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Simple Summary: We briefly review the problem of time in quantum cosmology and present two
possible solutions.

Abstract: Time in quantum gravity is not a well-defined notion despite its central role in the very
definition of dynamics. Using the formalism of quantum geometrodynamics, we briefly review the
problem and illustrate it with two proposed solutions. Our main application is quantum cosmology—
the application of quantum gravity to the Universe as a whole.
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1. Problem of Time

The problem of time in quantum gravity [1–6] has been with us for more than fifty
years, having been originally discussed by Peter Bergmann and his group and by Paul Dirac
in the late 1950s.1 It consists of various issues and questions regarding the representation
of time in both the classical canonical theory (General Relativity—GR) and its quantization.
It is interesting to note that this ongoing debate on the time issue can be traced back to
Newton and his absolute time and Leibniz’s critique of it (see Refs. [8,9]). In short, time in
quantum theory is absolute, whereas it is dynamical in GR. This “incompatibility” a priori
renders complicated the intertwining of both theories into a working quantum theory of
gravity, which is indeed yet to be formulated. We emphasize that the primary distinction
here is between absolute (background) and dynamical variables, not so much between
absolute and relative (e.g., in special relativity) variables; it is the dynamical variables [10]
onto which the superposition principle is being applied in the quantum theory.

So far, no generally accepted theory of quantum gravity exists. The reasons for this
state of affairs are conceptual and mathematical as well as experimental, because the effects
of quantum gravity are believed to be small in most situations [4]. Still, various approaches
exist, from which one may get insights into aspects of the full theory. One can distinguish
between two broad classes of approaches. In the first class, more or less heuristic rules
are employed to transform a classical gravitational theory into a corresponding quantum
version. A more proper wording would be “to guess a theory of quantum gravity from its
classical limit”; this is, in fact, the method that guided Erwin Schrödinger to his famous
wave equation in 1926. Such rules can be applied to any gravity theory, but the most
common case is to apply it to GR. In the second class, attempts are made to directly
construct a fundamental quantum theory (possibly a unified theory of all interactions) from
which quantum gravity, and finally GR, can be derived. The main example is the string (or
M-) theory, in which quantum gravity is emergent.

Here, we shall restrict our discussion to the first class, and moreover, to quantum GR
in the Hamiltonian approach with metric variables (quantum geometrodynamics). This is
for two reasons. First, this approach makes conceptual issues (notably the problem of time)
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most transparent. Second, it is a very conservative approach, at which one straightforwardly
arrives when quantizing GR. Hence, even if that theory is eventually superseded by a more
comprehensive theory at the most fundamental level (which is likely to be the case), it can
serve as a blueprint for understanding the concept of time in any quantum gravity theory.

Our paper is organized as follows. In Section 2, we review the main features of
classical and quantum geometrodynamics. Section 3 will then focus on the problem of
time and its possible solution at the fundamental quantum level. There, we will make
a careful distinction between the problem of time at the classical and at the quantum
level. At the classical level, this is also called background independence and is not really
a problem—it is a feature of any classical theory that has a spacetime diffeomorphism
invariance. The quantum level is characterized by the absence of spacetime, in analogy to
the absence of trajectories in quantum mechanics. We review two possible solutions to the
problem of time at the quantum level. Finally, Section 4 contains a brief summary and the
conclusions.

2. Classical and Quantum Geometrodynamics

Quantizing gravity can be performed in a covariant way or through a formulation of
GR in a canonical (Hamiltonian) form (for example, see Ref. [4] and the references therein).
The latter approach, on which we will focus our attention in what follows, begins with a
foliation of spacetime into three-dimensional hypersurfaces, thereby breaking the manifest
four-dimensional diffeomorphism invariance. This is illustrated in Figure 1, in which two
infinitesimally close leaves Σt and Σt+dt are shown together with the various relevant
geometric quantities.

Figure 1. Spacetime is split into three-dimensional hypersurfaces Σt labeled by a time parameter t,
with the orthonormal vector nµ. The figure illustrates the various quantities involved in the 3 + 1
split of the metric expansion (1).

2.1. Space and Time Decomposition: The 3 + 1 Split

In a space + time (3 + 1) decomposition of spacetime, the general four-dimensional
metric gµν has ten independent components, which are decomposed into a lapse function
N, a shift vector Ni, and the three-dimensional hypersurface- (Σt-) induced metric hij (first
fundamental form) through the following equation:2

ds2 = gµνdxµdxν = −N2dt2 + hij

(
dxi + Nidt

)(
dxj + N jdt

)
, (1)
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from which one builds the second fundamental form

Kij = −∇
(h)
j ni =

1
2N

(
∇(h)

j Ni +∇
(h)
i Nj −

∂hij

∂t

)
, (2)

which is also called the extrinsic curvature of the hypersurfaces. The relevant action for GR
reads, integrated over the manifoldM, as follows:

S =
1

16πGN

[∫
M

√
−g (R− 2Λ)d4x + 2

∫
∂M

√
h Kd3x

]
+ Sm[Φ(x)], (3)

where K ≡ Ki
i = hijKij, h := det hij, and GN as Newton’s constant. This is the Einstein–

Hilbert action, including in the most general situation a possible cosmological constant
Λ. We also wrote, for the sake of generality, the Gibbon–Hawking surface term3 (inte-
grated over the boundary ∂M), introduced by Einstein in 1916. In what follows, however,
we shall restrict attention to compact hypersurfaces Σt, for which this term identically
vanishes. In (3), we also consider the possibility of a matter component, encoded as Sm,
with dynamics driven by generic fields labeled as Φ(x), which is undetermined at this stage.

In terms of the 3 + 1 decomposition stemming from (1), this action can be transformed
into its Arnowitt–Deser–Misner (ADM) [12] form given by the following:

S =
∫

Ldt =
∫

dt
[

1
16πGN

∫
d3x N

√
h
(

KijKij − K2 +3R− 2Λ
)
+ Lm

]
, (4)

where 3R is the Ricci scalar derived from the three-dimensional metric hij. The Lagrangian
L thus defined permits the calculation of the canonical momenta corresponding to the
underlying variables presented above in (1) and (2). These are the following:

πij :=
δL

δ
.
hij

= −
√

h
16πGN

(
Kij − hijK

)
, (5)

for the purely gravitational part, and

πΦ :=
δL

δ
.

Φ
= −
√

h nµ∂µΦ = −
√

h
N

( .
Φ− Ni ∂Φ

∂xi

)
, (6)

in the case of Φ(x) actually representing a minimally coupled scalar field; we also used
the decomposition nµ = N−1(1,−Ni) (e.g., see Ref. [4]). We note that GN explicitly occurs
in (5), which is why it will already appear in the vacuum equation for quantum gravity
(see (15) below).

Since neither the shift vector nor the lapse time derivatives enter the Lagrangian
appearing in (4), their associated momenta are vanishing and merely set the following
primary constraints:

π0 :=
δL

δ
.
N
≈ 0 and πi :=

δL

δ
.

Ni
≈ 0, (7)

where ≈ denotes Dirac’s weak equality. With the momenta at hand, one thus finds the
gravitational part of the Hamiltonian (i.e., setting Lm → 0):

H :=
∫

d3x
(

π0 .
N + πi .

Ni + πij .hij

)
− L =

∫
d3x

(
π0 .

N + πi .
Ni + NH+ NiHi

)
, (8)

where

H =
1√
h

(
hikhjl −

1
2

hijhkl

)
πijπkl −

√
h
(

3R− 2Λ
)

, (9)
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and

Hi = −2
√

h∇j

(
πij
√

h

)
. (10)

When adding the matter part, H picks a part proportional to the energy density ρ,
whileHi contains the current ji. It is then clear from (8) that Hamilton’s equations imply
the HamiltonianH ≈ 0 and the diffeomorphism (momentum)Hi ≈ 0 constraints, which,
together with the six dynamical equations for hij, provide the canonical form of GR that is
entirely equivalent to the ten Einstein equations.

The constraints (9) and (10) obey a certain algebra which is closed but not a Lie
algebra [4]. The reason why this is not a Lie algebra is the explicit occurrence of the
(inverse) three-metric in the Poisson bracket between (9) evaluated at different space points,
which in turn originates from the constraint algebra not being the algebra of spacetime
diffeomorphisms. Generators for those diffeomorphisms necessarily employ the lapse and
the shift functions (for example, see Ref. [13]). For this reason, observables in GR (and
in other diffeomorphism-invariant theories) are supposed to commute (in the sense of
Poisson brackets) with a gauge generator that consists of a tuned sum of all constraints,
including the primary constraints (7) together with lapse and shift [13,14]. This is why
observables in GR are not necessarily constants of motion because they do not need to
commute separately with the Hamiltonian and momentum constraints (as is sometimes
claimed in the literature).

2.2. Superspace and Canonical Quantization

The most straightforward way to quantization once the Hamiltonian formalism has
been established consists, first of all, in defining the relevant configuration space. In the case
of GR, we have seen that the relevant dynamical variables are the three-metric components
hij and the matter fields jointly described by a single symbol Φ. All these depend on a
coordinate parameterization on the three-surface Σ, labeled by {xa} =: x. In other words,
we begin with the space:

Riem(Σ) :=
{

hij(xa), Φ(xa)|x ∈ Σ
}

.

The space Riem(Σ) is, however, too large as it contains many equivalent configurations,
namely those that can be related by (three-dimensional) diffeomorphisms. Denoting by
Diff(Σ) the set of all such possible diffeomorphisms, one ends up taking into account
GR-invariance by reducing it to the configuration space as the quotient:

Conf := Riem(Σ)/Diff(Σ),

an actual configuration consisting in the equivalence class of the three-dimensional metric
hij and field Φ. With these configurations, one can consider a set of states

{
|hij, Φ〉

}
of the

space “Conf”, called superspace, onto which one can project a relevant state |Ψ〉 to yield
the equivalent of the “position” representation for the wave function, here replaced by the
wave functional:

Ψ
[
hij(x), Φ(x)

]
:= 〈hij, Φ|Ψ〉. (11)

It is not clear whether the ensemble
{
|hij, Φ〉

}
can actually be built explicitly or even

defined, and the above definition is merely suggestive in order to draw an analogy with
ordinary quantum mechanics [15]. For a detailed discussion of these concepts, we refer the
reader to Ref. [16].

The equations satisfied by the wave function are then obtained by applying the Dirac
quantization procedure, in which the metric and fields are merely multiplicative operators,
and the momenta read as follows:

πij → −ih̄
δ

δhij
and πΦ → −ih̄

δ

δΦ
(12)
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for the relevant degrees of freedom, π0 → −ih̄δ/δN and πi → −ih̄δ/δNi for the primary
constraints, the latter reading on the following state:

π̂0Ψ = −ih̄
δΨ
δN

= 0 and π̂iΨ = −ih̄
δΨ
δNi

, (13)

expressing, as anticipated in Equation (11), that Ψ depends neither on the lapse N nor on the
shift Ni.4 With the prescription (12), one transforms the momentum constraint (10)—now
including the matter part—into the following equation:

ĤiΨ = 0 =⇒ i∇(h)
j

(
δΨ
δhij

)
= 8πGN T̂0iΨ, (14)

which can be understood to mean that configurations related by a coordinate transformation
yield similar wave functionals; more precisely, wave functionals remain invariant under
three-dimensional diffeomorphisms connected with the identity and acquire a phase for
non-connected (“large”) ones. Finally, the Hamiltonian constraint (9)—also including the
matter part—yields the equation below:

ĤΨ =

[
−16πGNGijkl

δ2

δhijδhkl
+

√
h

16πGN

(
−3R + 2Λ + 16πGN T̂00

)]
Ψ = 0, (15)

with the DeWitt metric given by the following:

Gijkl =
1

2
√

h

(
hikhjl + hilhjk − hijhkl

)
.

Equation (15) is called the Wheeler–DeWitt equation. In the way it is written here,
it only has formal significance because we do not give a mathematical definition for
the second functional derivatives with respect to the three-metric. This is connected
to the factor-ordering problem and requires employing a regularization and (perhaps)
renormalization. There is no consensus on how this can be achieved, although there are
concrete proposals in the literature [17]. Only if these technical problems are solved can
we also investigate whether an anomaly-free version of the classical constraint algebra
mentioned above can be formulated.

The Wheeler–DeWitt Equation (15) takes the form of a stationary Schrödinger equation
with an energy value of zero. This points to the absence of time at the most fundamental
level and will be discussed in the next section. An important remark concerning the
structure of (15) is the fact that the signature of its kinetic term is indefinite. More precisely,
the DeWitt metric can be interpreted as a symmetric 6× 6 matrix (at each space point),
which can be diagonalized to finding the signature (−,+,+,+,+,+). The minus sign
is unrelated to the Lorentzian structure of classical spacetime; it is a consequence of the
attractive nature of gravity [4,16]. The minus sign is connected to the local scale

√
h (“local

volume”) and gives Equation (15) the structure of a locally hyperbolic (Klein–Gordon type
of) equation. The variable

√
h connected to this sign may thus be interpreted as an intrinsic

time—time that is entirely constructed from components of the three-metric. Julian Barbour
has emphasized the analogy of such an intrinsic time with the ephemeris time used by
astronomers in the past [18].

We emphasize again that the formalism of quantum geometrodynamics is a very
conservative one. The Wheeler–DeWitt equation and the momentum constraints follow
in a straightforward way when we take Schrödingers route of 1926, that is, “guessing”
wave equations that, in the classical limit, lead back to Einstein equations in Hamilton–
Jacobi form.



Universe 2022, 8, 36 6 of 16

3. The Question of Time

It is common knowledge that the physicists’ view of time evolved in 1905 when
Einstein made it relative to each observer, that is, when he introduced the notion of proper
time. But special relativistic time is still an absolute concept as it relies on a set of privileged
inertial frames stemming from the existence of Killing vectors in Minkowski space, which
provides a fixed (non-dynamical) background. In contrast, spacetime is dynamical in GR,
and an arbitrary spacetime does not possess any timelike Killing vector. In that sense, it
seriously departs from what is needed in quantum mechanics.

3.1. Classical Time

A major feature of GR is its background independence. This means that all variables are
dynamical, and absolute structures have disappeared. In Einstein’s words [19], here in
Jürgen Ehlers’ translation [10]:5

It is contrary to the scientific mode of understanding to postulate a thing that acts,
but which cannot be acted upon.

This background independence is sometimes referred to as the problem of time in the
classical theory, although in our opinion, it is not a problem but a main, if not the main,
feature of GR.

The canonical form of GR is very much suited to explicitly exhibit its dynamical
structure. This is achieved by formulating “interconnection theorems” that demonstrate
how equations on three-dimensional hypersurfaces are connected with spacetime equations
(for example, see Ref. [20] and references therein).

One theorem states the following connection: the constraints H ≈ 0 and Hi ≈ 0
(which are four out of the ten Einstein equations), as imposed on an “initial hypersurface”,
are preserved in time if and only if the energy–momentum tensor of matter has vanishing
covariant divergence. This has a nice analogy in electrodynamics: the Gauss constraint is
preserved if and only if there is charge conservation. A second theorem states that Einstein
equations are the unique propagation law consistent with the constraints, that is, if the
constraints are imposed on every hypersurface, the connection between the hypersurfaces
must be through the remaining six dynamical Einstein equations. Again, there is an analogy
in electrodynamics: Maxwell’s equations are the unique propagation law consistent with
the Gauss constraint.

Let us consider a classical system with n variables qi, i = 1, · · · , n, depending on time
t. One can formulate the canonical equations in a parametric form by setting the classical
time variable as t = q0 and adding an external parameter τ such that qµ = qµ(τ), with
µ = 0, · · · , n, and qµ′ := dqµ/dτ. The action integral then transforms into the following:

S =
∫ tf

ti

L
(

qi, .qi
)

dt =
∫ τf

τi

L

(
qµ,

qµ′

q0′

)
q0′dτ =

∫ τf

τi

L̃ dτ,

where L̃ is a homogeneous function in qµ′ , so that

L̃ =
∂L̃

∂qµ′
qµ′ ≡ pµqµ′ =⇒ H̃ = pµqµ′ − L̃ = 0,

(with implicit summation over µ), that is, the Hamiltonian associated with the system
including time as a variable vanishes identically. Switching back to the original variables
t and its associated momentum pt, one finds that H̃ = 0 implies H + pt = 0, where H is
the original Hamiltonian derived from the Lagrangian L. Interpreting this equation as a
constraint equation on the full (unconstrained) phase space, one can reformulate it using
Dirac’s weak equality: H + pt ≈ 0. In the next subsection, we shall see that the quantum
version of this constraint is just the Schrödinger equation.

In GR, one could hope that through a canonical transformation, the six geometric
variables hij can be split into four embedding coordinates of the hypersurface Σ, ξµ(xα)
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say, and two actual gravitational degrees of freedom (which in the linearized limit could
be interpreted as the two helicity states of weak gravitational waves). Similarly to the
parametric form above, one could hope that the vanishing Hamiltonian (9) could be
expanded to a form similar toH = pt + H, with H depending only on the relevant degrees
of freedom; in that case, the Wheeler–DeWitt Equation (15) would exhibit a time structure
similar to the one in the Schrödinger equation, with time interpreted as an internal degree
of freedom. It so happens that in some simple cases (e.g., a Friedmann universe with matter
content dominated by a barotropic perfect fluid or a Bianchi I model in vacuum), one may
identify some variable to serve as such clocks. Unfortunately, in general, such a separation
is not globally feasible as time in GR is very much intertwined with all other variables; this
is called the global problem of time [1]. Even if such a separation can be shown to exist
in particular cases, it is hard to perform it explicitly, and even if it can be accomplished,
the resulting equations can hardly be solved. This is why this “reduced approach” has not
proven to be a viable one in dealing with the problem of time.

This is different from the situation in classical mechanics. There, one can artificially
re-write the equations in a reparametrization-invariant way. The standard Newtonian time
t then follows the demand to have the equations as simple as possible. Or, in the words of
Henri Poincaré [21] (our translation from French):6

Time must be defined in such a way that the equations of mechanics are as simple
as possible. In other words, there is no way to measure time that is more true
than any other; the one that is usually adopted is only more convenient.

This is not possible in GR—there is no distinguished time that renders the equations
simple in a similar way.

3.2. Time and the Quantum

As we have seen in the last subsection, treating mechanics as a parametrized system
leads to the constraint H + pt ≈ 0 where H is the usual Hamiltonian and pt the momen-
tum conjugate to t, here elevated formally to a dynamical variable. The application of
Dirac’s formal quantization rules, including pt → −i∂/∂t in particular, then leads to the
Schrödinger equation:

i
∂ψ

∂t
= Ĥψ. (16)

In the standard view of quantum mechanics, t is interpreted as an external parameter
(Newton’s absolute time). That the interpretation of t as an operator (“q-number”) leads
to problems was already recognized by the pioneers of the theory. Wolfgang Pauli, in his
textbook on quantum mechanics, emphasizes that the presence of an operator t obeying
a canonical commutation rule with the Hamiltonian would lead to Ĥ having a spectrum
from −∞ to +∞. He writes [22], p. 60 (our translation from German):7

We thus conclude that one must completely go without the introduction of an
operator t and that the time t in wave mechanics must necessarily be considered
as an ordinary number (“c-number”).

Erwin Schrödinger, in Ref. [23], p. 243, emphasizes (our translation from German):8

One can arrive at an empirical knowledge of the time variable by no other means
than by a real reading of a really existing clock. This clock is a physical system
like any other, and the reading of the pointer is a physical measurement like any
other. It is not acceptable to put this particular physical system and this particular
kind of measurements, as we may say, hors concours, and to apply the principles
of quantum mechanics only to all others but not to the determination of time.

Schrödinger then proceeds to show that it is impossible to construct a time operator
whose eigenvalues monotonically correlate with t if one demands a bounded Hamiltonian.
In more recent years, the conclusions by Pauli and Schrödinger were re-formulated and
strengthened, e.g., in Ref. [24].
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One can, of course, try to re-formulate quantum mechanics by replacing the Schrödinger
Equation (16) with an equation that does not refer to the external t, but to a variable
describing a real clock [25]. Such an approach is realized in the “Montevideo interpretation”
of quantum theory [26]. One finds in this way a master equation of the Lindblad type for
an effective density matrix, which does not evolve unitarily.

Schrödinger claimed that this conceptual problem can only be solved by developing
a relativistic framework. As we have seen, the background independence of GR brings
this discussion to a new level and leads, after quantization, to the quantum version of the
problem of time, to which we now turn.

3.3. The Problem

We have seen that one can understand GR as that which provides (generalized) tra-
jectories of three-dimensional space, in much the same way as usual classical mechanics
provides particle trajectories. Spacetime can be interpreted as a class of trajectories in the
space Riem(Σ). Since the classical particle trajectories are absent in quantum mechanics,
one expects that the same applies to spacetime in quantum gravity. In fact, this is what
the application of the standard quantization rules, as reviewed above, gives. Figure 2,
which is a modified and extended version of Box 43.1 in Ref. [27], presents a compari-
son of geometrodynamics with particle dynamics, from which it becomes clear that the
quantum states can be represented by wave functionals on the space of three-geometries,
not four-geometries.

Comparison between geometrodynamics and particle dynamics

underlying notion geometrodynamics particle dynamics

x, t

dynamical object

hij 3-geometry eventsconfiguration

space particle

classical description x(t) trajectoryhij(t) 4-geometry

dynamical arena spacetimesuperspace

wave function(al) Ψ[hij] ψ(x, t)
Figure 2. Geometrodynamics shares many properties with particle dynamics, and the relevant
notions in both can be compared as shown. Modified and extended version of Box 43.1 in Ref. [27].

Therefore, at the fundamental level, spacetime (and with it, time) has disappeared,
and only space remains. This consequence holds for any theory that is reparametrization-
invariant at the classical level. As mentioned above, it is generally not possible to consis-
tently rewrite the constraint equations of GR in a form similar to H + pt ≈ 0. All momenta
in the Wheeler–DeWitt Equation (15) appear quadratically, and there is no distinguished
part of the momenta that may serve as being conjugate to a distinguished time. In this
sense, the classical “problem of time” (background independence) leaves its imprint on
quantum theory.

The discussion presented here is based on the canonical (Hamiltonian) formalism of
quantum GR. Alternatively, one can use the covariant (path-integral) formulation. At the for-
mal level, that is, neglecting field-theoretic subtleties, the two formulations are equivalent:
the path integral satisfies the Wheeler–DeWitt equation and the momentum constraints ([4],
Section 5.3.4). For this reason, all issues related to the problem of time hold equally well in
the covariant formulation.

In quantum mechanics, the evolution with respect to the external time t is unitary
for closed systems, that is, probabilities are conserved. If time is absent, the question arises
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whether the concepts of probability and unitarity still make sense. These issues are always
included, at least implicitly, when addressing the problem of time.

The absence of spacetime, and with it the absence of any external time variable at the
most fundamental level, is usually what is meant when one talks about the problem of time
in quantum gravity and quantum cosmology. What are the suggestions for its solution?

3.4. Two Solutions

We present here two main solutions to address the problem of time. For a comprehen-
sive review on potential solutions, we recommend Ref. [6] and the 933 references therein.

3.4.1. Intrinsic Time

The most straightforward approach is to accept the absence of spacetime at the fun-
damental level and to search for an interpretation that is solely based on three-metrics
(and -geometries). The standard concept of time then only emerges at an appropriate
semiclassical limit (see Section 3.5 below). The semiclassical limit is in any case demanded
for consistency and is all that is presently available for experimental or observational tests.

As we have already mentioned above, the Wheeler–DeWitt Equation (15) is of a locally
hyperbolic form, with the local scale

√
h coming with a different sign in the kinetic term.

One could then call the local scale a local intrinsic time. Intrinsic time is entirely constructed
from spatial degrees of freedom (e.g., see Ref. [28]).

Most discussions in quantum cosmology deal, in fact, with simplified models that
assume a model of a homogeneous universe. Since most degrees of freedom of the full
theory are absent then (there are, in particular, no gravitational waves), one calls them
minisuperspace models [29]. For simplicity, let us choose a closed Friedmann–Lemaître
universe with scale factor a, containing a homogeneous massive scalar degree of freedom
φ; this gives a two-dimensional configuration space. Classically, the line element reads
as follows:

ds2 = −N2(t)dt2 + a2(t)dΩ2
3, (17)

where dΩ2
3 is the standard line element on the three-sphere. The quantum version invokes

a wave function depending on the two variables, ψ(a, φ). The momentum constraints are
identically fulfilled, and the Wheeler–DeWitt equation reads as follows (in units where
2GN/3π = 1):

1
2

[
1
a2

∂

∂a

(
a

∂

∂a

)
− 1

a3
∂2

∂φ2 − a +
Λa3

3
+ m2a3φ2

]
ψ(a, φ) = 0. (18)

Here, the factor ordering is chosen in order to achieve covariance in minisuperspace.
The hyperbolic structure is obvious from (18): the kinetic term for the scale factor has

a different sign. That this sign is connected with a and not with φ can be recognized by
adding further degrees of freedom, for example, shape degrees and additional matter fields.

The structure of (18) gives rise to two drastically different types of determinism in the
classical and quantum theory [4,30] (see Figure 3 below, taken from [4]). In the classical
theory, we have a trajectory in the (a, φ)-configuration space found by imposing initial con-
ditions at one side of the trajectory (e.g., near the “big bang”). For a recollapsing universe,
the collapsing part of the trajectory can be considered as the deterministic successor of the
expanding part; “big crunch” is different from “big bang”.

It is not so in quantum theory. For the wave Equation (18), initial conditions must
be formulated at constant a. In order to construct a wave packet following the classical
trajectory as a narrow tube, the initial condition at a = constant has to include both the
“big bang” piece and the “big crunch” piece; in configuration space, they are both part of
a = constant. The quantum determinism acts from small a to large a, not along a classical
trajectory (which is absent).

This new type of determinism in quantum cosmology has important consequences
when discussing the origin of the arrow of time [30]. For an initial condition of small en-
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tropy at small scale factor, the arrow of time would formally reverse at the classical turning
point [31]. The reason for this is that small entropy at small a would refer to both the “big
bang” piece and the “big crunch” piece of the wave packet; entropy would increase with
increasing a and not along a classical trajectory (classical spacetime). A low initial entropy
could come from a quantum version of Penrose’s Weyl curvature hypothesis [32]. Quantum
geometrodynamics is able to implement the avoidance of cosmic singularities by invoking
DeWitt’s criterion [33]: regions in configuration space are avoided in quantum gravity if
the wave function vanishes there. This criterion can be generalized to accommodate the
conformal structure of the configuration space [34]. With this, singularity avoidance has
been shown for isotropic and anisotropic models (for example, see Refs. [34,35] and the ref-
erences therein). These insights demonstrate the importance of a thorough understanding
of the concept of time in quantum cosmology.

Classical theory

φ

a

give e. g. here 
initial conditions

Recollapsing part is
deterministic successor of

expanding part

Quantum theory

φ

a

give initial conditions 
on a=constant

‘Recollapsing’ wave packet must be present
‘initially’

Figure 3. Comparison between classical trajectory and the quantum wavefunction for a classically
expanding and collapsing universe.

As is well known, there is still an ongoing debate about the interpretation of quantum
theory. The situation becomes especially demanding in quantum cosmology, where by
definition we are dealing with a quantum theory of a closed system, with no reference
to external observers or measurement agencies. Accepting the linear nature of quantum
theory and the universal validity of the superposition principle, one natural way would be
to invoke the Everett or “many worlds” interpretation.9 Bryce DeWitt, in his pioneering
paper on canonical quantum theory, writes [33]:

Everett’s view of the world is a very natural one to adopt the quantum theory of
gravity, where one is accustomed to speak without embarassment of the ‘wave
function of the universe.’ It is possible that Everett’s view is not only natural
but essential.

It has indeed become possible to speak without embarassment of the wave function
of the universe [15]. It is no coincidence that Everett’s interpretation became more wildly
known only after DeWitt had made use of it in quantum cosmology. In the next subsection,
we discuss a different approach to interpreting quantum cosmology and the problem
of time.

3.4.2. The Trajectory Approach

As one way to understand the problem of time consists in arguing that one cannot
reconstruct a four-dimensional spacetime from a given three-dimensional initial hyper-
surface because of the lack of dynamical equations, it is natural to think that having such
dynamical equations at the quantum level could actually solve the problem (note that it
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can also lead to new effects that could potentially be observed in a cosmological setup [36]).
In the case of the Schrödinger equation, this implies particle trajectories, although not the
classical ones, as suggested in 1927 by de Broglie [37] and further completed 25 years later
by Bohm [38,39]. Similarly, actual functions hij(t) could be obtained.

In quantum mechanics, this works as follows. By making the amplitude and phase of
the wave function explicit through ψ(x, t) = |ψ|eiS and setting Ĥ = −∇2/(2m) + V(x) in
the Schrödinger Equation (16), one gets the following continuity equation:

∂|ψ|2
∂t

+∇ ·
(
|ψ|2 ∇S

m

)
= 0, (19)

and a modified Hamilton–Jacobi equation:

∂S
∂t

+
(∇S)2

2m
+ V(x)− ∇2|ψ|

2m|ψ| = 0, (20)

by splitting (16) into its real and imaginary parts. Equation (19) leads to the usual Born prob-
ability density ρ = |ψ|2, while the momentum p can be identified with ∇S/m; the classical
potential is then seen to be corrected by a quantum potential Q given by the following:

Q(x, t) = −∇2|ψ|
2m|ψ| = −

1
4mρ

[
∇2ρ− (∇ρ)2

2ρ

]
. (21)

Assuming now an actual trajectory x(t), the momentum can be written as p = mv = m .x,
thereby defining a velocity v that satisfies the following guidance equation:

dx
dt

= ∇S =⇒ m
d2x
dt2 = −∇[V(x) + Q(x, t)], (22)

which induces a quantum correction to the classical evolution. Note that it also naturally
provides a clear distinction between the classical and the quantum regimes, the former
being recovered in the limit Q→ 0, a well-defined and state-dependent statement.

Let us restrict our attention to a minisuperspace model, in which one formally replaces
hij with a simpler three-metric h(sym)

ij , including symmetries (e.g., homogeneity and/or
isotropy) and matter content in a set {qa} standing collectively for the geometric degrees of
freedom that are relevant to encode the symmetries and the variables that describe matter;
in the case of (17), for instance, one would have {qa} = {a, φ}. In terms of these variables,
the DeWitt metric is reduced from Gijkl(hab) to Γab(qc), and writing the last term in (15)
containing the intrinsic scalar curvature 3R and the 00 component of the stress tensor T̂00

as a mere function V of the qa, the Wheeler–DeWitt equation becomes [40]:

− 1
2

Γab
∂2Ψ(qc)

∂qa∂qb
+ V(qc)Ψ(qc) = 0. (23)

Equation (23) is much simpler than (15) and can in fact be solved exactly in many cases.
By expanding the wave functional into amplitude |Ψ| and phase S once again, one

gets the modified Hamilton–Jacobi equation:

1
2

Γab
∂S
∂qa

∂S
∂qb

+ V(qc)−Γab
∂2|Ψ|
|Ψ|∂qa∂qb︸ ︷︷ ︸
Q(qq)

= 0, (24)
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whose solution yields the function S(qa), and

Γab
∂

∂qa

(
|Ψ|2 ∂S

∂qb

)
= 0, (25)

hence, one can identify the “velocity” dqa/(Ndt) through

∂S
∂qa

= Γab dqb
Ndt

. (26)

This gives qa(t), that is, a full reconstruction of a four-dimensional spacetime. Note that
with Equation (26), being invariant under time reparametrization, the resulting spacetime
geometry is independent of the choice of the lapse function N, as required.

In general, however, the trajectory approach cannot really come to an absolute con-
clusion as to whether there exists a satisfying solution to the problem of time in quantum
gravity, even though it is the case for at least the quantum cosmological setup in which one
restricts attention to minisuperspace. We refer the reader to Ref. [40] and the references
given therein, in which a detailed discussion of the possible wave functional configurations
and their consequences is presented.

3.5. Time from Semiclassical Gravity

Since the early days of quantum theory, scientists have already speculated about the
meaning of the t in the Schrödinger Equation (16). We have already referred to the work of
Pauli and Schrödinger. In 1931, Neville Mott made another important contribution [41]. He
proposed that it is not the time-dependent but the time-independent Schrödinger equation,
Hψ = Eψ, that is fundamental. The time-dependent version emerges from a correlation
between subsystems in the total time-independent system.

As a concrete example, Mott considered an electron, described by position r, in-
teracting with an alpha-particle, described by position R ≡ (X, Y, Z). By making the
following ansatz:

Ψ(r, R) = f (r, R)eikZ, (27)

he was able to derive an effective time-dependent Schrödinger equation for the electron,
with time t constructed from the Z-coordinate of the alpha-particle. In this, he explicitly
referred to the approximation introduced by Born and Oppenheimer in 1927. Time is thus
defined by the alpha-particle. The general idea of deriving evolution entirely from internal
clock readings was elaborated on in detail by Ref. [42].

A similar mechanism is at work in quantum cosmology. There, a semiclassical time
can emerge from the timeless Wheeler–DeWitt equation by dividing the total system into
subsystems, with one of these subsystems capable of providing a time variable in reference
to which the other subsystems evolve. To be more concrete, the limit of quantum field
theory in an external spacetime can be obtained by a Born–Oppenheimer type of expansion
scheme with respect to the Planck-mass squared, m2

P [43]. One starts with the following
ansatz for the total wave function(al) of gravity and matter:

Ψ[hab, φ] ≡ eiS[hab ,φ]

and expands the exponent in powers of m2
P,

S[hab, φ] = m2
PS0 + S1 + m−2

P S2 + . . . .

This is then inserted into the full Wheeler–DeWitt equation, and different powers of
m2

P are compared. The highest orders, m4
P and m2

P, lead to a φ-independent S0, for which
the gravitational Hamilton–Jacobi equation holds. In this way, (vacuum) GR is recovered.10
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At the order m0
P, one obtains an equation for S1 that can be simplified by introducing

the following equation:
ψ := D[hij]eiS1 (28)

and demanding the standard “WKB prefactor equation” for D, which is actually similar
to (25). Next, one can define a local “bubble” (Tomonaga–Schwinger) time functional by:

δ

δτ(x)
:= Gabcd

δS0

δhab(x)
δ

δhcd(x)
; (29)

with this, we obtain the following Tomonaga–Schwinger (local Schrödinger) equation:

i
δ

δτ(x)
ψ = Hm(x)ψ, (30)

whereHm(x) is the matter Hamiltonian density. We note that τ(x) is not a scalar function
because the commutator of Hm at different space points does not vanish [44]. Neverthe-
less, one can integrate (30) over d3x with a chosen lapse function to yield a (functional)
Schrödinger equation with respect to a “WKB time” t and the non-gravitational part of
the full Hamiltonian. This equation describes the limit of quantum field theory in curved
spacetime. The next order, m−2

P , gives genuine quantum-gravitational correction terms to
the matter Hamiltonian.

There has been a debate about whether the Schrödinger equation with the quantum-
gravitational corrections evolves unitarily or not with respect to WKB time. Since this
equation is derived from the Wheeler–DeWitt equation, one would not expect that it
does. One can, however, construct a physical inner product by an intricate construction
in reference to which there is a unitary evolution [35]. Using these correction terms,
one can unambiguously calculate quantum-gravitational corrections to the CMB power
spectrum [45]. These are observable in principle but not in practice because the factor m2

P

in the denominator makes them too small.
The derivation of the Schrödinger equation from the timeless Wheeler–DeWitt Equa-

tion (15) works only for complex solutions of the form (at the highest order) exp(im2
PS0),

with a real S0. The i there is the same i that occurs in the Schrödinger equation with
respect to WKB time. It is only for such complex states that standard quantum (field)
theory can be derived as an approximation from timeless quantum gravity.11 For such
states, one can invoke the standard notions of probability and unitarity. In light of the full
Wheeler–DeWitt equation, these are only approximate (“phenomenological”, in the words
of DeWitt) notions. Such states occur in the BO-approximation discussed above, but can
also be introduced beyond it [35]. One can also argue from the trajectory approach that the
probability interpretation in the form of the Born rule can only emerge in the semiclassical
limit [36].

General states can be found in these complex states by the application of the super-
position principle. Superposing, particularly exp(im2

PS0) with its complex conjugate, one
obtains a real (approximate) solution to the Wheeler–DeWitt equation. The notions of WKB
time and unitarity can only be employed for the two complex components in this super-
position provided these components decohere. Decoherence comes from the interaction
between relevant and irrelevant degrees of freedom and guarantees that in most (but not all)
situations usually dealt with in cosmology, the classical appearance of (most) gravitational
degrees of freedom holds (for example, see Ref. [4], Chap. 10, and the references therein).
The time concept discussed in Section 3.4.1 above, together with the recovery of time from
semiclassical gravity discussed here, provides a minimal solution to the problem of time
and is in accordance with all observations made so far.

Some final remarks are in order for isolated quantum-gravitational systems such as
(quantum) black holes. For such systems, one can derive an effective Schrödinger equation
in which t is the WKB time of the (semiclassical) Universe in which the black holes are
embedded, but where the Hamiltonian is the Wheeler–DeWitt Hamiltonian for the quantum
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black hole [48]. For such isolated systems, therefore, there is no problem of time, and the
standard notions of probability and unitarity apply. The problem of time is a problem for
closed quantum-gravitational systems such as the Universe as a whole.

4. Conclusions

The question of time in quantum cosmology represents a serious challenge to be
understood fully in order to build a complete quantum gravity theory from which the
observed world, based on the classical theory of general relativity, can be derived. The abil-
ity to produce a consistent four-dimensional spacetime must indeed be ensured, a highly
nontrivial task within all the known setups or approximations that have been proposed
to implement its quantization. Here, we have discussed the case of canonical GR through
the Wheeler–DeWitt equation, and we have shown but a few plausible solutions among
many [6,49].

In spite of this restriction, we believe that aspects of the problem of time discussed
in this article as well as their possible solutions can be found for a large class of quantum-
gravity approaches, definitely for those approaches that arise heuristically from a for-
mal quantization of a classically diffeomorphism-invariant theory. This is evident for all
generalized geometrodynamic theories of gravity, such as f (R)-theories, which can be
re-formulated as Einstein gravity plus a scalar field. An explicitly discussed example is
conformal (Weyl) gravity where a concept of shape time emerges [50]. The situation is
somewhat different in loop quantum gravity, which is a theory that follows from a quantiza-
tion of GR, but which makes use of different variables. For this reason, the concept of time
exhibits subtleties in addition to the ones discussed here for geometrodynamics (see [51]
and the references therein). The situation is really different in string theory, because this is
not a direct quantization of GR but a fundamental quantum theory of all interactions from
where quantum gravity arises as an emergent theory. However, it is also claimed there that
spacetime is not fundamental; instead, it must be constructed from a holographic, dual
theory [52]. A detailed discussion of time in these more generalized theories is beyond the
scope of our paper.
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Notes
1 The origin of this discussion can, in fact, be traced back to the pioneering work of Léon Rosenfeld in 1930, see the detailed account

by Salisbury in Ref. [7].
2 We use units in which c = 1.
3 For a recent discussion of boundary terms, see Ref. [11].
4 In the following we shall set h̄ = 1.
5 The German original reads: “Es widerstrebt dem wissenschaftlichen Verstande, ein Ding zu setzen, das zwar wirkt, aber auf das

nicht gewirkt werden kann”.
6 The French original reads: “Le temps doit être défini de telle façon que les équations de la mécanique soient aussi simples

que possible. En d’autres termes, il n’y a pas une manière de mesurer le temps qui soit plus vraie qu’ une autre; celle qui est
généralement adoptée est seulement plus commode”.

7 The German original reads: “Wir schließen also, daß auf die Einführung eines Operators t grundsätzlich verzichtet und die Zeit t
in der Wellenmechanik notwendig als gewöhnliche Zahl (‘c-Zahl’) betrachtet werden muß”.
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8 The German original reads: “Zur empirischen Kenntnis der Zeitvariablen kann man auf keine andere Weise als durch wirkliche
Ablesung einer wirklich existierenden Uhr gelangen. Diese Uhr ist ein physikalisches System wie jedes andere, die Ablesung
ihres Zeigerstandes eine physikalische Messung wie jede andere. Es geht nicht an, dieses eine physikalische System und diese
eine Art von Messungen sozusagen hors concours zu stellen und bloß auf alle übrigen die Grundsätze der Quantenmechanik
anzuwenden, auf die Zeitbestimmung aber nicht”.

9 The name “many worlds” may, strictly speaking, be inappropriate because one deals with one quantum world. In fact, Everett
himself used the term “relative states”.

10 Non-vacuum GR can be recovered by adding some of the φ-degrees of freedom to S0.
11 A general discussion of why we need complex quantum states and where they come from can be found in the twin papers [46,47]

and the references therein.
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