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Abstract: As an important index of solar activity, the 10.7-cm solar radio flux (F10.7) can indicate
changes in the solar EUV radiation, which plays an important role in the relationship between the Sun
and the Earth. Therefore, it is valuable to study and forecast F10.7. In this study, the long short-term
memory (LSTM) method in machine learning is used to predict the daily value of F10.7. The F10.7

series from 1947 to 2019 are used. Among them, the data during 1947–1995 are adopted as the
training dataset, and the data during 1996–2019 (solar cycles 23 and 24) are adopted as the test dataset.
The fourfold cross validation method is used to group the training set for multiple validations. We
find that the root mean square error (RMSE) of the prediction results is only 6.20~6.35 sfu, and the
correlation coefficient (R) is as high as 0.9883~0.9889. The overall prediction accuracy of the LSTM
method is equivalent to those of the widely used autoregressive (AR) and backpropagation neural
network (BP) models. Especially for 2-day and 3-day forecasts, the LSTM model is slightly better. All
this demonstrates the potentiality of the LSTM method in the real-time forecasting of F10.7 in future.

Keywords: solar radio flux; time series forecast; long short-term memory

1. Introduction

The term “space weather” appeared in the early 1980s and became popular in the
1990s. Space weather, as defined by Wright et al. [1], refers to the comprehensive situation
of changing material conditions on the surface of the Sun, the Sun–Earth space, the Earth’s
magnetic field, and the upper atmosphere that can affect the performance and reliability of
the space-based and ground-based technology system and endanger human health and life.
To be brief, space weather refers to how solar activity has an unwanted impact on technical
systems and human activities, both in near-Earth space and on the ground. Space weather
events will also cause threats and harm to human life, such as communications, navigation
and positioning systems, aerospace safety, and so on. Therefore, it is necessary to carry out
space weather research, including global space weather monitoring and forecasting, which
is one of the guarantees for the safe operation of important national infrastructure and is
closely related to us.

Solar activity controls the changes in the solar–terrestrial space environment and the
space environment near the Earth, and it is the source of various geophysical phenomena
and space environmental effects. Therefore, predicting the level of solar activity is an
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important part of space environmental forecasting. Great progress has been made in solar
activity forecasting during the past few decades (see Daglis et al. [2]).

The solar radio flux of 10.7 cm (2800 MHz), commonly known as the F10.7 index, is a
good indicator of solar activity. It is one of the solar indices with the longest observational
record. F10.7 is closely related to the number of sunspots and some ultraviolet (UV) and
visible solar irradiance records [3,4]. Since 1947, F10.7 has been measured in Canada, first
at Ottawa, Ontario and then at the Penticton Radio Observatory in British Columbia,
Canada (COVINGTON 1947). Unlike other solar indices, F10.7 radio flux can be easily and
reliably measured from the Earth’s surface in all weather conditions. In addition, the orbit
prediction of low Earth orbit satellites usually uses the upper atmosphere density model,
which requires the input of future F10.7 [5–7]. Therefore, the accurate prediction of F10.7 is
particularly important.

The radio emission of F10.7 comes from the high chromosphere and the low corona. It
has a strong correlation with the existence of active regions and the occurrence of flares [8].
Therefore, some studies use the empirical prediction model based on the main solar charac-
teristics to predict F10.7. For example, Wen et al. [9] used the physical parameters of the solar
active regions to predict F10.7. Henney et al. [10] predicted F10.7 using advanced predictions
of the global solar magnetic field generated by the flux transport model. Liu et al. [11] used
two models established by Yeates et al. [12] and Worden and Harvey [13] to predict the
short-term variations of F10.7 from 2003 to 2014. Ye et al. [14] proposed a forecast formula
of F10.7 based on the classification of the area of the solar active region and correlations
between the area of the solar active region and F10.7.

Miao et al. [15] used the method of “similar cycle” to forecast the mean value of solar
F10.7 in the 23th solar cycle. Compared with the forecast result deduced indirectly from
the sunspot number, the direct result obtained by the method of “similar cycle” was closer
to the smoothed value of the monthly data of F10.7. Zhong et al. [16] used the singular
spectrum analysis method to make a 27-day forecast of F10.7, and their results showed that
this method predicts the periodic changes of the F10.7 index better in terms of the solar
minimum. Liu et al. [17] used the autoregressive method for time series modeling to study
the medium-term forecast of the solar 10.7-cm radio flux. When solar activity is weak and
F10.7 shows an obvious 27-day periodic tendency, the prediction accuracy of this method is
high. However, the prediction accuracy becomes low when the solar active region appears
or disappears. Based on the principle of the short-period oscillation of solar radiation,
Wang et al. [18] used the historical radiation index data of 135 days to forecast F10.7 in
54 days. This method was slightly better than the method of the Space Weather Prediction
Center in America, and the RMSE decreased by about 19% for the short-term forecast of
7 days. Lei et al. [19] proposed an empirical method to predict the F10.7 of 27 days based on
EUV images. They defined the contribution index (PSR) of solar corona to F10.7 according
to the intensity of the solar extreme ultraviolet image. Compared with the prediction result
of the 54-order autoregressive model in 2012–2013, this method has obvious advantages in
the prediction of F10.7 during the next 3–27 days.

Machine learning is a subfield of computer science which presents an automatic
learning ability without explicit programming [20]. It evolved from the research of pattern
recognition and computational learning theory in artificial intelligence. Machine learning
is a method that first trains a model by data and then predicts future data by the trained
model. In the past 10 years, machine learning has been a concern in a wide range of
fields with the development of computer hardware. It is particularly suitable for big data
and multi-dimensional data processing. It has also been used more and more in space
weather research, especially for the prediction of spatial environmental parameters such as
F10.7. Huang et al. [21] used the support vector regression method to forecast F10.7 several
days in advance. Warren et al. [22] proposed a simple linear prediction model of F10.7,
and Wang et al. [23] proposed a linear multi-step F10.7 forecasting model based on task
correlation and heteroscedasticity.
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The neural network is an important example of machine learning technology. More
and more scholars apply it to the forecasting of F10.7. For instance, Chatterjee [24] used a
multi-layer feedforward neural network to predict F10.7 in 1993 (the minimum of the 22th
solar cycle), which was more accurate for the prediction of 1 day in advance. The results
showed that the correlation coefficient between the predicted and observed values (1 day in
advance) was 0.93. Xiao et al. [25] used the backpropagation neural network technique to
predict the daily F10.7. Their results showed that this method is superior to other forecasting
methods such as support vector regression in short-term predictions. Wang [26] proposed
a multi-layer prediction model of a typical neural network to predict F10.7. Luo et al. [27]
proposed a method that combined a backpropagation neural network and empirical mode
decomposition to predict the daily value of F10.7 1–27 days in advance.

A neural network is a method to implement machine learning tasks. In general, neural
networks can be divided into two kinds: the feedforward neural network and the feedback
neural network. Neurons in the feedback neural network can not only receive signals from
other neurons but also receive their own feedback signals. Compared with the feedforward
neural network, the neurons in the feedback neural network have a memory function
and have different states at different times. Information propagation in the feedback
neural network can be one-way or two-way. A recurrent neural network (RNN) is a kind
of feedback neural network which is one of the most popular data-driven methods in
forecasting of time series. Although RNNs can understand short-term dependencies, they
have encountered problems in capturing long-term dependencies due to the problem of
gradual disappearance. The long short-term memory (LSTM) method is a machine learning
algorithm suitable for processing time series data which uses storage units and thresholds
to capture long-term dependencies. Recently, it has shown good performance in various
fields related to big data. Based on the LSTM method, Yang et al. [28] and Luo et al. [29]
conducted a mid-term forecast of the F10.7 index for the next 27 days.

Different from Yang, this paper aims at a short-term forecast of the F10.7 index.
Yang et al. [28] spent a lot of time to determine the setting of parameters in their model.
They trained the data as a whole, and the corresponding training set and test set were not
separated. Furthermore, their model ignored the local volatility of the data during a certain
period of time. This paper will combine experience with theory to quickly determine the
selection of parameters. In addition, we will separate the training set from the test set and
ensure that the training set has enough data to train the model. Here, the test set consists of
unknown data for the mode, and will be used to evaluate the generalization ability of the
model. We will also consider some detailed skills to improve the accuracy of the prediction.
This paper is organized as follows. The data and the LSTM model are briefly described in
Section 2. The results are presented in Section 3, followed by discussion, conclusions, and
future work of Section 4.

2. Data and Methods

The daily flux of F10.7 is the radio emission from the sun at the wavelength of 10.7 cm
recorded daily. The units are solar flux units (1 sfu = 10−22Wm−2Hz−1). The 10.7 cm daily
solar flux data were obtained from CelesTrak (https://celestrak.com/SpaceData/SpaceWx-
format.php) (accessed on 23 November 2020). The database available here comprised three
values: the observed, adjusted, and Series D values (absolute values).

The observed flux values were measured by a solar radio telescope, which are con-
trolled by the solar activity level and the Sun–Earth distance. This is mainly used to
study the radio short-wave communication, the magnetic storm phenomenon, the upper
atmosphere temperature, and so on [3]. The flux was measured three times per day. The
measurement times were 5:00 p.m. UT, 8:00 p.m. UT (local noon), and 11:00 p.m. UT from
March to October. As the measuring equipment was located in the valley and relatively
high-latitude regions, it was impossible to maintain these times for the rest of the year.
Therefore, the times of the flux measurements were changed to 6:00 p.m. UT, 8:00 p.m.

https://celestrak.com/SpaceData/SpaceWx-format.php
https://celestrak.com/SpaceData/SpaceWx-format.php
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UT (local noon), and 10:00 p.m. UT from November to February so that the sun was high
enough above the horizon for good measurements.

Since the distance between the Sun and the Earth keeps changing, additional values
were therefore generated to correct for changes in the Sun–Earth distance. This is called the
adjusted flux (the value at 1AU). Astronomers try to match the data of the solar flux density
at different frequencies with a frequency spectrum. Given a scale factor, each wavelength
could be combined into a calibrated spectrum. For the solar flux of 10.7 cm, the estimated
scale factor was 0.9, and the series D Flux = 0.9× adjusted flux [30]. In this article, we use
the adjusted fluxes of F10.7.

We preprocessed the data as follows. (1) Since the data from 2004 to 2019 on the
website had three values per day, we calculated the daily averages of the adjusted flux
values of F10.7 for each day. (2) We integrate the calculated daily average data of F10.7 from
2004 to 2019, with the daily data directly provided by the website from 1947 to 2004. Here,
we used the data of F10.7 from 1947 to 2019. Figure 1 shows the processed data. The black
line represents the train dataset, and the blue line is the test dataset. They will be used
separately in the following.
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Figure 1. Daily average of F10.7 (1AU adjusted values) from 1947 to 2019.

LSTM was introduced by Hochreiter and Schmidhuber [31] and became more and
more refined and popular with the efforts of many scientists. Due to its unique design
structure, LSTM is suitable for processing and predicting important events with very long
intervals and delays in time series and is now widely used. Here, we apply LSTM to the
prediction of F10.7.

LSTM is capable of removing or adding information to the state of the cell through
a well-designed structure called a “gate”. A gate is a way of letting information through
selectively. It contains a sigmoid neural network layer and a pointwise multiplication
operation. The LSTM has three gates to protect and control the state of the cells, namely the
forget gate, the input gate, and the output gate. The network structure diagram of LSTM is
shown in Figure 2. Each black line transmits a whole vector from the output of one node to
the input of other nodes. The yellow circle represents pointwise operations, such as the
summing of vectors. The blue rectangle is the learned neural network layer. The combined
lines represent the connection of vectors, and the separated lines represent the content
being copied and then distributed to different locations.
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As the name implies, the forget gate is a gate that controls whether information is
forgotten. In the framework of LSTM, it controls whether or not to forget the hidden cell
state of the next layer at a certain probability. The input gate handles the input for the
current sequence position, and the output gate determines what the next hidden state will
be. The calculation formulas for these three gates are as follows:

ft = σ
(

W f ·[xt, ht−1] + b f

)
(1)

it = σ(Wi·[xt, ht−1] + bi) (2)

ot = σ(W0·[xt, ht−1] + b0) (3)

where W and b are the coefficient and bias of the linear relationship, respectively, σ is the
sigmoid excitation function, x is the input of this time, and ht−1 is the output of the cell at
the previous time.

The cell input state can be found by

C̃t = tanh(WC·[xt, ht−1] + bC) (4)

The update cell status can be expressed as

Ct = it ∗ C̃t + ft ∗ Ct−1 (5)

Finally, the output of hidden cell is obtained:

ht = ot ∗ tanh(Ct) (6)

where WC and bC are the coefficient and bias of the linear relationship, respectively. The
output gate ot and the current cell state Ct are used to obtain the current LSTM output state
ht, where tanh is a nonlinear activation function.

Five statistical evaluation indexes are used to evaluate the performance of the LSTM
method: the mean absolute percentage error (MAPE), root mean square error (RMSE), nor-
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malized mean square error (NMSE), mean absolute error (MAE), and correlation coefficient
(R). The specific formulas are as follows:

RMSE =

√
∑T

t=1(ŷt − yt)
2

T
(7)

MAPE =
1
T ∑T

t=1

∣∣∣∣yt − ŷt

ŷt

∣∣∣∣ (8)

NMSE =
T − 1

T
∑T

t=1(ŷt − yt)
2

∑T
t=1(yt − y)2 (9)

MAE =
1
T ∑t

t=1|yt − ŷt| (10)

R =
∑T

t=1 ytŷt√
∑T

t=1 ŷt2
√

∑T
t=1 yt2

(11)

where T is the number of samples, ŷt and yt are the predicted value and the observed value,
respectively, and y is the mean value of yt, t = 1, 2, . . . T.

The MAPE is the most commonly used evaluation index to express forecast errors
in time series forecasting. The MAE, RMSE, and NMSE are adopted to measure the
deviation between the predicted value and the observed value, which reflects the prediction
performance of the model. The smaller the value is, the better the prediction will be. R is
adopted to indicate the correlation between the predicted and observed values.

In this paper, the model of LSTM was established, and the calculation process was
completed under the framework of Tensorflow 2.0 [32] in Python 3.7. We divided the data
of 73 years into the training set and the test set. The data from 1947 to 1995 were used
as the training dataset, and the data from 1996 to 2019 were used as the test dataset. The
fourfold cross validation method was adopted on the training set; that is, the training set
was randomly divided into a training subset and a validation subset. It was equivalent
to make full use of the training set to group for multiple verifications so as to have an
evaluation of the model. In the evaluation, we could adjust the parameters and select the
best learner.

The parameters in the LSTM network included the learning rate and number of hidden
neurons and epochs. Table 1 lists the parameters involved in the LSTM network.

Table 1. Parameters in the LSTM model.

Learning Rate Hidden Neuron Epochs

0.001 50 100

The Adam optimizer was chosen because of its high computational efficiency and
low memory requirements [33]. The Adam optimizer is very suitable for problems with
large data or parameters, and the learning rate is usually recommended to be 0.001. The
epoch was set to be 100. The greater the number of hidden layer neurons, the better the
representation ability of the model. However, the training time and memory cost also
increase with the increase in hidden neurons. There are many ways to determine the
number of hidden neurons, such as the method of determining the upper bound formula
of the number of neurons [34] and the empirical formula method [35,36]. We referred to
the methods mentioned above to determine the relatively optimal number of hidden layer
neurons, and the number of hidden neurons was set to 50.
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3. Results
3.1. Prediction Results

Figure 3 is the model loss of the 3-day forecast when epoch was 100. The blue line and
yellow line represent the training set and validation set, respectively. The stability of the
model loss demonstrates the effectiveness and rationality of the epoch selection.
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We used the LSTM model to predict the 1-, 2-, and 3-day values of F10.7 and compared
them with the observed values. The LSTM modeling results of the 10.7-cm solar radio
flux are shown in Figures 4–6, which represent the results of the 3-day, 2-day, and 1-day
forecasts, respectively. The observed values of F10.7 are represented by the red line, and the
predicted values are represented by the blue line. We can see that the predicted values of
F10.7 were in good agreement with the observed values of F10.7 in general.
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2014 9.40 4.64 0.12 0.9381 9.11 4.33 0.12 0.9429 8.65 4.14 0.11 0.9497 

2016 3.23 2.54 0.08 0.9619 3.06 2.41 0.07 0.9646 3.05 2.38 0.07 0.9644 

2019 1.36 1.43 0.22 0.8966 1.35 1.41 0.22 0.8906 1.33 1.41 0.21 0.8969 
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Table 2 shows the statistical parameters between the predicted and observed values of
LSTM in different years, which reflects the performance of the LSTM model over time. It
can be seen from Table 2 that the RMSE of LSTM roughly varied from 1 sfu to 10 sfu for
the 1-day forecast. Similarly, the RMSE also ranged from 1 sfu to 10 sfu for the 2-day and
3-day forecasts, meaning that the model’s accuracy did not change significantly with the
prediction’s leading time. This demonstrates the stability of the LSTM model. However,
the error of the 3-day forecast had different values in different years. In order to examine
the solar cycle effect of the prediction error, we conducted the following analysis.
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Table 2. The prediction errors (RMSE, MAPE, and NMSE) and R of our LSTM model for the F10.7

data during 1996–2019.

Year

1 Day in Advance 2 Day in Advance 3 Day in Advance

RMSE
(sfu)

MAPE
(%) NMSE R RMSE

(sfu)
MAPE

(%) NMSE R RMSE
(sfu)

MAPE
(%) NMSE R

1996 2.06 1.73 0.12 0.9447 1.72 1.47 0.08 0.9575 1.72 1.49 0.08 0.958
1998 5.79 3.54 0.07 0.9648 5.77 3.53 0.07 0.9651 5.72 3.45 0.07 0.9662
2001 10.19 3.96 0.07 0.9672 10.56 3.96 0.07 0.9649 10.02 3.89 0.06 0.9694
2004 5.52 3.58 0.10 0.9531 5.27 3.29 0.09 0.9575 5.14 3.22 0.08 0.9603
2008 1.16 1.04 0.16 0.9231 1.21 1.16 0.18 0.9167 1.22 1.2 0.18 0.9200
2011 5.52 3.24 0.05 0.9744 5.3 2.95 0.05 0.9761 5.36 2.99 0.05 0.9757
2014 9.40 4.64 0.12 0.9381 9.11 4.33 0.12 0.9429 8.65 4.14 0.11 0.9497
2016 3.23 2.54 0.08 0.9619 3.06 2.41 0.07 0.9646 3.05 2.38 0.07 0.9644
2019 1.36 1.43 0.22 0.8966 1.35 1.41 0.22 0.8906 1.33 1.41 0.21 0.8969

Total 6.35 2.92 0.02 0.9884 6.21 2.79 0.02 0.9883 6.20 2.70 0.02 0.9889

Figure 7 (left panel) displays the variations of the prediction errors by year. The yearly
SSN is also shown in this figure. It can be seen from Figure 7 (left panel) that from 1996 to
2001, the error of the 3-day forecast gradually increased and reached its maximum values.
Then, from 2001 to 2008, the forecast error began to decline and reached its minimum value.
The prediction error changes synchronously with SSN. The variations in the 24th solar
cycle presents the same pattern. Considering the fact that F10.7 also changed synchronously
with the SSN (i.e., large F10.7 when the SSN is large), which means that the prediction error
was large when F10.7 was large.
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Figure 7. Annual variations of the prediction error and SSN.

In order to eliminate the contribution of the value itself to the error, we calculated the
relative error between the predicted value and the observed value. The relative prediction
error was defined as

∆ =

∣∣Fpre − Fobs
∣∣

Fobs
∗ 100% (12)

Figure 7 (right panel) shows the variations of the relative errors for the 3-day forecast.
We can see that the relative error had the solar cycle effect (i.e., the relative error was large
when solar activity was strong and became small when the low solar activity became weak).
We need to point out that the forecast error was similar to other models even at the solar
maximum years (e.g., the RMSE in 2014 of the LSTM model was 8.65 sfu, and that of the
AR model was 14.51 sfu). Similar results could be found in the errors of the 1-day and
2-day forecasts.
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Figure 8 displays the frequency distribution of the difference between the observed
value and the predicted value of the model. Here, the differences larger than 20 sfu and
less than −20 sfu are not shown in order to keep the compactness of the histogram. We see
that all three predictions yielded a normal distribution of the prediction differences. The
frequency was at its maximum when the difference between the observed value and the
predicted value was zero, and most predictions (88% of the 3-day forecast) were located
within ±5 sfu of error.
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3.2. Comparison with Other Models

To better evaluate the performance of the model, we compared the prediction results
based on the LSTM model with those based on the AR model [37] and the BP model [25].

It can be seen from Table 3 that the 1-day forecast error of LSTM was slightly larger
than that of BP. However, the LSTM model was better than the BP model for both the 2-day
and 3-day forecasts. For example, the RMSE of the LSTM model was only 5.14 sfu in 2004,
while that of the BP model reached 9.74 sfu.

Table 3. Comparison of the prediction performance between LSTM and BP.

Year

1-Day (BP/LSTM) 2-Day (BP/LSTM) 3-Day (BP/LSTM)

RMSE
(sfu) MAPE (%) RMSE

(sfu) MAPE (%) RMSE
(sfu) MAPE (%)

2003 6.58/8.35 3.73/4.38 10.42/7.35 5.69/3.77 14.82/7.04 8.15/3.70
2004 4.89/5.52 3.24/3.58 7.32/5.27 5.08/3.29 9.74/5.14 7.05/3.22
2008 1.18/1.16 1.11/1.04 1.83/1.21 1.86/1.16 2.15/1.22 2.11/1.20
2009 1.07/1.20 1.08/1.21 1.65/1.04 1.77/1.04 1.84/1.05 1.91/1.07

We obtained the forecast data of the AR model from 1996 to 2019. Figures 9–11 show
the comparison of the prediction performance between the LSTM model and the AR model.
The blue column represents the prediction results of the LSTM model, and the gray one
represents those of the AR model. In general, the prediction errors of the two models were
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both small and comparable, but they had different performances for the predictions with
different leading times. For example, the performance of the AR model was slightly better
(i.e., MAPE from 1.04% to 3.80%) than that of the LSTM model (MAPE from 1.04% to 4.64%)
for the 1-day forecast, but they became worse for the 2-day and 3-day forecasts relative
to LSTM. They could be revealed from both the prediction errors (MAPE and RMSE) and
correlation coefficients. All these demonstrate that the LSTM model presented in this paper
had better performance relative to the AR model, and thus the LSTM model was feasible
for F10.7 prediction.
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4. Discussion, Conclusions, and Future Work

The solar radio flux of 10.7 cm (F10.7) is an important indicator of solar activity. Its use
in solar physics includes the indicator of the solar activity level, a proxy of other solar emis-
sions, the calibration data of antennas [4], the prediction of solar cycle characteristics [38],
and so on. The forecast of F10.7 is an important ingredient in space weather prediction,
and the accurate forecasting of F10.7 will help to protect space satellites and electricity
transmission from solar radiation.

In this article, we first analyzed the ability of the LSTM model to predict the daily F10.7
during the last two solar cycles using 59 years of training samples. Secondly, we compared
the prediction effects with those of the backpropagation neural network (BP) model and
the autoregressive (AR) model. Our main conclusions can be summarized as follows:

(1) The prediction accuracy of the LSTM model did not change significantly with the
leading time of the short-term forecast (i.e., 1-day, 2-day, and 3-day forecasts). This
shows the prediction stability of the LSTM model.

(2) The forecast error had the solar cycle effect (i.e., larger error at the solar maximum),
but even in the solar maximum year, the prediction error was still acceptable (for
example, the RMSE for the 1-day forecast in 2001 was 10.19 sfu).

(3) The prediction accuracy of our LSTM method was as good as those of the BP and AR
models.

As the demand for space weather services increases, F10.7 daily forecasts naturally
need to be improved. Thus, despite the feasibility of the LSTM method in predicting F10.7,
there is still room for improvement of the predictions. This includes but is not limited to
the following aspects. (1) Concerning the parameter setting of the model, in this paper, the
learning rate in the LSTM network was set by an empirical formula. In the future, we can
record the error after each training session by setting a different learning rate and consider
the time used for training to determine the optimal learning rate. (2) For physics-based
techniques and skills, in future works, we will consider some technical details to improve
the forecasting effect. For example, a greater weight should be put on the samples near
the test point in the model fitting, and a more scientific method will be used to find the
optimal parameters and improve the model’s generalization ability. Since the LSTM model
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is feasible and effective to predict the solar activity index F10.7, we can explore whether
the LSTM model can be applied to the forecasting and reconstruction of the number of
sunspots in the future. (3) We can find from this study that the prediction errors of the
2-day and 3-day forecasts did not drop evidently. We can check the feasibility of the LSTM
model in the mid-term and long-term forecasts of F10.7, which will be our next research
direction.
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