. We
further use integral representation K1(m|x|)

m|x| =
∫ ∞

0 dt e−
1
4t−t(mx)2

, along with the following
generalization of the Poisson sum formula, which can be considered as a discrete version
of the Gaussian integral [23]:

∞

∑
n=−∞

e−t(mαn)2
=

√
π/t

mα

∞

∑
k=−∞

e−(
πk
mα )

2
/t.

The subsequent t-integration yields

∫ ∞

0

dt√
t

e−t(mLn′ )
2− 1

4t

(
1+( 2πk

mα )
2)

=

√
π

mLn′
e−Mk Ln′ ,

where Ln′ ≡
√

R2 + (βn′)2 and Mk ≡ m

√
1 +

(
2πk
mα

)2
. Applying now the same generalized

Poisson sum formula once again, in the form

∞

∑
n′=−∞

e−Mk Ln′

Ln′
=

2
β

∞

∑
k′=−∞

K0
(

R
√
(Mk)2 + (2πk′/β)2

)
,

we obtain the following double-sum representation for the function D(x):

D(x) =
m2

2παβ

∞

∑
k,k′=−∞

K0

(
mR

√
1 +

(
2πk
mα

)2

+

(
2πk′

mβ

)2
)

.

As long as
( 2π

mα

)2
+
( 2π

mβ

)2
& 1, this expression can be approximated as:

D(x) ' m2

2παβ
K0(mR), (2)

since all the terms with a non-zero k or k′ become exponentially suppressed.
By equating to each other the string tensions in the DAHM in the London limit

and in the Yang–Mills theory in the Gaussian approximation, we will now establish a
correspondence between these two theories. The string tension in the DAHM in the
London limit, corresponding to the string interconnecting two unit electric charges, stems
from the non-local string action

S =
1
8

∫
dσµν(x)

∫
dσλρ(x′)〈Fµν(x)Fλρ(x′)〉conf =

1
4

∫
dσµν(x)

∫
dσµν(x′)D(x− x′)

and reads [20–22]

σ =
1

2m2

∫
d2zD(z) = m2

8π2

∫
d2z

K1(|z|)
|z| ' m2

4π
ln

M
m

, (3)
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with M standing for the Higgs mass. The last equality here is valid within the leading loga-
rithmic approximation to the London limit [24,25], which assumes that not only M

m � 1, but
also ln M

m � 1. On the other hand, in the Yang–Mills theory in the Gaussian approximation,
the non-local string action, with the exponential parametrization for the function D(x),
reads [8–10]

S = κ
〈(gFa

µν)
2〉

96N

∫
dσµν(x)

∫
dσµν(x′)e−m|x−x′ |.

In this expression, N is the number of colors, g is the Yang–Mills coupling, and we have
directly set the Yang–Mills vacuum correlation length equal to 1

m . Furthermore, param-
eter κ, which determines the mixing between the confining- and the non-perturbative
non-confining contributions to the correlation function 〈Fa

µν(x)Fb
λρ(y)〉, is numerically equal

to 0.83± 0.03 in the SU(3)-case of interest [26], so we set κ ' 0.83. The resulting string

tension reads σ =
πκ〈(gFa

µν)
2〉

24Nm2 , yielding the following correspondence:

ln
M
m

=
π2κ〈(gFa

µν)
2〉

6Nm4 .

Let us now replace e−m|x| by A K1(m|x|)
m|x| in the parametrization of the correlation function

〈Fa
µν(x)Fb

λρ(y)〉. That yields for the normalization coefficient A:

A ≡ A(m) =
1

ln M
m

=
6Nm4

π2κ〈(gFa
µν)

2〉 . (4)

Following the approach of Ref. [15], we will further make the same replacement in the
confining structure of the quartic cumulant [27],

〈g4Fa1
µ1ν1(x1)Fa2

µ2ν2(x2)Fa3
µ3ν3(x3)Fa4

µ4ν4(x4)〉c = C 〈(g2Fa
µνFa

µν)
2〉×

×
[
δa1a2 δa3a4(δµ1µ2 δν1ν2 − δµ1ν2 δµ2ν1)(δµ3µ4 δν3ν4 − δµ3ν4 δµ4ν3)+

+δa1a3 δa2a4(δµ1µ3 δν1ν3 − δµ1ν3 δµ3ν1)(δµ2µ4 δν2ν4 − δµ2ν4 δµ4ν2)+

+δa1a4 δa2a3(δµ1µ4 δν1ν4 − δµ1ν4 δµ4ν1)(δµ2µ3 δν2ν3 − δµ2ν3 δµ3ν2)
]
×

× e−m(|z12|+|z13|+|z14|+|z23|+|z24|+|z34|), (5)

where zij = xi − xj are the relative coordinates of the points x1, . . . , x4, and

C = {(N2 − 1)(D2 − D)[(N2 − 1)(D2 − D) + 4]}−1.

Owing to the proximity of x1 to x2 and of x3 to x4, ensured by the factor e−m(|z12|+|z34|),
we have:

e−m(|z12|+|z13|+|z14|+|z23|+|z24|+|z34|) '

' e−m(|z12|+|z34|+4|z13|) ' A2(m)A(4m)
K1(m|z12|)

m|z12|
K1(m|z34|)

m|z34|
K1(4m|z13|)

4m|z13|
.

By using Equations (2) and (4), we further have for this expression:(
6Nm4

π2κ〈(gFa
µν)

2〉

)3

· 64 ·
(

2π

m2αβ

)3
· 1

16
K0(m|z12|)K0(m|z34|)K0(4m|z13|).
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Setting now N = 3 and D = 4, we obtain the following Polchinski–Strominger term [12] in
the string representation of a Wilson loop (cf. Reference [15]):

S = − 1
m2〈(gFa

µν)
2〉(αβ)3

24
25κ3

∫
d2ξ

∫
d2ξ ′
√

gR
(
− 1

∂2

)
ξ,ξ′

√
g′R′. (6)

Here, ∂2 ≡ ∂a∂a andR = −e−ϕ∂2 ϕ are the expressions for the Laplacian ∆ = 1√
g ∂a
√

ggab∂b

and the scalar curvature of the world sheet in the conformal gauge, where the induced met-
ric gab = ∂axµ · ∂bxµ has the diagonal form gab =

√
g δab, and ϕ = ln

√
g with g ≡ det gab.

Furthermore,
(
− 1

∂2

)
ξ,ξ′ =

1
2π ln 1

|ξ−ξ′ | is the Green’s function of the Laplacian, and we

have denoted g′ = g(ξ′) and R′ = R(ξ′). We have also used the facts that, for c > 0,
K0(c|ξ − ξ′|)→ 2π

(
− 1

∂2

)
ξ,ξ′ at ξ → ξ′, and that

∫
d2z z2K0(|z|) = 8π.

For the Polchinski–Strominger term (6) to cancel the bosonic-string conformal anomaly
in 4D, the coefficient in front of the integral in Equation (6) should be equal to − 26−4

96π
(cf. Refs. [6,15]). This yields the following relation for the circumferences of the compactifi-
cation circles, whose fulfillment provides the cancellation of the conformal anomaly:

αβ =
1
κ

(
1152π

275m2〈(gFa
µν)

2〉

)1/3

' 2.85
(m2〈(gFa

µν)
2〉)1/3 . (7)

The gluon condensate, 〈(gFa
µν)

2〉, calculated from the aforementioned expression for

the string tension, σ =
πκ〈(gFa

µν)
2〉

24Nm2 , by means of the phenomenological SU(3) values
σ = (440 MeV)2 and [28] 1

m = 0.22 fm, reads 〈(gFa
µν)

2〉 = 4.3 GeV4. That yields the numeri-

cal relation
√

αβ = 0.27 fm. Accordingly, we have
( 2π

mα

)2
+
( 2π

mβ

)2 ≥
( 2π

m
)2 · 2

αβ ' 52.1� 1,
which justifies approximation (2).

Note also that there is no contradiction with the fact that the compactification radii,
α

2π and β
2π , can be smaller than the vacuum correlation length 1

m , since the Wilson loop is
extending in the non-compact dimensions. As for the string, its existence requires to have
the size of at least one of the two compact dimensions larger than the vacuum correlation
length. For example, in the case when one of the two compact dimensions is x4, which
corresponds to finite temperature T = 1/β, the spatial dimension with compactification
radius α

2π shrinks in the zero-temperature limit. Nevertheless, the string is still well defined
in the resulting (2+1)D Yang–Mills theory. Note also that the limit of the small radius of
spatial compactification is precisely the one where the Yang–Mills theory compactified
on R3 × S1 admits an analytic description of confinement [16]. In the opposite limit of
large temperatures, T & 2Tc, with Tc standing for the deconfinement critical temperature,
where the Yang–Mills theory effectively becomes purely spatial, the obtained condition (7)
can also be fulfilled, making the string representation of the corresponding spatial Wilson
loop fully quantum. Indeed, in that limit, the chromomagnetic condensate is proportional
to the fourth power of the inverse chromomagnetic-vacuum correlation length, m ∝ g2T,
i.e., [29,30] 〈(gFa

ij)
2〉 ∝ (g2T)4, where g now stands for the finite-temperature Yang–Mills

coupling, and i and j are the purely spatial indices. Therefore, in this high-temperature
limit, condition (7) parametrically becomes αβ ∝ 1

(g2T)2 . As follows from this relation,

both β = 1
T and α ∝ 1

g4T vanish at T � Tc, but α stays parametrically larger than the

vacuum correlation length 1
m , since g� 1. We notice that the thus emerged ultrasoft scale

1
g4T defines the so-called sound attenuation length in the gluon plasma (see e.g., [31–33]).

In particular, it can be shown [34,35] that the correlation function 〈Fa
ij(~x)Fb

kl(
~0)〉 with the

correlation length defined by that scale, yields the known perturbative expression for the
shear viscosity of the plasma [36], η ∝ T3

g4 ln const
g

. The unexpected emergence of this ultrasoft

scale, within the present context of the string representation of a spatial Wilson loop in the



Universe 2022, 8, 7 6 of 10

high-temperature limit, can be viewed as a remarkable example of possible interrelations
between a priori different areas of physics of the Yang–Mills fields.

3. DAHM away from the London Limit: Vacuum Correlation Length and the
Distribution of Monopole Currents

The partition function of 4D compact QED in the continuum limit has the form [22]:

Z4D comp. QED =
∫
DBµ e−

∫
x

[
1
4 F2

µν−2ζ cos
( |Bµ |

Λ

)]
, (8)

where Bµ is the dual gauge field, Fµν = ∂µBν− ∂νBµ is its field-strength tensor, |Bµ| ≡
√

B2
µ,

Λ is the UV cutoff, ζ is the monopole fugacity of dimensionality (mass)4, the factor of 2 in
front of it is due to the contributions of both monopoles and antimonopoles, and

∫
x ≡

∫
d4x.

The Debye mass of the field Bµ, stemming from this expression, is mD =
√

2ζ/Λ. In the
low-energy limit, which corresponds to the limit of low monopole densities, dualization of
Equation (8) yields the following representation of the theory in terms of an antisymmetric-
tensor field hµν [22]:

Zlow−en. 4D comp. QED =
∫
Dhµν e

−
∫

x

(
1

12m2
D

H2
µνλ+

1
4 h2

µν

)
,

where Hµνλ = ∂µhνλ + ∂λhµν + ∂νhλµ is the strength tensor of the field hµν.
At the same time, the partition function of the London limit of DAHM (with closed

dual Abrikosov–Nielsen–Olesen strings disregarded for this comparison, due to the absence
of closed strings in compact QED) has the form [22]:

ZLL of DAHM =
∫
Dhµν e−

∫
x

(
1

12m2 H2
µνλ+

1
4 h2

µν

)
.

Thus, the two theories are equivalent to each other, with the equality mD = m yielding an
expression for the fugacity,

ζ =
(mM)2

2
,

where we have naturally set Λ = M.
Now, by an analogy with the 3D compact QED, we will proceed beyond the London limit

of the 4D DAHM. In the case when the 3D compact QED is stemming from the 3D Georgi–
Glashow model, for a not-infinitely-heavy Higgs field in the latter model (as compared to
the mass of the W-boson), monopoles start interacting with each other via the Higgs field,
so that their Coulomb interaction acquires a correction [37], qaqbD0(~z−~z ′)− DM(~z−~z ′).
Here, qa and qb are the charges (in the units of gm) of two monopoles located at the points~z
and~z ′, D0(~z ) = 1/(4π|~z |) is the dual-photon propagator, and DM(~z ) = e−M|~z |/(4π|~z |)
is the Higgs-boson propagator. We therefore expect that, in the 4D DAHM away from
the London limit, the interaction between two monopoles, propagating along the world
lines zµ(τ) and z′µ(τ), becomes

∫
dτdτ′

[
qaqb żµ ż′µD0(z− z′)− |żµ||ż′µ|DM(z− z′)

]
, where

D0(z) = 1/(4π2z2), DM(z) is given by Equation (1), and we have taken into account that
the (dual) Higgs is a scalar particle. Hence, we can write down the following partition
function of the DAHM away from the London limit (cf. the corresponding partition
function stemming from the 3D Georgi–Glashow model with a not-infinitely-heavy Higgs,
considered in Ref. [38]):

ZDAHM beyond LL =
∫
DBµDϕ e−

∫
x

[
1
4 F2

µν+
1
2 (∂µ ϕ)2+ M2

2 ϕ2−(mM)2e
ϕ
M cos

( |Bµ |
M

)]
, (9)

where we have once again set Λ = M, in e
ϕ
M . The latter choice is natural, since the typical

length of a monopole trajectory,
∫

dτ|żµ|, is 1
M .
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We further perform the ϕ-integration in Equation (9), by using the cumulant expansion
in the Gaussian approximation (cf. Refs. [39,40]; for a review, see [41]), i.e.,

〈e
∫

x eϕ/M f 〉 ' e
∫

x〈eϕx/M〉 fx+
1
2
∫

x,y

(〈
eϕx/Meϕy/M

〉
−〈eϕx/M〉

〈
eϕy/M

〉)
fx fy ,

where 〈· · · 〉 ≡
∫
Dϕ e−

1
2
∫

x [(∂µ ϕ)2+M2 ϕ2](· · · ) and fx ≡ f (x). Averages entering this expres-

sion read
〈

eϕx/M
〉
= eDM(0)/(2M2) and

〈
eϕx/Meϕy/M

〉
= e[DM(0)+DM(x−y)]/M2

. As we are
always considering constant m, i.e., a constant Higgs v.e.v. η, by staying outside the cores of
the dual Abrikosov–Nielsen–Olesen strings, |x| > 1

M , which corresponds to having Λ = M,
we should replace 0 by 1/M in DM(0). This replacement yields eDM(0)/(2M2) ' eK1(1)/(8π2).
For the same reason of considering only the distances |x| > 1

M , we can, with the exponential
accuracy, approximate eDM(x−y)/M2 ' 1 + 1

M2 DM(x− y). This yields for Equation (9):

ZDAHM beyond LL '
∫
DBµ e−

∫
x

[
1
4 F2

µν−µ4 cos
( |Bµ |

M

)
− µ8

2M2

∫
y cos
( |Bµ (x)|

M

)
cos
( |Bµ (y)|

M

)
DM(x−y)

]
, (10)

where µ4 ≡ (mM)2eK1(1)/(8π2) ' (mM)2, since eK1(1)/(8π2) ' 1.008. Expanding now the

product of the two cosines up to the quadratic term,
∫

x,y
(
1− B2

µ(x)
2M2

)(
1− B2

µ(y)
2M2

)
DM(x− y) '

− 1
M4

∫
x B2

µ, we obtain the following corrected squared Debye mass (cf. Refs. [39–41] for the
corresponding expression in the 3D Georgi–Glashow model):

m2
D =

µ4

M2

(
1 +

µ4

M4

)
' m2

(
1 +

m2

M2

)
.

Thus, with a deviation from the London limit, the DAHM vacuum correlation length 1/m,
equal to 1/mD, acquires a negative correction − m2

2M2 . Note that this decrease of the vacuum
correlation length is in line with the attractive force, which is known to start acting onto
two parallel same-oriented Abrikosov–Nielsen–Olesen strings away from the London limit
due to the Higgs-boson interactions (in addition to the repulsive force, which is produced
by the gauge-boson interactions) [42]. Such a competition between the forces which the
gauge-boson and the Higgs-boson interactions excert onto two interacting topological
defects is similar for Abrikosov–Nielsen–Olesen strings and for monopoles (cf. above).

Note also that the obtained decrease of the vacuum correlation length in the vicinity
of the London limit parallels its strong decrease in the Bogomolny limit, where the gauge-
and the Higgs-boson masses are equal to the same quantity mBog [43]. Indeed, the string
tension in the Bogomolny limit differs from the one in the London limit, Equation (3), by the
absence of the factor ln M

m [25], i.e., it reads:

σ =
m2

Bog

4π
. (11)

Since, within the dual superconductor model, both Equations (3) and (11) should have the
same aforementioned phenomenological value σ = (440 MeV)2, we obtain:

mBog

m
=

√
ln

M
m
� 1.

Accordingly, the vacuum correlation length in the Bogomolny limit, 1/mBog, is smaller than

the vacuum correlation length in the London limit, 1/m, by the same large factor of
√

ln M
m .

Let us now dualize theory (10), which will yield a potential of monopole currents away

from the London limit. To this end, we write e−
1
4
∫

x F2
µν =

∫
D jµ e−

1
2
∫

x,y jµ(x)D0(x−y)jµ(y)−i
∫

x Bµ jµ ,
where the first term in the exponential on the r.h.s. represents Coulomb interaction of
monopole currents, while the dual field Bµ has no kinetic term anymore, and can thus be
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integrated over in the saddle-point approximation. For a rescaled field bµ ≡ iBµ/M, the
action has the form

S[bµ] = M
∫

x
bµ jµ − µ4

∫
x

cosh(|bµ|)−
µ8

2M2

∫
x,y

cosh(|bµ(x)|) cosh(|bµ(y)|)DM(x− y).

Assuming bµ of the form: bµ =
jµ
|jµ | |bµ|, we obtain the following saddle-point equation:

sinh(|bµ(x)|)
[

1 +
µ4

M2

∫
y

cosh(|bµ(y)|)DM(x− y)
]
=

M|jµ|
µ4 .

Seeking its solution in the form |bµ| = φ + χ, where |χ| � φ, we obtain in the leading
approximation: φs.p. = arcsinh(M|jµ|/µ4), χs.p. = 0. This solution to the saddle-point
equation yields the following potential of monopole currents:

V[jµ] = M
∫

x
|jµ|arcsinh

(
M|jµ|/µ4)− µ4

∫
x

f ,

where f (x) ≡
√

1 + (Mjµ(x)/µ4)2. Retaining further the linear-in-χ terms in the saddle-point

equation, we obtain its following solution: χs.p.(x) = −|jµ(x)|/(M f (x))
∫

y DM(x− y) f (y).
We explicitly see that the inequality |χs.p.| � φs.p. holds at low monopole densities,
|jµ| � µ4/M, in which case |χs.p.|/φs.p. ' (µ/M)4. Accordingly, in the corresponding
expression for the potential,

V[jµ] = M
∫

x
|jµ|arcsinh

(
M|jµ|/µ4)− µ4

∫
x

f − µ8

2M2

∫
x,y

f (x) f (y)DM(x− y),

only the quadratic term should be retained in this low-density approximation. That yields

V[jµ] '
1

2m2
D

∫
x

j2µ.

Here, 1
m2

D
' M2

µ4 − 1
M2 consistently substitutes 1

m2
D
= M2

µ4 which enters the same expression

for V[jµ] in the case where the correction is not taken into account, i.e., χs.p. = 0.

4. Summary

This paper has been devoted to the two aspects of the dual superconductor scenario
of confinement. The first one was the derivation of the string representation of a Wilson
loop in the 4D Yang–Mills theory compactified on a torus. For the Gaussian approximation
to the Yang–Mills theory, we have used the explicit form of the two-point correlation
function of gluonic field strengths, which can be obtained in the London limit of the dual
superconductor. With a deviation from the Gaussian approximation, the quartic cumulant
of gluonic field strengths starts contributing to the Wilson loop. That cumulant leads to
the appearance, in the string representation, of a term corresponding to the two-point
correlation of the Euler characteristic of the string world sheet. At short distances, this
correlation gets reduced to a massless 2D propagator, yielding the Polchinski–Strominger
term (6) in the string representation. When relation (7) between the circumferences of the
compactification circles holds, that term cancels string conformal anomaly in 4D, thereby
making string representation fully quantum. While we find this result interesting, we notice
that its derivation relies on the mentioned explicit form of the two-point correlation function
of gluonic field strengths which corresponds to the London limit of the dual superconductor.
Indeed, only that correlation function yields, upon the compactification of the theory on the
torus, the correlation function (2), whose short-distance logarithmic asymptotics eventually
yields the Polchinski–Strominger term. We notice here one more remarkable fact stemming
from the logarithmic short-distance asymptotics of the Macdonald function K0(x) which
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describes also the electric field of a straight-line dual Abrikosov–Nielsen–Olesen string, i.e.,
a flux tube, in the London limit of the dual superconductor. Namely, pairs produced in
the field of such a flux tube have an exponential distribution, in contrast to the standard
Schwinger’s Gaussian distribution, which takes place away from the London limit [44,45].

The second aspect of the dual superconductor scenario, addressed in this paper, was
the deviation from the London limit. We have used the correspondence between the dual
formulations of DAHM in the London limit and of the low-energy limit of 4D compact
QED, to write down partition function (9) of DAHM away from the London limit. It is
similar to the partition function of the grand canonical ensemble of monopoles in the 3D
Georgi–Glashow model where the Higgs field is considered not infinitely heavy. Having
integrated, in the Gaussian approximation, over the scalar field which represents in this
formulation the dual Higgs field, we have obtained a decrease of the vacuum correlation
length of DAHM away from the London limit, by a factor of

(
1− m2

2M2

)
, where m and M are

the masses of the dual vector boson and the dual Higgs field, respectively. Such a decrease
parallels the known fact about an attractive force caused by the Higgs-boson exchanges
between two parallel same-oriented straight-line dual Abrikosov–Nielsen–Olesen strings,
as well as the strong decrease of the vacuum correlation length in the Bogomolny limit.
Finally, by dualizing partition function (9), we have obtained its representation in terms of
monopole currents, which includes Coulomb interaction of those currents along with their
corresponding potential.
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